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A higher order Runge–Kutta (pair) method specially adapted to the numerical integration of IVPs with
oscillatory solutions is presented. This method is based on the adapted methods proposed by Franco
(see Ref. [J.M. Franco, Appl. Numer. Math. 50 (2004) 427]). We give explicit method (up to order 5) as
well as pairs of embedded Runge–Kutta methods of order 5 and 4 designed using the FSAL properties.
The stability of the new methods is analyzed. The numerical experiments are carried out to show the
efficiency and robustness of our methods in comparison with some efficient methods.
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1. Introduction

In this Letter we are concerned with the numerical integration of oscillatory problems modeled by initial value problems of the form

y′ = f (x, y), y(x0) = y0, x ∈ [x0, X], (1)

where whose solution exhibits a pronounced oscillatory character. This kinds of problems often arise in many fields of applied science
such as mechanics, astrophysics, quantum chemistry, electronics. They can be integrated with general purpose methods or using other
codes adapted to the special structure of the problem. In [1], Bettis derived explicit Runge–Kutta-type algorithm with 3 and 4 stages for
the integration of ODEs with oscillatory solutions. Basing on the rooted trees and B-series theory, furthermore, Franco gave the necessary
and sufficient order conditions for this class of Runge–Kutta methods, and constructed explicit methods (up to order 4) as well as the
pairs of embedded Runge–Kutta methods of orders 4 and 3 (see Ref. [2]). This motivates some new and robust methods with higher order.

In this Letter, therefore, we present a new Runge–Kutta method of order 5 as well as pairs of embedded Runge–Kutta methods of
orders 5 and 4 adapted to the numerical integration of oscillatory problems designed using the FSAL technique (the last evaluation at any
step is the same as the first evaluation at the next step). The numerical experiments are reported.

2. Preliminaries and some basic results

In [2], Franco constructed a formula of the Adapted RK methods for solving oscillatory ODEs. This method can be introduced simply as
follows.

Applying an s-stage explicit RK method (A,b, c) to the test differential equation

y′ = iωy, ω ∈ R, (2)
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gives

yn+1 = R(iωh)yn, (3)

where

R(z) = 1 + zbT (I − z A)−1e = 1 + zbT (
I + z A + z2 A2 + · · ·)e = 1 + zbT e + z2bT Ae + z3bT A2e + · · · + zsbT As−1e. (4)

Since y(x) = eiωx y0 is the exact solution of (2), we have

yn+1 = eiωh yn. (5)

If the explicit RK method is of order p, then R(z) = ez + O(zp+1), thus we have

bT A je = 1

( j + 1)! , j = 0,1, . . . , p − 1. (6)

Theorem 1. (See Ref. [2].) The necessary and sufficient conditions for an adapted RK method to be of order p are given by

bT (v)Φ(τ ) − 1

γ (τ )
= O

(
v p+1−ρ(τ )

) = O
(
hp+1−ρ(τ )

)
, ρ(τ ) = 1,2, . . . , p, (7)

where v = hω, τ expresses a rooted tree and the functions ρ(τ ), α(τ ),γ (τ ) and Φ(τ) are defined in Refs. [3,4].

Theorem 2. (See Ref. [2].) If we replace the order conditions that correspond to the high trees

b(v)T A je − 1

( j + 1)! = O
(

v p− j), j = 0,1, . . . , p − 1, (8)

with the following conditions

bT A je = 1

( j + 1)! , j = 0,1, . . . , p − 3, bT A p−2e = φp−1,s(v), bT A p−1e = φp,s(v), (9)

where φp−1,s(v) and φp,s(v) are defined by

φ j,s(v) =
{

φ j(v), if s = j or j + 1,

φ j(v) + v2(bT A j+1e) + · · · + (−1)β v2β+2(bT A j+2β+1), if s � j + 2,
(10)

with β = [ s− j−2
2 ], and the φ-functions are defined in Ref. [1], then the resulting Adapted RK method is of order p.

