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Deterministic chaos can act as a decoherence suppressor
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We propose a strategy to suppress non-Markovian decoherence of a qubit by coupling the qubit to a deterministic
chaotic setup with the broad power distribution in particular in the high-frequency domain. Although it is
widely believed that chaos induces decoherence, we find, surprisingly, that the unitary dynamics induced by the
chaotic setup can be helpful for the decoherence suppression. Compared with the existing decoherence control
methods such as the usual dynamical decoupling, we do not need to impose high-frequency controls, because
the high-frequency components in our method are generated by the chaotic setup, and the design of complex
optimized control pulses used in the modified dynamical decoupling approaches is also not necessary. Using
superconducting quantum circuits as an example, we demonstrate how to realize our general method. We find that
various noises in a wide frequency domain, including low-frequency 1/f , high-frequency ohmic, subohmic, and
superohmic noises, can be efficiently suppressed by coupling the qubit to a Duffing oscillator acting as the chaotic
setup. Significantly, the decoherence time of the qubit is prolonged approximately 100 times in magnitude.
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I. INTRODUCTION

Solid-state quantum information processing, especially
superconducting quantum computation,1–3 develops rapidly in
recent years. One of the basic features that makes quantum
information unique is the quantum parallelism resulted from
quantum coherence and entanglement. However, the inevitable
interaction between the qubit and its environment leads to
qubit-environment entanglement that deteriorates quantum
coherence of the qubit. In solid-state systems, the decoher-
ence process is mainly caused by the non-Markovian noises
induced, e.g., by the two-level fluctuators in the substrate and
the charge and flux noises in the circuits.4–15

There have been numbers of proposals for suppressing
non-Markovian noises in solid-state systems. Most of them
suppress noises in a narrow frequency domain, e.g., low-
frequency noises.4–16 Among the proposed strategies, the
dynamical decoupling control (DDC)17 is relatively successful
in suppressing non-Markovian noises in a broad frequency
domain and has recently been demonstrated in solid-state
systems experimentally.18–20 The main idea of the DDC is
to utilize high-frequency pulses to flip states of the qubit
rapidly, averaging out the qubit-environment coupling. The
higher the frequency of the control pulse is, the better
the decoherence suppression effects are. Efforts have been
made to optimize the control pulses21–29 in the DDC; however,
the requirements of generating extremely high-frequency
control pulses or complex optimized pulses limit its application
in solid-state quantum information system.

In this paper, we propose a method to extend the deco-
herence time of the qubit by coupling it to a deterministic
chaotic setup.30–34 It is well known that the chaotic dy-
namics, deterministic or nondeterministic, induces inherent

decoherence.35–44 This inherent decoherence can be studied
by a physically realizable quantity called quantum Loschmidt
echo,38–42 which is defined as the overlap of the chaotic
dynamics and a slightly perturbed dynamics. With the increase
of the strength of perturbation, four different decoherence
regimes appear, which include perturbative, Fermi golden rule,
Lyapunov, and the strong semiclassical regimes.43 Thus, chaos
is always looked as a source of decoherence in the literature.
However, we find, surprisingly, that the frequency shift of the
qubit induced by a deterministic chaotic setup, which has not
drawn enough attention in the literature, can help to suppress
decoherence of the qubit. The main merits of this method are:
(i) the high-frequency components, which contribute to the
suppression of the non-Markovian noises, are generated by
the chaotic setup even driven by a low-frequency field and,
thus, (ii) generating deterministic but complex optimal control
pulses is not necessary.

The paper is organized as follows: In Sec. II, the mechanism
of the decoherence suppression by chaotic signals is presented.
In Sec. III, we show how to generate the chaotic signal by
nonlinear Duffing oscillator and its application to suppress
1/f noises. Using superconducting quantum circuits as an
example, we show how to realize our proposal in Sec. IV. The
conclusions and forecast of the future work are presented in
Sec. V.

