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A new theorem relating quantum tomogram
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According to Fan–Hu’s formalism (Fan Hong-Yi and Hu Li-Yun 2009 Opt. Commun. 282 3734) that the tomogram

of quantum states can be considered as the module-square of the state wave function in the intermediate coordinate–

momentum representation which is just the eigenvector of the Fresnel quadrature phase, we derive a new theorem for

calculating quantum tomogram of density operator, i.e., the tomogram of a density operator ρ is equal to the marginal

integration of the classical Weyl correspondence function of F †ρF , where F is the Fresnel operator. Applications of this

theorem to evaluating the tomogram of optical chaotic field and squeezed chaotic optical field are presented.
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1. Introduction

It is well known that X-ray or optical tomographic
imaging technique (classical tomography) derives two-
dimensional data from a three-dimensional object to
obtain a slice image of the internal structure and thus
it has an ability to peer into the object. In the context
of phase space theory of quantum statistical physics
Vogel and Risken[1] pointed out the probability dis-
tribution for the rotated quadrature phase can be ex-
pressed in terms of Wigner function and the reverse is
also true (named as Vogel–Risken relation), i.e., one
can obtain the Wigner distribution by tomographic
inversion of a set of measured probability distribu-
tions of the quadrature amplitude. In quantum optics
theory, σX + τP , where σ and τ are real numbers,
X =

(
a† + a

)
/
√

2, P = i
(
a† − a

)
/
√

2, representing
all possible linear combinations of quadratures X and
P of the oscillator field mode a and a† can be mea-
sured by the homodyne measurement just by varying
the phase of the local oscillator.[2,3] The average of the
measurements, at a given local oscillator phase, is re-
lated to the marginal distribution of Wigner function,
thus the homodyne measurement of the light field al-
lows the reconstruction of the Wigner function[4−12]

of a quantum system by varying the phase of the local
oscillator. Thus a tomographic approach of quantum
theories offers a description of tomographic probabil-

ity. Recently, a tomogram approach,[1,13−20] which
is related to a standard positive probability distribu-
tion function describing the quantum state in quan-
tum statistics and quantum optics, has aroused much
interest of physicists. A challenge thus arises: how
is the mixed state tomogram calculated in a concise
way? In particular, how is the mixed state tomogram
effectively derived? As Dirac pointed out: “ When one
has a particular problem to work out in quantum me-
chanics, one can minimize the labour by using a repre-
sentation in which the representatives of the more im-
portant abstract quantities occurring in that problem
are as simple as possible.”[21] In Ref. [22] a new for-
malism of quantum tomogram has been established.
It has been shown that for tomographic approach
there exists the quantum mechanical representations
|x〉s,r (named the intermediate coordinate–momentum
representation) and that the Radon transform of the
Wigner operator is just the pure-state density matri-
ces |x〉s,rs,r 〈x| . As a result, the tomogram of quantum
states can be considered as the module-square of the
state wave function in the intermediate coordinate-
momentum representation. In Ref. [22] Fan and Hu
further found that |x〉s,r = F |x〉 , F is the Fresnel op-
erator proposed as the quantum image of the classical
Fresnel transformation,[23−26] thus the probability dis-
tribution for the Fresnel quadrature phase is just the
core of tomography. In this way the Radon transform
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of Wigner function can be formulated much simply
and more elegantly, which enables us to evaluate the
tomogram of quantum mixed state in a more direct
way. In this way, as one can see shortly later, we find
a new theorem, i.e., the tomogram of a density oper-
ator ρ is equal to the marginal integration of the clas-
sical Weyl correspondence function of F †ρF, where F

is the Fresnel operator. The rest of the present paper
is arranged as follows. In Section 2 we briefly review
the relationship between Fresnel transformation and
quantum tomography. In Section 3 we derive the new
theorem. As an application of this theorem, in Sec-
tion 4 we calculate the tomogram of the optical chaotic
field. In Section. 5, we calculate the tomogram of the
squeezed optical chaotic field. Throughout the paper
we take full advantage of the technique of integration
within Weyl ordered product (IWWOP) of operators
and Weyl ordering invariance under similar transfor-
mations.