The φ-functions defined in [1] have the following recurrence relation:

φ0(v) = cos(v), φ1(v) = sin(v)/v, φ j+2(v) =
(

1

j! − φ j(v)

)/
v2, j � 0.

In order to avoid the possible round-off error (when |v| is small), the φ-functions can also be replaced by the Taylor expansions

φ j(v) =
∞∑

k=0

(−1)k v2k

(2k + j)! , j � 0.

3. Construction of a higher order explicit adapted RK methods using the FSAL technique

In [2], Franco constructed a formula of the Adapted RK methods for solving ODEs with oscillating solutions. In a slightly different way,
we will construct a higher order adapted RK method (up to order 5) as well as pairs of embedded Runge–Kutta methods of orders 5 and 4
based on the Dormand–Prince 5(4) in [5] designed using the FSAL technique.

3.1. A fifth-order adapted RK method

We consider the six-stages explicit RK method displayed by the following Butcher-tableau:

0 0
1/5 1/5 0
3/10 3/40 9/40 0
4/5 44/45 −56/15 32/9 0
8/9 19 372/6561 −25 360/2187 64 448/6561 −212/729 0
1 9017/3168 −355/33 46 732/5247 49/176 −5103/18 656 0

b1(v) b2(v) b3(v) b4(v) b5(v) b6(v)

The entries of A and C are chosen from the well known five-order RK method derived by Dormand–Prince in Ref. [5]. Because the entries
of A and C are available, we need only to find the weights of the adapted RK method from the order conditions that correspond to
homogeneous linear problems (see [2]). With stage s = 6 and order p = 5 it follows that

bT e = 1, bT Ae = 1/2, bT A2e = 1/6, bT A3e = φ4(v) + v2(bT A5e
)
, bT A4e = φ5(v),

in which v = ωh, and the φ-functions are defined in [11].
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Solving these equations with the choice of bT c2 = 1/3 yields⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

b1(v) = (v2(14 + 675φ5(v)) + 10(−23 + 390φ4(v) + 1440φ5(v)))/(144(4 + v2)),

b2(v) = 0,

b3(v) = −(28v2(−53 + 1350φ5(v)) + 100(−205 + 1986φ4(v) + 7470φ5(v)))/(3339(4 + v2)),

b4(v) = (300(2φ4(v) + 15φ5(v)) + v2(11 + 675φ5(v)))/(24(4 + v2)),

b5(v) = −(243(22 − 300φ4(v) + 75(−8 + v2)φ5(v)))/(848(4 + v2)),

b6(v) = −11(−11 + 150φ4(v) + 450φ5(v))/(21(4 + v2)).

(11)

As stated above we have derived an adapted RK method of order fifth, and we denote it as ARK5.

3.2. A new 5(4) pair adapted RK method

Now we are interested in constructing an embedded pair of explicit adapted RK methods based on the fifth-order adapted RK method
presented above. Consequently, we consider the following Butcher-tableau:

0 0
1/5 1/5 0
3/10 3/40 9/40 0
4/5 44/45 −56/15 32/9 0
8/9 19 372/6561 −25 360/2187 64 448/6561 −212/729 0
1 9017/3168 −355/33 46 732/5247 49/176 −5103/18 656 0
1 b1(v) b2(v) b3(v) b4(v) b5(v) b6(v) 0

b1(v) b2(v) b3(v) b4(v) b5(v) b6(v) 0

b∗
1(v) b∗

2(v) b∗
3(v) b∗

4(v) b∗
5(v) b∗

6(v) b∗
7(v)

where the entries bi(v) (i = 1,2, . . . ,6) of b are given by (11). We observe that in the tableau the entries of A from the last row are the
same as the weights in the fifth-order method, therefore during the variable step-size program the last evaluation of f in a current step
can be re-used for the first evaluation in the following step, that is to say, the FSAL technique can be used. Therefore, with s = 7 and
p = 4 we have

b∗ T e = 1, b∗ T Ae = 1/2, b∗ T A2e = φ3(v) + v2b∗ T A4e − v4b∗ T A6e, b∗ T A3e = φ4(v) + v2(b∗ T A5e
)
,

in which v = ωh, and the φ-functions are defined in [11].
Solving these equations with the choice of b∗