II. DECOHERENCE SUPPRESSION BY CHAOTIC
SIGNALS

Let us consider the coupling between a two-level system
(or saying a qubit) and its environment. Here we assume that
the environment is modelled by a set of two-level systems. The
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system-environment Hamiltonian then can be expressed as the
following Hamiltonian:15

ĤqE = (ωq + δq)

2
Ŝz +

∑
i

ωi

2
σ̂ (i)

z +
∑

i

(giσ̂
(i)
+ Ŝ− + H.c.),

(1)

where ωq (ωi), Ŝz (σ̂ (i)
z ), and Ŝ± (σ̂ (i)

± ) are the angular
frequency, the z-axis Pauli operator, and the ladder operators
of the qubit (the i-th two-level fluctuator in the environment)
and gi is the coupling constant between the qubit and the i-th
two-level fluctuator. The time-dependent parameter

δq ≡ δq(t) =
∑

α

Aα cos(ωdαt + φα)

in Eq. (1) is an angular frequency shift induced by chaotic sig-
nals and can be expressed as a linear combination of sinusoidal
components with small amplitudes and high frequencies, i.e.,

δq(t) =
∑

α

Aα cos(ωdαt + φα),

which satisfies that
(i) the high-frequency condition:

ωdα � |ωc2 − ωq |, |ωq − ωc1|;
(ii) the small amplitude condition:

Adα/ωdα � 1,

where ωc1 and ωc2 are cutoff frequencies that will be specified
below. Using the Fourier-Bessel series identity:45

eix sin y =
∑

n

Jn(x)einy

with Jn(x) as the n-th Bessel function of the first kind and
the approximation J0(x) ≈ 1 − x2/4 for x � 1, we obtain the
following effective system-environment Hamiltonian (see the
derivations in Appendix A):

Ĥeff = ωq

2
Ŝz +

∑
i

ωi

2
σ̂ (i)

z +
√

F
∑

i

(giσ̂
(i)
+ Ŝ− + H.c.),

(2)

with the renormalized coupling constant factor

F = exp

[
−π

∫ ∞

ωcd

Sδq
(ω)

ω2

]
dω.

Sδq
(ω) is the power spectrum density of the signal δq(t). ωcd

is the lower bound of the frequency of δq(t) and is assumed to
satisfy the condition

ωcd � |ωc2 − ωq |, |ωq − ωc1|.
The correction factor F may become extremely small when
δq(t) is induced by a deterministic chaotic signal which has
a broadband frequency spectrum, in particular, in the high-
frequency domain. The qubit decouples from its environment
when F → 0.

In order to show the suppression of the decoherence effects
of δq(t), let us consider the decay rate of the nondiagonal

entries of the qubit state,

�q (t) = − d

dt
log

∣∣∣∣〈0|trE
{


T exp

[
−i

∫ t

0
ĤqE (τ ) dτ

]

× ρ̂qE (0) 
T exp

[
i

∫ t

0
ĤqE (τ ) dτ

]}
|1〉

∣∣∣∣ , (3)

where 
T is the time-ordering operator, ρ̂qE(0) is the initial
state of the qubit and its environment, and trE(·) represents
the partial trace operation of the degrees of freedom of the
environment. States |0〉 and |1〉 are the two eigenstates of the
qubit. It is shown in Appendix A that �q → 0 when F → 0.

If the initial state is separable, ρ̂qE(0) = ρ̂q0 ⊗ ρ̂E0, where
we consider the environment ρ̂E0 at the zero temperature, we
can obtain an analytical expression of �q(t) under the second-
order approximation46 (see the derivations in Appendix A):

�q(t) = F

∫ ωc2

ωc1

dω
J (ω) sin(ωq − ω)t

ωq − ω
= F�q0, (4)

where J (ω) = ∑
i g

2
i δ(ω − ωi) is the spectral density of the

environment and �q0 is the damping rate of the qubit when
δq(t) = 0. Since the frequencies of the fluctuators distribute
in a finite domain, �q is restricted to be integrated in the
finite-frequency domain [ωc1,ωc2]. As analyzed in Eq. (4), the
decay rate �q0 of the qubit is suppressed by the chaotic signal
δq(t) when the correction factor F becomes small.

