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ABSTRACT: This article presents a fast solution to the volume–surface integral equation for

electromagnetic scattering from three-dimensional (3D) targets comprising both conductors

and dielectric materials by using the multilevel fast dipole method (MLFDM). This scheme is

based on the concept of equivalent dipole-moment method (EDM) that views the Rao–Wil-

ton–Glisson and the Schaubert–Wilton–Glisson basis functions as dipole models with equiva-

lent dipole moments. In the MLFDM, a simple Taylor’s series expansion of the terms Ra
(a ¼

1, �1, �2, �3) and R̂R̂ in the formulation of the EDM transforms the interaction between

two equivalent dipoles into an aggregation–translation–disaggregation form naturally. Fur-

thermore, benefiting from the multilevel grouping scheme, the matrix-vector product can be

accelerated and the memory cost is reduced remarkably. Simulation results are presented to

demonstrate the efficiency and accuracy of this method. VC 2012 Wiley Periodicals, Inc. Int J RF

and Microwave CAE 22:624–631, 2012.

Keywords: electromagnetic scattering (EM); volume–surface integral equation (VSIE); method

of moments (MoM); equivalent dipole-moment method (EDM); multilevel fast dipole method

(MLFDM)

I. INTRODUCTION

The scattering of electromagnetic waves from composite

conducting-dielectric targets has been an important

research area because of its wide applications such as

radiation of various antennas with dielectric radomes,

scattering of invisible aircrafts coated with absorbing

materials, and microstrip structures on finite anisotropic

substrates, etc. In the method of moments (MoM), the vol-

ume–surface integral equation (VSIE) [1] is more advanta-

geous than the surface integral equations (SIE) for mixed

targets with arbitrarily inhomogeneous and anisotropic

dielectric materials [2, 3]. However, the VSIE is discre-

tized into a dense matrix equation through the MoM. An

iterative solver needs O(N2) operations for the matrix-vec-

tor product (MVP) in each iteration, and requires O(N2)

memory to store all the matrix elements, where N is the

number of unknowns. So the conventional MoM suffers

from tremendously high computational cost and memory

cost when the electrical size of the targets is large. Fortu-

nately, many methods have been proposed in the past dec-

ades to deal with this problem, such as multilevel fast

multipole algorithm (MLFMA) [4, 5], the adaptive inte-

gral method (AIM) [2, 6], and the pre-corrected fast Fou-

rier transform (P-FFT) method [3, 7].

Recently, the equivalent dipole-moment method

(EDM) [8–11] has been developed to simplify and accel-

erate the impedance matrix element filling procedure for

the MoM. The EDM is based on the commonly used

Rao–Wilton–Glisson (RWG) [12] and Schaubert–Wilton–

Glisson (SWG) [13] basis functions, in which each RWG

triangle pair or SWG tetrahedron pair is viewed as a

dipole model with an equivalent dipole moment. The

main advantage of EDM is that the impedance matrix ele-

ment can be expressed in an extremely simplified form,

which avoids the integral operators and saves the matrix-

fill time, whereas the memory requirement and the matrix-

solve time do not change.

Correspondence to: C. Gu; e-mail: gucq0138@sina.com

VC 2012 Wiley Periodicals, Inc.

DOI 10.1002/mmce.20620
Published online 27 March 2012 in Wiley Online Library

(wileyonlinelibrary.com).

624



More recently, fast dipole method (FDM) [14] based

on the concept of the EDM is developed to mitigate this

problem. In the FDM, the distance R between the interact-

ing equivalent dipoles is expanded by a simple Taylor’s

series, and the interaction between the equivalent dipoles

can be transformed into an aggregation–translation–

disaggregation form naturally, which reduces the complex-

ity of MVP between far-group pair, such as group i and

group j, from O(NiNj) to O(Ni þ Nj), where Ni and Nj are

the numbers of the dipoles in groups i and j, respectively.