5(v) = −92 097/339 200, b∗
6(v) = 187/2100, b∗

7(v) = 1/40, we obtain the following weights

b∗
1(v) = (−279 463 + 1 920 000φ3(v) − 600 000φ4(v) + 8v2(1859 + 6000φ4(v) − 1875φ5(v)

))
/172 800,

b∗
2(v) = (−625

(−11 + 96φ3(v) − 120φ4(v)
) + v2(−401 − 1500φ4(v) + 1875φ5(v)

))
/1800,

b∗
3(v) = (−140 074 + 12 985v2 + 2 226 000φ3(v) − 4 452 000φ4(v) + v2(55 650φ4(v) − 111 300φ5(v)

))
/100 170,

b∗
4(v) = (

3395 + 60 000φ4(v) + 4v2(17 + 375φ5(v)
))

/9600,

b∗
5(v) = −92 097/339 200, b∗

6(v) = 187/2100, b∗
7(v) = 1/40.

As stated above, we propose an improvement on the classical Runge–Kutta (pair) algorithm basing on the classical Dormand–Prince 5(4)
pair in Ref. [3] such that the oscillatory linear problem is solved without truncation errors. And this modification affects only the weights
which will be frequency dependent. We denote this fourth order ARK method as ARK(4).

4. Stability analysis

Let us consider the stability analysis of RK methods with v-dependent coefficients. The original definition is due to Coleman and
Ixaru [6] about the periodicity of exponentially-fitted symmetric methods for y′′ = f (x, y) which is re-considered by Van de Vyver [7] for
RK methods.

The stability regions of the new methods can be analyzed by applying them to the test equation

y′ = iλy, λ > 0. (12)

When an adapted RK method is applied to test Eq. (12) it gives the difference equation

yn+1 = R(iθ; v)yn, θ = λh, (13)

with R(iθ, v) = det(I−iθ A+iθeb(v)T )
det(I−iθ A)

, e = (1, . . . ,1)T .

Definition 1. (See [7,8].) For an adapted RK method with stability function R(iθ, v), the quantities

P (θ) = θ − arg
(

R(iθ; v)
)
, D(θ) = 1 − ∣∣R(iθ; v)

∣∣ (14)

are called the phase-lag (dispersion) and dissipation, respectively. The method is said to be of phase-lag order q and dissipation order p if

P (θ) = O
(
θq+1), d(θ) = O

(
θ p+1).
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Fig. 1. Regions of imaginary stability (dark parts) of ARK5, ARK(4).

If we set v = rθ in the stability function R(iθ; v), the phase-lag and dissipation of the higher order method ARK5 (derived in Sec-
tion 3.1) are given by

P (θ) = r2 − 1

2100
θ7 + O

(
θ9), D(θ) = 1 − r2

3600
θ6 + O

(
θ8).

Hence, the method is of phase-lag order six and dissipation order five. In the same way, the phase-lag and dissipation of the lower order
method ARK(4) (derived in Section 3.2) are determined by

P (θ) = 97(r2 − 1)

120 000
θ5 + O

(
θ7), D(θ) = 77(r2 − 1)

90 000
θ6 + O

(
θ8).

Therefore, the method is of phase-lag order four and dissipation order five.

Definition 2. (See [7,8].) A region Ω in the θ–v plane is said to be the region of imaginary stability for an adapted RK method with
stability function R(iθ; v), if |R(iθ; v)| � 1, for any (θ, v) ∈ Ω . And any closed curve defined by |R(iθ; v)| = 1 is a stability boundary.