III. GENERATION OF CHAOTIC SIGNALS AND
SUPPRESSION OF 1/ f NOISES

We now show the validity of our method. As an example,
we consider the suppression of the 1/f noises of a qubit with
free Hamiltonian Ĥq = ωqŜz by coupling it to a driven Duffing
oscillator47 with Hamiltonian

ĤDuff = ωoâ
†â − μ

4
(â + â†)4 − I (t)

1√
2

(â + â†), (5)

where â and â† are the annihilation and creation operators
of the nonlinear Duffing oscillator, ωo/2π stands for the
frequency of the fundamental mode of the oscillator, and μ is
the nonlinear constant. I (t) = I0 cos(ωdt) denotes the classical
driving field with the amplitude I0 and frequency ωd/2π . We
employ the interaction between the qubit and the Duffing
oscillator with the Hamiltonian Ĥqo = gqoŜzâ

†â, which can
be obtained, e.g., by the Jaynes-Cummings model under the
large detuning regime.48 Here, gqo is the coupling strength
between the qubit and the oscillator.

By tracing out the degrees of freedom of the Duffing
oscillator, we find that the effective Hamiltonian of the qubit-
environment system becomes (see the analysis in Appendix B):

ĤqE = [ωq + δq(t) + ξ (t)]

2
Ŝz +

∑
i

ωi

2
σ̂ (i)

z

+
∑

i

(giσ̂
(i)
+ Ŝ− + H.c.). (6)

There are two aspects of effects induced by the Duffing
oscillator. The deterministic angular frequency shift δq(t) can
be used to suppress the decoherence of the qubit as analyzed.
However, the effective classical stochastic signal ξ (t) leads to
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additional (pure-dephasing) decoherence effects of the qubit.
The decoherence effects induced by the chaotic dynamics,
e.g., the quantum Loschmidt echo,36–42 have been well studied
in the literature.35–44 However, the unitary dynamics induced
by δq(t) has not drawn enough attention of researchers.
Our decoherence suppression strategy uses the unexplored
dynamics, under condition that the decoherence suppression
induced by δq(t) is predominant in comparison with the
opposite decoherence acceleration process induced by ξ (t).

In this section, the noise spectrum of the environment is
specified as a 1/f spectrum, which can be expressed as

J (ω) = A

|ω| , (7)

where A is the strength of the spectrum. Such a 1/f

noise spectrum has been widely used to describe dynamical
phenomena in classical circuit such as transport in electronic
devices. In recent years, the extensive studies in nanodevices,
especially in solid-state quantum computation systems, show
that 1/f noise is a crucial source of decoherence in the
low-frequency regime in such systems, which may be induced
by, e.g., the two-level fluctuators in the substrate and the flux
or charge noises in the circuit (see, e.g., Refs. 4–14).

We now come to show numerical results, using system
parameters:

(ωo,gqo,μ) = (ωq,0.03ωq,0.25ωq ). (8)

The strength of the 1/f environmental noise A is assumed to
be A/ωq = 0.1.

The evolution of the coherence Cxy = 〈Ŝx〉2 + 〈Ŝy〉2 of the
qubit and the spectrum analysis of the angular frequency shift
δq(t) are presented in Fig. 1. As shown in Figs. 1(b) and 1(c),
if the amplitude I0 of the sinusoidal driving field I (t) is tuned
such that I0/ωq = 5 and 30, the signals δq(t) exhibit periodic
and chaotic behaviors. As shown in Fig. 1(a), in the periodic
regime, the decoherence of the qubit is almost unaffected
by the Duffing oscillator. The trajectory in the periodic case
(green curve with plus signs) coincides with that of natural
decoherence (black triangle curve), as in Fig. 1(a). In the
chaotic regime, the decoherence of the qubit is efficiently
slowed down [see the blue solid curve in Fig. 1(a) representing
the trajectory in the chaotic case]. This demonstrates that,
with the increase of the distribution of the spectral energy
in the high-frequency domain, the decoherence effects are
suppressed as explained in the last section.