In Ref. 15, the multilevel fast dipole method (MLFDM) is

developed to solve the combined field integral equation

(CFIE) for the perfect electric conducting (PEC) targets

by using the multilevel grouping scheme [16]. The com-

plexity of MVP and the memory requirement can be fur-

ther reduced, as the multilevel grouping scheme is used in

the MLFDM. Then, the FDM is improved through

expanding the terms Ra (a ¼ 1, �1, �2, �3) and R̂R̂ in

the formulation of the EDM using a simple Taylor’s series

[17]. The improved FDM (IFDM) can represent the inter-

action between two dipoles as an aggregation–translation–

disaggregation form more accurately than the conventional

FDM. In this article, the IFDM is extended to multilevel

version and is applied to solve the VSIE efficiently for the

electromagnetic (EM) scattering from 3D composite con-

ducting-dielectric targets. Furthermore, a new empirical

criterion for the far-group pairs at each level is given. The

MLFMA has been successfully applied [4, 5,16], which is

based on the addition theorem and can achieve O(N log

N) complexity and memory requirement, where N is the

number of the unknowns. Compared with the MLFMA,

the formula derivation and coding procedure of the

MLFDM is much easier, although the MLFMA is more

efficient than the MLFDM.

The remainder of the article is organized as follows. In

Section II, the formulations of the VSIE for the composite

targets including conductors and anisotropic dielectric

materials is presented. Then the EDM for the VSIE is illus-

trated in Section III. In Section IV, the detail of the princi-

ple and implementation of the MLFDM to speed up the

VSIE is represented. In Section V, some numerical results

are given to verify the efficiency and accuracy of the algo-

rithm. Finally, conclusions are drawn in Section VI.

II. FORMULATIONS OF THE VOLUME–SURFACE
INTEGRAL EQUATION

Consider an arbitrarily shaped 3D scattering target, which

consists of anisotropic dielectric material and conducting

objects illuminated by an incident wave Ei. Using the

equivalence principle, the conducting targets and the

dielectric materials can be replaced by equivalent surface

current Js (r) and equivalent volume current Jv (r),

respectively. The scattered electric field Es
s (r) and Es

v (r)
produced by the equivalent surface and volume current

can be expressed as

Es
uðrÞ ¼ �jxAuðrÞ � r/uðrÞ; u ¼ s; v (1)

where

AuðrÞ ¼ l0

Z
u

Juðr0ÞGðr; r0Þdu0; u ¼ s; v (2)

/uðrÞ ¼ � 1

jxe0

Z
u

r0 � Juðr0ÞGðr; r0Þdu0; u ¼ s; v (3)

are the vector and scalar potentials produced by the equiv-

alent currents, respectively. G(r,r
0
) ¼ e�jk|r�r

0
|/(4p|r�r

0
|)

denotes the free-space Green’s function, and e0 is the free-

space permittivity.

The volume current Jv (r) is related to the total electric

flux density Dv (r) via [5] the following equation

JvðrÞ ¼ jx��jðrÞ � DvðrÞ; (4)

where ��jðrÞ is the contrast ratio expressed by

��jðrÞ ¼ I � ��e�1
r ðrÞ (5)

with ��erðrÞ is the relative permittivity tensor of the electric

anisotropic media, and I is the unit tensor.

Then the VSIE can be constructed by the boundary

conditions on the conductor surface S and in the dielectric

region V [1–3].

ðEiðrÞ þ Es
sðrÞ þ Es

vðrÞÞ
��
tan
¼ 0; r 2 S; (6)

EðrÞ ¼ EiðrÞ þ Es
sðrÞ þ Es

vðrÞ; r 2 V; (7)

where EðrÞ ¼ ��e�1ðrÞ � DvðrÞ denotes the total electric field

in the dielectric region V, and ��eðrÞ is the permittivity

tensors.

To apply the MoM to solve Eqs. (6) and (7), first the

conductor surface S and the dielectric region V are discre-

tized into small triangular patches and tetrahedral ele-

ments, respectively. Then the unknown surface and vol-

ume currents Js (r) and Jv (r) can be expanded by a set of

RWG and SWG basis functions, respectively, as

JsðrÞ ¼
XNs

n¼1

IsnfsnðrÞ; (8)

JvðrÞ ¼
XNv

n¼1

Ivn��jvn � fvnðrÞ; (9)

where fsn (r) and fvn (r) represent the nth RWG basis

function and the nth SWG basis function, respectively. Isn
and Ivn are the unknown expansion coefficients. Ns and Nv

are the numbers of RWG basis functions and SWG basis

functions, respectively. ��jvn is the contrast ratio in the nth

SWG basis function.