In Fig. 1 we plot the stability regions of the two methods derived in Sections 3.1 and 3.2, respectively.

5. Numerical experiments

In this section, we will compare the numerical performance of the new methods with the Franco’s methods and other efficient methods.
The criterion used in the numerical comparisons is the decimal logarithm of the maximum global error versus the computational effort
measured by the number of function evaluations (in logarithmic scale) required by each method.

5.1. Comparisons with fixed step-size

The methods used in the comparisons are denoted by:

• ARK5: The fifth-order ARK method obtained in Section 3.1.
• ARK4: The fourth-order ARK method obtained in [2].
• ARK3/8: The fourth-order ARK method obtained in [2].
• EFRK4: The exponentially fitted Runge–Kutta method with order fourth derived in [9].
• SRK4: An exponentially fitted Runge–Kutta method with order fourth given in [10].

Problem 1. We consider the linear test problem used in [2]

y′′ + ω2 y = (
ω2 − 1

)
sin(t), t ∈ [0, tend], y(0) = 1, y′(0) = ω + 1,

whose analytic solution is given by

y(t) = cos(ωt) + sin(ωt) + sin(t).

In our test we choose the parameters values ω = 5, tend = 100. The numerical results are showed in Fig. 2 (on the left).
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Fig. 2. Efficiency curves in Problems 1–2.

Fig. 3. Efficiency curves in Problem 3.

Problem 2. We consider the Bessel’s equation

y′′ +
(

100 + 1

4t2

)
y = 0, t ∈ [1,10],

whose exact solution is given by y(t) = √
x J0(10t), where J0 is the first kind Bessel function of order zero. The initial values of this

problem are y(1) = J0(10) and y′(1) = 1
2 J0(10) − 10 J1(10), where J1 is the Bessel function of order 1. The numerical results are shown

in Fig. 2 (on the right).

Problem 3. An almost periodic orbital problem studied by Franco and Palacios [11]

z′′ + z = εeiψx, z(0) = 1, z′(0) = i,

where ε = 0.001 and ψ = 0.01. The analytical solution z(x) = u(x) + iv(x) is given by

u(x) = 1 − ε − ψ2

1 − ψ2
cos(x) + ε

1 − ψ2
sin(ψx), v(x) = 1 − εψ − ψ2

1 − ψ2
sin(x) + ε

1 − ψ2
cos(ψx). (15)

The equation has been solved in the interval [0,1000] with ω = 1. The numerical results are showed in Fig. 3.
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Fig. 4. Efficiency curves in Problem 4.

Problem 4. We consider the numerical integration of the Schrödinger equation

y′′(x) = (
v(x) − E

)
y(x),

with the well-known Woods–Saxon potential

v(x) = c0z
(
1 − a(1 − z)

)
,

in which z = (exp(a(x − b) + 1))−1, c0 = −50, a = 5/3, b = 7. The domain of numerical integration is [0,15]. It is appropriate to choose ω
as follows (see [12])

ω =
{√

50 + E, x ∈ [0,6.5],√
E, x ∈ [6.5,15].

In the numerical experiments we consider the resonance problem (E > 0), the numerical results were compared with the analytical
solution of the Woods–Saxon potential, rounded to six decimal places. In Fig. 4, we plot the error of |Eanalytical − Ecalculated| versus the
number of function evaluations (in logarithmic scale) for Eanalytical = 53.588872, 163.215341.

5.2. Comparisons with variable step-size

The codes used in the comparison are denoted by

• ADormand-Prince5(4): The pair of ARK methods obtained in Section 3.2.
• AZonneveld4(3): The pair of the ARK methods obtained in [2].
• AMerson4(3): The pair of ARK methods obtained in [2].
• MAMmerson4(3): The modified pair of the ARK methods obtained in [2].
• EFRK4(3): The pair of exponentially fitted RK methods obtained in [13].