To calculate the damping rates of the nondiagonal entries
of the qubit, we, first, calculate

f01 = 〈α|eit(ĤDuff+gqoâ
†â)e−it(ĤDuff−gqoâ

†â)|α〉, (9)

where |α〉 is the initial state of the Duffing oscillator. We
take |α〉 as the vacuum state. Since the Hamiltonian of the
Duffing oscillator is nonlinear, we cannot obtain the analytical
expression of f01(t). Here, we use the quantum optics toolbox
“QotoolboxV015”49 for MATLAB to numerically solve it. f01(t)
induces two effects: (i) the angular frequency shift of the qubit
denoted by δq (t) and (ii) the quantum Loschmidt echo,36–42 i.e.,
the pure dephasing decoherence of the qubit with damping rate
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FIG. 1. (Color online) Decoherence suppression by the auxiliary
chaotic setup. (a) The evolution of the coherence Cxy = 〈Ŝx〉2 + 〈Ŝy〉2

of the state of the qubit, where the red asterisk curve and the black
triangle curve represent the ideal trajectory without any decoherence
and the trajectory under natural decoherence and without corrections
and the green curve with plus signs and the blue solid curve denote
the trajectories with I0/ωq = 5 and 30. With these parameters, the
dynamics of the Duffing oscillator exhibits periodic and chaotic
behaviors. τ = 2π/ωq is a normalized time scale. [(b) and (c)] The
energy spectra of δq (t) with I0/ωq = 5 (the periodic case) and 30
(the chaotic case). The energy spectrum Sδq

(ω) is in the unit of
decibels (dB). (d) The normalized decoherence rates �/ωq versus
the normalized driving strength I0/ωq .

�Duff . It can be shown that δq(t) and �Duff(t) can be given as
[see Eq. (B2) in Appendix B]:

δq(t) = d

dt
Im[log f01(t)], (10)

�Duff = d

dt
Re[log f01(t)]. (11)

The natural decoherence rate �q0 of the qubit induced by
the environmental noises can be calculated by

�q0 =
∫ ωc2

ωc1

dωJ (ω)
sin[(ωq − ω)t]

ωq − ω
.

The modified environment-induced decoherence rate �q of the
qubit can be numerically solved by

�q =
∫ ωc2

ωc1

dωJ (ω)Re
∫ t

0
ei(ωq−ω)(t−t ′)+i

∫ t

t ′ δqdt ′′dt ′,

where δq(t) has been given by Eq. (10). The total decoherence
rate �qm of the qubit can be calculated by

�qm = �q + �Duff .

We compare in Fig. 1(d) the natural decoherence rate �q0

with the modified decoherence rate �qm [both include the
environment-induced decoherence modified by δq(t) and the
decoherence induced by ξ (t)] of the qubit versus different
strengths I0 of the driving field. Figure 1(d) shows that the
decoherence process is efficiently slowed down when the
strength I0 of the driving field increases. It is interesting to note
that there seems to exist a phase transition around I0/ωq = 20,
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i.e., a sudden change of the modified decoherence rate �qm