Substituting Eqs. (1)–(5) and Eqs. (8) and (9) into

Eq. (6) and Eq. (7), then the Galerkin’s method is

employed to discretize Eq. (6) and Eq. (7). Finally, the

matrix equations can be obtained

XNs

n¼1

IsnZ
ss
mn þ

XNv

n¼1

IvnZ
sv
mn ¼ Vsm; m ¼ 1 � Ns; (10a)
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XNs

n¼1

IsnZ
vs
mn þ

XNv

n¼1

IvnZ
vv
mn ¼ Vvm; m ¼ 1 � Nv; (10b)

where

Zss
mn ¼ � fsmðrÞ;Es

snðrÞ
� �

(11a)

Zsv
mn ¼ � fsmðrÞ;Ev

vnðrÞ
� �

(11b)

Zvs
mn ¼ � fvmðrÞ;Es

snðrÞ
� �

(11c)

Zvv
mn ¼ � fvmðrÞ;Ev

vnðrÞ
� �

þ 1

jxe0

fvmðrÞ;��e�1
r ðrÞ � fvnðrÞ

D E (11d)

are the impedance matrix elements.

Vsm ¼ fsmðrÞ;EiðrÞ
� �

(12a)

Vvm ¼ fvmðrÞ;EiðrÞ
� �

(12b)

are the right-hand side vector elements for SIE and VIE

respectively.

Equation (10) can be rewritten in a matrix form

ZSS ZSV

ZVS ZVV

� �
IS
IV

� �
¼ VS

VV

� �
; (13)

where ZSS, ZSV, ZVS, and ZVV are the impedance subma-

trices. IS, IV and VS, VV are the current and voltage vec-

tors for SIE and VIE respectively.

III. THE EQUIVALENT DIPOLE-MOMENT METHOD FOR
THE VSIE

The basic idea of the EDM [8–11] is that the fields radiated

by the current on a RWG element or in a SWG element can

be approximated as the fields due to an infinitely small

dipole with an equivalent moment, beyond a threshold dis-

tance. The threshold distance is about 0.15k0 (k0 is the

wavelength in free-space) [9] for the triangle patches when

the edge length of triangles is less than 0.1k0. And threshold

distance is approximately 0.15kg (kg is the wavelength in

dielectric) [10, 11] for the tetrahedral cells when the edge

length of tetrahedrons is less than 0.1kg. Based on this

assumption, the interaction of two basis functions can be

replaced by the interaction of two infinitely small dipoles,

except when they are very close to each other.

On the conducting surface S, the equivalent dipole

moment [9, 12] on the nth RWG elements can be obtained

by the integration of the surface current over the element

surface T6sn.

msn ¼
Z
T6
sn

fsnðr0Þds0 � lsnðrc�sn � rcþsn Þ; (14)

where rc6sn are the position vectors of the centroid of T6sn
defined in the global coordinate. It can be seen from Eq.

(14) that the equivalent dipole moment of a RWG element

can be simply represented by its geometric parameters.

In the dielectric region V, the equivalent dipole

moment [11, 13] in the nth SWG elements can also be

obtained by the integration of the volume current over the

tetrahedron pair T6vn.

mvn ¼
Z
T6
vn

��jvn � fvnðr0Þdv0

� avn��j
þ
vn � ðrcvns � rcþvn Þ þ avn��j

�
vn � ðrc�vn � rcvnsÞ; (15)

where rc6sn are the position vectors of the centroid of T6vn
and rc6vns is the position vectors of the centroid of the

common face Svn of the T6vn. It can be seen from Eq.

(15) that the equivalent dipole moment of the volume

current in the nth SWG element not only includes its

geometric parameters but also contains the dielectric

information.

Referring to Refs. [10, 11], the radiated electric fields

of the nth infinitesimal dipole associated to the nth RWG

element or the nth SWG element at the field point r can

be expressed as

Es
un ¼

ge�jkR

4p

�
R̂
�
R̂ � mum

�8>>:jk

R
þ 3C

9>>;
�mum

8>>:jk

R
þ C

9>>;
�
; u ¼ s; v ð16Þ

where R ¼ r � r
um

is the vector from the center point r
um

of the nth equivalent dipole to the field point r. R ¼ |R|,

R̂ ¼ R/R. run ¼ (rcþun þ rc�un )/2 and C ¼ [1 þ 1/(jkR)]/R2.