2. Brief review of the relation-

ship between Fresnel transfor-

mation and quantum tomogra-

phy

In Ref. [22] Fan and Hu have proved that the
Wigner operator’s Radon transform is

∫∫ ∞

−∞
dx′dp′δ [x− (Dx′ −Bp′)]∆ (x′, p′)

= |x〉s,rs,r 〈x| , (1)

or
∫∫ ∞

−∞
dx′dp′δ [ p− (Ap′ − Cx′)]∆ (x′, p′)

= |p〉s,rs,r 〈 p | , (2)

where ∆(x, p) is the Wigner operator and its normal
ordering form is[27]

∆(x, p) =
1
π

: e−(x−X)2−(p−P )2 : ; (3)

s and r are two complex parameters, related to
(A;B;C;D) through the following relations:

A =
1
2

(s∗ − r∗ + s− r) ,

B =
1
2i

(s∗ − s + r∗ − r) ,

C =
1
2i

(s− r − s∗ + r∗) ,

D =
1
2

(s + s∗ + r + r∗) (4)

with the constraint |s|2 − |r|2 = 1, or AD − BC = 1;
the Radon projection in Eq. (1) is in the (B,D) direc-
tion, while in Eq. (2) is in the (A,C) direction; state
vector |x〉s,r is named the tomography representation,
while |p〉s,r is just its conjugate,

∫ +∞

−∞
dx |x〉s,rs,r 〈x| = 1,

∫ +∞

−∞
dp |p〉s,rs,r 〈p| = 1. (5)

It has been revealed in Ref. [22] that

|x〉s,r = F |x〉 , |p〉s,r = F |p〉 , (6)

where

|x〉 = π−1/4 exp
[
−x2

2
+
√

2xa† − 1
2
a†2

]
|0〉 , (7)

and

|p〉 = π−1/4 exp
[
−p2

2
+
√

2ipa† +
1
2
a†2

]
|0〉 (8)

is the momentum representation, P |p〉 = p |p〉 and F

is the so-called Fresnel operator[23,24]

F (s, r) = exp
(
− r

2s∗
a†2

)
exp

{(
a†a +

1
2

)
ln

1
s∗

}

× exp
(

r∗

2s∗
a2

)
, (9)

generating the kernel of classical optical Fresnel
diffraction

〈x′|F (s, r) |x〉
=

1√
2π iB

exp
[

i
2B

(
Ax2 − 2x′x + Dx′2

)]
, (10)

such that an output light field g (x) of an ABCD op-
tical instrument [(A;B;C;D) are elements of a ray
transfer matrix] is related to its input light field f (x)
by the Fresnel integration[28]

g (x′)

=
1√

2π iB

∫ ∞

−∞
exp

[
i

2B

(
Ax2 − 2x′x + Dx′2

)]

× f (x) dx, (11)

or F (s, r) |f〉 = |g〉 . Then

FXF † = XF , (12)
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can be named the Fresnel transformed quadrature
phase (FPF † = PF is its conjugate operator). The
Wigner operator in x-representation is expressed as[4]

∆(p, x) =
∫ +∞

−∞

dv

2π
e ipv

∣∣∣x +
v

2

〉〈
x− v

2

∣∣∣ . (13)

Hence the probability distribution for the Fresnel
quadrature phase is just the tomography.

3. A new theorem relating quan-

tum tomogram to the Fresnel

operator

Multiplying both sides of Eq. (1) by a density
matrix ρ and then performing the trace, noting the
Wigner function W (p, x) = Tr [ρ∆(p, x)] , we see

Tr
[∫∫ ∞

−∞
dx′dp′δ [x− (Dx′ −Bp′)]∆ (x′, p′) ρ

]

= Tr
(
|x〉s,rs,r 〈x| ρ

)

= s,r 〈x| ρ |x〉s,r

= 〈x|F †ρF |x〉
=

∫∫ ∞

−∞
dx′dp′δ [x− (Dx′ −Bp′)]W (p′, x′). (14)

The right-hand side of Eq. (14) is commonly defined
as the tomogram of quantum states in the (B,D) di-
rection, so in our view the calculation of tomogram in
(B,D) direction is reduced to calculating

〈x|F †ρF |x〉 ≡ Ξ. (15)

This is a concise and neat formula. Similarly, the to-
mogram in (A,C) direction is reduced to calculating
〈p|F †ρF |p〉.

According to the Weyl correspondence rule[29]

H (X, P ) =
∫∫ ∞

−∞
dpdxh(p, x)∆(p, x), (16)

and the Weyl ordering form of ∆(p, x)[30,31]

∆(p, x) = ··· δ (x−X) δ (p− P ) ··· (17)

where the symbol ···
··· denotes Weyl ordering, the

classical correspondence of a Weyl ordered operator
···h(X, P ) ··· is obtained just by replacing X → x, P → p

in h, i.e.,

···h(X, P ) ··· =
∫∫ ∞

−∞
dpdxh(p, x)∆(p, x). (18)

Let the classical Weyl correspondence of F †ρF be
h(p, x)