(see the black solid curve with plus signs). It is noticeable that,
around this point, the dynamics of the Duffing oscillator enters
the chaotic regime which is indicated by a positive Lyapunov
exponent λ [see the green dash-dotted curve in Fig. 1(d)]. The
modified decoherence rate �qm changes dramatically in the
parameter regime 20 � I0/ωq � 35, which is the soft-chaos
regime of the Duffing oscillator. When the dynamics of the
Duffing oscillator enters the hard-chaos regime at I0/ωq ≈
35, the modified decoherence rate �qm is stabilized at a
value much smaller than the natural decoherence rate �q0.
The simulation shows that the decoherence of the qubit is
efficiently suppressed by chaotic signal, even if there exists
an additional decoherence introduced by the auxiliary chaotic
setup. Further calculations show that the modified decoherence
rate �qm in the chaotic regime is roughly 100 times smaller
than the unmodified decoherence rate �q0, meaning that the
decoherence time of the qubit can be prolonged 100 times
using the chaotic signal.

IV. EXPERIMENTAL FEASIBILITY IN
SUPERCONDUCTING CIRCUITS

Our proposal can be demonstrated using the solid-state
quantum devices, e.g., the superconducting qubit system, as
schematically shown in Fig. 2. It is similar to the widely used
qubit readout circuit50 but works in a quite different parameter
regime. In this superconducting circuit, a single Cooper pair
box (SCB) is coupled to a dc superconducting quantum
interference device (SQUID) consisting of two Josephson
junctions with capacitances C̃J and Josephson energies ẼJ

and a paralleled current source. The SCB is composed of
two Josephson junctions with capacitances CJ and Josephson
energies EJ . The difference between the circuit in Fig. 2 and
the readout circuit in Ref. 50 is that the rf-biased Josephson
junction is replaced by a dc-SQUID—the chaotic setup.

The Hamiltonian of the circuit in Fig. 2 is written as

ĤSCB−SQUID = EC(n̂ − ng)2 − 2EJ cos
φ̂

2
cos θ̂ + ẼC

ˆ̃n
2

− 2ẼJ cos
φe

2
cos φ̂ − φ0Ieφ̂, (12)

gV

eIφφφφ
eφφφφ

JE

JC

JE

JC

JE
~

JC
~

JE
~

JC
~

SCB dc-SQUID

FIG. 2. (Color online) Schematic diagram of the decoherence
suppression superconducting circuit in which a SCB is coupled to a
current-biased dc-SQUID.

where EC = 2e2/(Cg + 2CJ ) is the charging energy of SCB
with Cg as the gate capacitance; ng = −CgVg/2e is the
reduced charge number, in units of the Cooper pairs, with
Vg as the gate voltage; n̂ is the number of Cooper pairs
on the island electrode of SCB with θ̂ as its conjugate
operator; ẼC = e2/C̃J is the charging energy, ˆ̃n is the charge
operator of the dc-SQUID, and φ̂ the conjugate operator; and
φe and Ie are the external flux threading the loop of the
dc-SQUID and the external bias current of the dc-SQUID.
Here, we consider a zero external flux threading the loop of
the coupled SCB–dc-SQUID system. In this case, the phase
drop across the SCB is equal to the phase drop across the
dc-SQUID φ̃.

Expanding the Hamiltonian of the SCB in the Hilbert space
of its two lowest energy states and leaving the lowest nonlinear
terms of φ, we can obtain the following Hamiltonian:51

ĤSCB−SQUID = EJ Ŝz + CgVg

2e
ECŜx + (ωo + gqoŜz)â

†â

− μ

4
(â + â†)4 − βIe(t)(â + â†), (13)

where Ŝx,y,z are the Pauli operators of the SCB; the parameters
in the Hamiltonian are given by

ωo =
√

16ẼCẼJ cos
φe

2
, gqo =

√
4E2

J ẼC

ẼJ

∣∣∣∣cos
φe

2

∣∣∣∣,
μ = 1

3
ẼC, β = φ0

(
ẼC

ẼJ

∣∣cos φe

2

∣∣
)1/4

;

the annihilation operator â is defined by â = (x̂ + ip̂)/
√

2,
where

x̂ = 1√
2

(
ẼJ |cos φe/2|

ẼC

)1/4

φ̂

is the normalized position operator of the dc-SQUID with p̂ as
its conjugate momentum operator. By introducing the ac gate
voltage Vg = Vg0 cos(ωgt) with amplitude Vg0 and frequency
ωg , the Hamiltonian in Eq. (13) can be reexpressed in the
rotating frame as