Substituting Eq. (16) into Eq. (11), and furthermore

Eq. (13) is rewritten as

Z½ � I½ � ¼ V½ �; (17)

where Z is constituted by the submatrices ZSS, ZSV, ZVS,

and ZVV. I ¼ [IS,IV]T, V ¼ [VS,VV]T. And the impedance

elements Zmn of the impedance matrix Z can be expressed

in a simple form that

Zmn ¼
ge�jkR

4p

�
m0

m � mn

8>>:jk

R
þ C

9>>;
�
�
m0

m � R̂
��

R̂ � mn

�8>>:jk

R
þ 3C

9>>;
�
; ð18Þ

in which R ¼ rmn ¼ rm � rn is the vector from the center

point rn of the nth equivalent dipole to the center point rm
of the mth equivalent dipole.

mn ¼
lnðrc�n � rcþn Þ T6

n 2 S
an��j

þ
n � ðrcns � rcþn Þ þ an��j

�
n � ðrc�n � rcnsÞ T6

n 2 V

�

(19)

is the nth equivalent dipole moment for the current in the

RWG or SWG elements. And

m0
n ¼

lnðrc�n � rcþn Þ T6
n 2 S

anðrc�n � rcþn Þ T6
n 2 V

�
(20)
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is the nth moment of the RWG or SWG basis function. It

can be seen that m
0
n ¼ mn for the RWG basis functions,

while m
0
n = mn for the SWG basis functions.

As can be seen from the above equations, when any

two basis functions are with a threshold distance, the im-

pedance matrix elements between them do not contain in-

tegral operators using the EDM. Thus the EDM can

greatly simplify the matrix filling process and save com-

putation time. In this article, the threshold distance is cho-

sen as 0.2k0.

IV. ACCELERATED SOLUTION USING MULTILEVEL FAST
DIPOLE METHOD

To implement the MLFDM, the entire target needs multi-

level grouping [16] first. The whole target can be wrapped

by a cube with the size of 2LD, in which D is the size of

cube at the finest level and L is the minimal number to

meet the condition of wrapping the target by 2LD sized

cube. Then the 2LD sized cube is partitioned into eight

equal sub-cubes, which forms the first level (Level 1)

group, and each sub-cube is then recursively subdivided

into eight smaller cubes until the edge length of the finest

cube is D exactly. In this way, the L-level grouping proce-

dure from Level 1 to Level L is obtained. The size of the

cube at Level l is Dl ¼ 2L�lD.

Depending on the distance between two groups at the

same level, we define two regions for each group. Ni and

Fi denote the near and far regions of group i separately. If

group j is in the Ni, group j and group i are called near-

group pair, otherwise are called far-group pair. In our

method, the number of interval groups D(i,j) ¼ max {|xi
� xj|,|yi � yj,zi � zj}/d between group i and group j at the

same level is used to decide whether the two groups are

near-group pair or far-group pair, where (xi, yi, zi) and (xj,
yj, zj) are the coordinates of the centroid of group i and

group j, respectively, and d is the side length of the group

at this level. For example, if D(i,j) � Db, group i and

group j are the near-group pair, else the two groups are

far-group pair, where Db is a given number. The value of

Db affects the efficiency and accuracy of the MLFDM.

According to our experiments, we give an empirical crite-

rion for different levels

DbðlÞ ¼ 1:5Dl=k0d e þ 2: (21)

where dke is the ceil function, Dl is the size of the group

at Level l. The empirical criterion is different from the

one in Ref. [15], because the IFDM is employed and the

targets not only includes the PEC objects but also includes

the dielectric objects. And we remark that the new empiri-

cal criterion for the multilevel IFDM also can be used to

solve the CFIE for the PEC targets. We mention that in

practical applications the values of Db (l) at each level

can be adjusted to satisfy the required accuracy.

Now, we consider two equivalent dipoles m (m [ j)
and n (n [ i) and suppose group i and group j are far-

group pair (i [ Fj or j [ Fi). The distance R ¼ |rmn| ¼ |rm
� rn| between the centers of the two equivalent dipoles

definitely satisfies the approximation rule of the EDM and

the impedance element Zmn can be represented by Eq.

(18) and it can be rewritten as

Zmn ¼ m0
m � Tðrm; rnÞ � mn; (22)

where

Tðrm; rnÞ ¼
ge�jkR

4p

�
I

8>>:jkR�1 þ R�2 þ 1

jk
R�3

9>>;
�R̂R̂

8>>:jkR�1 þ 3R�2 þ 3

jk
R�3

9>>;
�
: ð23Þ

The key idea of the FDM [14] and the improved fast

dipole method (IFDM) [17] is expanding the term

Tðrm; rnÞ through Taylor series to achieve the separation

of the field dipole and source dipole. Now we introduce

the IFDM in detail.