F †ρF =
∫∫ ∞

−∞
dpdxh(p, x)∆(p, x), (19)

then using Eqs. (15) and (19) we have

Ξ = 〈x|F †ρF |x〉
= 〈x|

∫∫ ∞

−∞
dpdx′h(p, x′)∆ (p, x′) |x〉

=
∫∫ ∞

−∞
dpdx′h(p, x′)

∫ +∞

−∞

dv

2π
e ipv

×
〈

x

∣∣∣∣x′ +
v

2

〉〈
x′ − v

2

∣∣∣∣x
〉

=
∫∫ ∞

−∞
dpdx′h(p, x′)

∫ +∞

−∞

dv

2π
e ipvδ

×
(
x− x′ +

v

2

)
δ
(
x− x′ − v

2

)

=
1
π

∫∫ ∞

−∞
dpdx′h(p, x′) e i2p(x−x′)δ (2x′ − 2x)

=
∫ ∞

−∞

dp

2π
h(p, x). (20)

Thus we reach a new theorem as follows: the
tomogram of a density operator ρ is equal to the
marginal integration of the classical Weyl correspon-
dence h(p, x) of F †ρF, where F is the Fresnel operator,
expressed as

Tr
[
ρ |x〉s,rs,r 〈x|

]
=

∫ ∞

−∞

dp

2π
h(p, x), (21)

or

Tr
[
ρ |p〉s,rs,r 〈p|

]
=

∫ ∞

−∞

dx

2π
h(p, x). (22)

In this way the relationship between tomogram of a
density operator ρ and the Fresnel transformed ρ’s
classical Weyl function is established.

4. Tomogram of optical chaotic

field

As an application of the above theorem, we now
consider the density operator of chaotic field, which is
expressed as

ρc =
(
1− eλ

)
eλa†a, (23)

where λ = −ω~/kT , k is the Boltzmann constant, ω is
frequency and T is temperature of the chaotic field. ρc

is qualified to be a density operator, since (trρc = 1).
In order to evaluate the classical Weyl correspondence
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hc(p, x) of F †ρcF, we first present the Weyl ordered
form of

(
1− eλ

)
eλa†a as follows:[29]

(
1− eλ

)
eλa†a

=
2

(
1− eλ

)

eλ + 1
··· exp

[
2

(
eλ − 1

)

eλ + 1
a†a

]
··· , (24)

then using operators’ Weyl ordering invariance under
similar transformations,[29] and the property under
the Fresnel transformation,

F †a†F = sa− ra†, F †aF = −r∗a + s∗a† , (25)

and letting β ≡ (1− eλ)/( eλ + 1), we can convert
F †ρcF into its Weyl ordering form

F †ρcF

= 2βF †··· exp
[−2βa†a

] ···F

= 2β ··· exp
[−2β

(
s∗a† − r∗a

) (
sa− ra†

)] ··· . (26)

Due to

a =
Q + iP√

2
, a† =

Q− iP√
2

, (27)

equation (26) is equal to

F †ρcF

= 2β ··· exp
{
− 2β

[
(P 2 −X2)Re(r∗s)

+ 2 Im(r∗s)QP + (r∗r + s∗s)
Q2 + P 2

2

]}
··· , (28)

so according to Eq. (18) the classical Weyl correspon-
dence function hc(p, x) of F †ρcF is

2β exp
{
− 2β

[
(p2 − x2)Re(r∗s) + 2xp Im(r∗s)

+ (r∗r + s∗s)
x2 + p2

2

]}
≡ hc(p, x). (29)

Then substituting Eq. (29) into the theorem (Eq. (21))
we derive the tomogram of the chaotic field

Tr[ρc|x〉s,rs,r〈x|] =
∫ ∞

−∞

dp

2π
hc(p, x) =

√
β√
πτ

exp
{

β
2(Im(r∗s))2 − 4Re(r∗s) + 2(r∗r + s∗s)

τ
x2

}
, (30)

where
2Re (r∗s) + (r∗r + s∗s) ≡ τ, (31)

by noticing

Re(r∗s) =
1
4

[−A2 + D2 + B2 − C2
]
, Im r∗s =

1
4

(BA + CD) , r∗r + s∗s =
1
2

(
A2 + D2 + B2 + C2

)
, (32)

and AD −BC = 1, we can rewrite Eq. (30) as

Tr
[
ρc |x〉s,rs,r 〈x|

]
=

∫ ∞

−∞

dp

2π
hc(p, x) =

√
β√

π (D2 + B2)
exp

{ −βx2

D2 + B2

}
, (33)

a neat result. This is the tomogram of ρc in the (B,D) direction. It is a normal distribution and
∫ ∞