ĤSCB−SQUID = ωqŜz + CgVg0

2e
ECŜx − μ

4
(â + â†)4

+ (ωo + gqoŜz)â
†â − βIe(t)(â + â†),

where ωq = EJ − ωg .
Under the condition that CgVg0EC/2e � ωq = EJ − ωg ,

the SCB works near the optimal point. Thus, we only
need to consider the relaxation of the SCB. Under this
condition, we can write down the full Hamiltonian of the
total system composed of the SCB, the dc-SQUID, and the
environment as

Ĥtot = ωqŜz + gqoŜzâ
†â +

[
− μ

4
(â + â†)4

+ωoâ
†â − βIe(t)(â + â†)

]
+

∑
i

ωi

2
σ̂ (i)

z

+
∑

i

(giσ̂
(i)
+ Ŝ− + H.c.),
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TABLE I. Decoherence suppression against various noises
for experimentally accessible parameters: EJ /2π = 5 GHz,
ωg/2π = 4.999 GHz, ẼC/2π = 0.188 MHz, and ẼJ cos φe

2 /2π =
12.032 MHz.

Type of noises Frequency domain �̄q0 �̄qm T1 = T2

1/f noise [10 kHz, 1 MHz] 0.58 MHz 5.4 kHz 187 μs
Ohmic [2ωq/3,3ωq/2] 0.35 MHz 5.4 kHz 187 μs
Subohmic [2ωq/3,3ωq/2] 0.35 MHz 5.4 kHz 187 μs
Superohmic [2ωq/3,3ωq/2] 0.36 MHz 5.4 kHz 187 μs

which is just the Hamiltonian of the total system composed of
the qubit, the Duffing oscillator, and the environment which
can be reduced to the effective Hamiltonian given in Eq. (6) by
averaging out the degrees of freedom of the Duffing oscillator
(see the derivation in Appendix B).

As has been analyzed, the dc-SQUID, acting as the
auxiliary Duffing oscillator, can be used to suppress low-
frequency 1/f noises of the qubit. Using the experimentally
accessible parameters as shown in the title to Table I, we
show the decoherence suppression effects for low-frequency
1/f , high-frequency ohmic [J (ω) = ωe−ω/5ωq ], subohmic
[J (ω) = ω1/2e−ω/5ωq ], and superohmic [J (ω) = ω2e−ω/5ωq ]
noises. All simulations are summarized in Table I. It is found
that our method works equally well for different types of
noises. The numerical simulations manifest that our strategy
is independent of the sources and frequency domains of the
noises. The final modified decoherence rates for these different
noises are almost the same because the decoherence effects
induced by the environmental noises are all greatly suppressed.
The modified decoherence rates of the qubit are mainly caused
by the auxiliary chaotic setup, i.e., the dc-SQUID. It is also
shown in Table I that the modified decoherence rate �qm/2π of
the qubit can be reduced to 5 kHz. This low decoherence rate
corresponds to a long decoherence time T1 = T2 ≈ 200 μs.
The magnitude is one order longer than the decoherence time
of the superconducting qubits realized in experiments (see,
e.g., Refs. 4–10).

V. CONCLUSIONS

In conclusion, we have proposed a strategy to increase the
decoherence time of a qubit by coupling it to a deterministic
chaotic setup. The broad power distribution of the auxiliary
chaotic setup, in particular, in the high-frequency domain,
helps us to suppress various non-Markovian noises, e.g.,
low-frequency 1/f noise, high-frequency ohmic, subohmic,
and superohmic noises, and, thus, freeze the state of the
qubit even if we consider the additional decoherence in-
duced by the chaotic setup. As an example, we apply
our method to a coupled SCB-SQUID system. We find
that the decoherence time of the qubit can be efficiently
prolonged approximately 100 times in magnitude in such a
system.