The vector rmn can be rewritten as R ¼ rmn ¼ rji þ
rmj � rni, in which rji ¼ roj � roi, rmj ¼ rm � roj, rni ¼
rn � roi. roi and roj are the center positions of group i and

group j, and rm and rn are the center positions of the mth

and nth equivalent dipoles.

So Ra(a ¼ 1, �1, �2, �3) in Eq. (23) can be

expanded using the Taylor series as [17]

Ra ¼
��R��a ¼ ��rji þ rmj � rni

��a

� raji

�
1 þ a

8>>:r̂ji � rmj

rji
þ
r2
mj þ

�
a� 2

�
ðrji � rmjÞ2

2r2
ji

9>>;

þa
8:r̂ij � rni

rij
þ
r2
ni þ

�
a� 2

�
ðrij � rniÞ2

2r2
ij

9;�
ð24Þ

And the dyad term R̂R̂ in Eq. (23) can be approximately

expressed as [17]

R̂R̂ ¼ RR

R2
� 1

r2
ji

rjirji þ srji þ rjis
	 


; (25)

where

s ¼ rmj � rni
� �

� rmj � rni
� �

� r̂jir̂ji: (26)

Substituting Eqs. (24)–(26) into Eq. (22), the separation of

the field dipole and source dipole can achieve, and the im-

pedance matrix element for the VSIE is transformed into

an aggregation–translation–disaggregation form. The

transfer function only depends on the vector rji. In other

words, all the aggregation and disaggregation functions in

group i and j share the same transfer function. So the cal-

culation process of the MVP for far-group interactions can

be naturally divided into three steps: aggregation, transfer,

and disaggregation, which speed up the MVP remarkably

(see Fig. 1). Assuming that there are Ni (Nj) unknowns in

group i (group j), the computational complexity of the

interactions between group i and group j can be reduced

from O(NiNj) to O(Ni þ Nj).

Now we introduce the MLFDM in detail and assume

that the target is divided into L levels (from Level 1 to
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Level L). An equivalent dipole element m resides in group

jl at Level l, in which group jl represents the jlth group

containing element m at Level l (0 � jl � 8l � 1). Under

these assumptions, it is easy to know that group jl � 1 at

Level (l � 1) is the father group of group jl at Level l.
Then the MVP can be divided into two steps by the L-

level MLFDM as

• Step 1: From Level 2 to Level L, all those far-group

pairs (il,jl), (ii [ Rjl
), need to be handled using eqs.

(22)–(25). The aggregation, translation, and disaggrega-

tion processes occur in every such group pair. Here, Rjl

¼ {il|il [ Fjl
, il � 1 [ Njl � 1

} is a set of groups at Level

l, in which il must meet the conditions that groups il
and jl are the far-group pair, and their farther groups

il�1 and jl�1 are the near-group pair.

• Step 2: At the finest level (Level L), all the near region

interactions are calculated directly. In other words, all

near-group pairs at the finest level (iL,jL), (iL [ NjL),

need to be handled. The conventional MoM [Eq. (11)]

or the EDM [Eq. (18)] are used depending on the dis-

tance between each two dipoles.

Considering the aggregation, translation, and disaggre-

gation functions are very simple, so these functions are

not stored in the MLFDM, which are calculated in the

iterative computation if needed. And only the near interac-

tions at the finest level are stored. So the MLFDM is

lower consumed for memory than the EDM and the con-

ventional MoM.

V. NUMERICAL RESULTS

In this section, some numerical results are presented to

validate the accuracy and efficiency of the MLFDM. We

remark that in the following examples, the generalized

minimum residual (GMRES) iterative solver and the block

diagonal preconditioner (BDP) are used to obtain an iden-

tical residual error � 0.005. And all the simulations are

performed on a personal computer with the Intel(R)

Figure 1 The aggregation, transfer, and disaggregation

between the far-group pair group i and group j. [Color figure can

be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 2 Geometry of a PEC sphere covered by spherical

dielectric shell for the first problem. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]

Figure 3 Bistatic RCSs in yy polarization of a PEC sphere

covered by spherical dielectric shell illuminated by a uniform

plane wave with the incident direction of (y,f) ¼ (0�,0�). [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 4 Geometry of a composite conducting-dielectric target

for the second problem.
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Pentium(R) Dual-Core CPU E5500 with 2.80 GHz (only

one core is used) and 2.0 GB RAM.