−∞
dx

√
β√

π (D2 + B2)
exp

{ −βx2

D2 + B2

}
= 1. (34)

Similarly, we can derive the tomogram of ρc in the (A,C) direction

Tr
[
ρc |p〉s,rs,r 〈p|

]
=

∫ ∞

−∞

dx

2π
hc(p, x) =

√
β√

π (A2 + C2)
exp

{ −βp2

A2 + C2

}
, (35)

which is also a normal distribution, with
∫ ∞

−∞
dp

√
β√

π (A2 + C2)
exp

{ −βp2

A2 + C2

}
= 1. (36)

By choosing β = 1, and (A,B, C, D) =
(1/2, 2, 1/2, 4) , which satisfies the relation AD−BC =

1. Figure 1 shows the curves representing the tomo-
grams of ρc in the (B,D) direction (dot curve) and
in the (A,C) direction (solid curve), which exhibits
not only normal distributions in the two directions,
but also their difference. Note that the two curves are
complemented to each other, while dot-curve shape is
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tall and slim, solid-curve shape is short and fat, since
AD −BC = 1.

Fig. 1. Tomogram of the optical chaotic field.

5. Tomogram of squeezed optical

chaotic field

Furthermore, the density operator of
squeezed[32−35] chaotic field is expressed as

ρs = S (γ) ρcS
† (γ) , (37)

where S (γ) = exp [iγ (QP + PQ) /2] is the single-
mode squeezing operator and [X, P ] = i, ~ = 1, γ

is the squeezing parameter. Using the properties of
the single-mode squeezing operator S (γ),

SPS−1 = eγP, SXS−1 = e−γX, (38)

we have

ρs

=
(
1− eλ

)
S (γ) eλa†aS (γ)−1

=
2

(
1− eλ

)

eλ + 1
··· exp

{
eλ − 1
eλ + 1

[
e2γP 2 + e−2γX2

]} ··· .

(39)

Using the same method as that used in Section 3, we
have

F †ρsF = ···hs(P, X)···

= 2β ··· exp{−2β[ e2r(DP + CX)2

+ e−2r(BP + AX)2]} ··· (40)

and the classical Weyl correspondence hs(p, x) of
F †ρsF as

hs (p, x) = 2β exp
{− 2β

[
e2r (Dp + Cx)2

+ e−2r (Bp + Ax)2
]}

. (41)

We then obtain the tomogram of the density operator
of squeezed chaotic field in the (B,D) direction as

Tr
[
ρs |x〉s,rs,r 〈x|

]

=
∫ ∞

−∞

dp

2π
hs(p, x)

=
√

β√
π ( e−2rB2 + e2rD2)

× exp
{ −β

( e−2rB2 + e2rD2)
x2

}
. (42)

Similarly, we have the tomogram of ρs in (A,C) direc-
tion as

Tr
[
ργ |p〉s,rs,r 〈p|

]

=
∫ ∞

−∞

dx

2π
hs(p, x)

=
√

β√
π ( e−2γA2 + e2γC2)

× exp
{ −β

( e−2γA2 + e2γC2)
p2

}
. (43)

Choosing e2γ = 2, β = 1, and (A,B, C, D) as
(1/2, 2, 1/2, 4) which satisfies AD − BC = 1, we plot
their figures as shown in Fig. 2, where dot curve de-
scribes the (B,D) direction and solid curve describes
the (A,C) direction. By comparing Fig. 2 with Fig. 1
we see the squeezing of the optical chaotic field.

Fig. 2. Tomogram of the squeezed optical chaotic field.

In summary, we have found a new theorem in cal-
culating density operator tomogram, which not only
brings much convenience for the mixed state case,
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but also reveals the relationship between tomogram
of density operator ρ and Fresnel transformed ρ clas-
sical Weyl correspondence function. The theorem may
be applied to calculating the tomogram of more com-
plicated quantum state in a neat and concise way.
There is operational advantage of using the new the-
orem, since the steps are as follows: 1) derive the
Weyl ordering form of the given density operator ρ;
2) deduce the Weyl ordering form of F †ρF accord-

ing to the fact that Weyl ordering is invariant un-
der Fresnel transformations; 3) write down the Weyl
ordered operator classical correspondence just by re-
placing X → x, P → p, thereby directly obtaining
classical correspondence h (p, x) of F †ρF ; 4) perform
integration

∫∞
−∞(dp/2π)h (p, x) to obtain the tomo-

gram of ρ. In our approach we make fully use of the
properties of Weyl ordering of operators, which is the
origin of the operational advantage.
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