Problem 5. We consider the nonlinear system

y′′
1 = −4t2 y1 − 2y2√

y2
1 + y2

2

, y1(0) = 1, y′
1(0) = 0,

y′′
2 = −4t2 y2 + 2y1√

y2
1 + y2

2

, y2(0) = 0, y′
2(0) = 0,

whose analytic solution is given by

y1(t) = cos
(
t2), y2(t) = sin

(
t2).

The equation has been solved in the interval [0,10] with ω = 2tn (n � 1) at each step. The numerical results are showed in Fig. 5 (on the
left).

Problem 6. We consider the well-known two-body problem
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Fig. 5. Efficiency curves in Problems 5–6.

y′′
1 = −y1/r3, y1(0) = 1 − e, y′

1(0) = 0,

y′′
2 = −y2/r3, y2(0) = 0, y′

2(0) =
√

1 + e

1 − e
,

in which r =
√

y2
1 + y2

2, e(� 0) is the eccentricity. The analytic solution of the problem

y1(t) = cos(u) − e, y2(t) =
√

1 − e2 sin(u),

where u is the solution of Kepler’s equation u = t + e sin(u). The equation has been solved in the interval [0,10π ] with ω = 1, e = 1
2 . The

numerical results are showed in Fig. 5 (on the right).

Problem 7. We consider the numerical integration of the Schrödinger equation

y′′(x) =
(

l(l + 1)

x2
+ v(x) − k2

)
y(x),

with the well-known Lennard-Jones potential (see [12])

v(x) = 500

(
1

x12
− 1

x6

)
,

and we compute some phase-shifts for this potential. In the numerical results, we compute the phase-shifts correct to four decimal places
for the energies k2 = 25 and k2 = 100. We choose the fitted frequency ω = k. For the calculation of the phase-shifts, we show the number
of function evaluations as a function of l = 0, . . . ,10 in Fig. 6.

Problem 8. We consider the Fermi–Pasta–Ulam problem in Ref. [14]. The Hamiltonian function can be given

H = 1

2

n∑
i=1

(
u′ 2

i + v ′ 2
i

) + ω2

2

n∑
i=1

v2
i + 1

4

n∑
i=1

(ui+1 − vi+1 − ui − vi)
4,

where u0 = v0 = un+1 = vn+1 = 0. This leads to a nonlinear oscillatory problem of the form

d2ui

dt2
= −∂ H p

∂ui
, i = 1, . . . ,n,

d2 vi

dt2
+ ω2 vi = −∂ H p

∂vi
, i = 1, . . . ,n,

where

H p = 1

4

n∑
i=1

(ui+1 − vi+1 − ui − vi)
4.

Since the analytic solution is unknown, we study the total energy H along the numerical solution on the interval 0 � t � tend. In our
numerical experiments we consider the case of n = 3, tend = 10 and as initial values we take

u1(0) = 1, u′
1(0) = 1, v1(0) = 1/ω, v ′

1(0) = 1,

and the remaining initial values are set zeros. Fig. 7 show the number of significant digits in the error propagation of the total energy
(LOG10(ERROR)) = log10(max|H(0) − Hn|) versus the number of function evaluations required by each pair with ω = 5,10.
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Fig. 6. Efficiency curves in Problem 7 with k = 5,10.

Fig. 7. Efficiency curves in Problem 8 with ω = 5,10.

6. Conclusion

In this Letter, inspiring by Franco’s methods in [2], we present a new Runge–Kutta method of order 5 as well as pairs of embedded
Runge–Kutta methods of orders 5 and 4 adapted to the numerical integration of oscillatory problems using the FSAL technique. The
analysis of stability is given and the numerical experiments are carried to show the efficiency and robustness of our new methods in
comparison with the methods proposed in [2]. In view of the numerical results, it can be concluded that the higher order methods
perform more efficiently than the adapted Runge–Kutta methods derived in [2] and the other methods proposed by Franco and Simos.
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