For the first problem, the bistatic RCSs of a PEC

sphere covered by spherical dielectric shell (��er ¼ 1:5I) are

calculated. The radius of the PEC sphere is 0.8 m and the

thickness of the shell is 0.05 m shown in Figure 2. The

total number of unknowns is 22,297 including 3534 RWG

and 18,763 SWG basis functions. The size of the finest

group is 0.12 m and a 4-level MLFDM is used. The

bistatic RCS for the yy polarization is calculated and com-

pared with the Mie solutions. These two results are in

good agreement shown in Figure 3. The number of itera-

tions required by the GMRES is 94. And the EDM and

the conventional MoM cannot be used to calculate the

problem in this computer for 2.0 GB RAM is not enough

for the EDM and the MoM.

In the second problem, the bistatic RCSs of a compos-

ite conducting-dielectric target (see Fig. 4) are considered.

The target is constituted by one PEC slab and one dielec-

tric slab with the same size 1.0 m � 1.0 m � 0.1 m. The

Figure 5 Bistatic RCSs in yy polarization of a composite con-

ducting-dielectric target illuminated by a uniform plane wave

with the incident direction of (y,f)¼(0�,0�). [Color figure can be

viewed in the online issue, which is available at

wileyonlinelibrary.com.]

TABLE I Total CPU Time and Memory Requirement of
the Conventional MoM, the EDM, and the MLFDM

Method MoM EDM MLFDM

Problem 1 Memory (MB) – – 524

CPU time (s) – – 1046

Problem 2 Memory (MB) 401 401 102

CPU time (s) 472 129 89

Figure 6 Geometry of a 5 � 5 array including conducting array elements and dielectric array elements for the last problem. [Color fig-

ure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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relative permittivity of the dielectric slab is ��er ¼[1.5, 0, 0;

0, 1.5, 0; 0, 0, 2.0]. The total number of unknowns is

7106 including 1701 RWG basis functions and 5405

SWG basis functions. A 5-level MLFDM is used and the

group at the finest level is with the size of 0.1 m. The

bistatic RCS in yy polarization calculated by the MLFDM

is compared with the EDM and the conventional MoM

shown in Figure 5.

Table I summarizes the total CPU time and memory

requirement of the conventional MoM, the EDM, and the

MLFDM for the above two simulation examples. It can

be seen that the MLFDM saves much memory and CPU

time compared with the EDM and the conventional MoM.

Finally, the bistatic RCSs of a 5 � 5 array including

conducting array elements and dielectric array elements,

shown in Figure 6, are considered. All the array elements

have the same size 0.3 m � 0.3 m � 0.3 m, and the gap

between two adjacent elements is 0.3 m. All the dielectric

elements have the same relative permittivity which is ��er
¼[2.0, 0, 0; 0, 2.0, 0; 0, 0, 1.5]. The total number of

unknowns is 17,157 including 3456 RWG basis functions

and 13,701 SWG basis functions. A 5-level MLFDM is

used and the group at the finest level is with the size of

0.1 m. the bistatic RCSs are investigated using the

MLFDM and the EDM-AMCBFM [18]. And excellent

agreements are observed in Figure 7. It costs 301 s and

182 MB memory using the MLFDM, whereas needs 1691

s and 191 MB memory using the hybrid EDM-AMCBFM.

Here, a stricter current criterion is used for the EDM-

AMCBFM, which is e ¼ kIT(kþ1) � I
T(k)k2/kI

T(k)k2 �
100%, where klk2 is the vector-2 norm. In this article,

the current criterion e of the EDM-AMCBFM is chosen as

2%, and the 6th-level total current is calculated.

VI. CONCLUSIONS

In this article, the IFDM is extended to the multilevel ver-

sion and applied to accelerate solving electromagnetic

scattering by the composite targets including conductors

and dielectric objects using the VSIE. And a new empiri-

cal criterion for far-group pairs at each level is given,

which can be used in PEC objects, dielectric objects, and

the composite objects when the multilevel IFDM is

employed. The computational complexity and memory

requirement can be reduced remarkably by the MLFDM.

Furthermore, the MLFDM is based on the concept of the

EDM and it is very simple for implementation. Numerical

results show that the MLFDM can obtain satisfactory

results for practical engineering applications.
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