Our method may be applied to other systems which have the
Hamiltonian as shown in Eq. (1), e.g., atom-optical systems
or quantum dot systems, in which chaotic dynamics can
be induced by a nonlinear optical cavity. Additionally, our

discussions also give a new perspective for the reversibility
and irreversibility induced by nonlinearity.
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APPENDIX A: DECOHERENCE SUPPRESSION BY THE
CHAOTIC SIGNAL δq(t)

(i) The Hamiltonian of the total system composed of the
system and the environment can be written as

ĤqE = (ωq + δq)

2
Ŝz +

∑
i

ωi

2
σ̂ (i)

z +
∑

i

(giσ̂
(i)
+ Ŝ− + H.c.),

(A1)

which can be expressed in the interaction picture as

ˆ̃HqE =
∑

i

[g̃i(t)σ̂
(i)
+ Ŝ− + H.c.], (A2)

where

g̃i(t) = gi exp

[
−i(ωq − ωi)t − i

∫ t

0
δq(t ′)dt ′

]
.

The solution of the Schrödinger equation with the Hamiltonian
given in Eq. (A2) can be written as

|ψ̃(t)〉 = 
T exp

[
−i

∫ t

0

ˆ̃HqE(τ )dτ

]
|ψ0〉

=
[

1 +
∞∑

n=1

(−i)n
∫ t

0

ˆ̃HqE (t1) dt1 · · ·
]

|ψ0〉

=
[
1 +

∞∑
n=1

(−i)n
∫ t

0

∑
i

(g̃i σ̂
(i)
+ Ŝ− + H.c.)dt1 · · ·

]
|ψ0〉,

(A3)

where 
T is the time-ordering operator. Using the
Fourier-Bessel series identity,45 eix sin y = ∑

n Jn(x)einy

with Jn(x) as the n-th Bessel function of the first kind, it can
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be calculated that∫ t

0
g̃i(t

′)dt ′ = gi

∫ t

0
exp

[
− i(ωq − ωi)t

′ − i

∫ t ′

0
δq(t ′′)dt ′′

]
dt ′

= gi

∫ t

0
exp

[
−i(ωq − ωi)t

′ − i

∫ t ′

0

∑
α

Adα cos(ωdαt ′′ + φα)dt ′′
]

dt ′

= gi

∫ t

0
exp

[
−i(ωq − ωi)t

′ − i
∑

α

Adα

ωdα

sin(ωdαt ′ + φα)

]
dt ′

= gi

∫ t

0
exp[−i(ωq − ωi)t

′]
∏
α

∑
nα

Jnα

(
Adα

ωdα

)
exp[−inαωdαt ′ − inαφα]dt ′

= gi

∑
nα

∏
α

Jnα

(
Adα

ωdα

) ∫ t

0
exp

[
−i

(
ωq − ωi +

∑
α

nαωdα

)
t ′ − inαφα

]
dt ′

= gi

∑
nα

∏
α

Jnα

(
Adα

ωdα

)
e−i

∑
nα

nαφα
1

−i
(
ωq − ωi + ∑

α nαωdα

) [e−i(ωq−ωi+
∑

α nαωdα)t − 1]. (A4)

Since ωdα � |ωi − ωq |, we have

1

−i
(
ωq − ωi + ∑

α nαωdα

) � 1

−i(ωq − ωi)
,

if any nα �= 0. We then can obtain the approximation
expression:∫ t

0
g̃i

(
t ′
)
dt ′ =

∏
α

J0

(
Adα

ωdα

)
gi

[e−i(ωq−ωi )t − 1]

−i(ωq − ωi)

=
∏
α

J0

(
Adα

ωdα

) ∫ t

0
gie

−i(ωq−ωi )t ′dt ′. (A5)

Furthermore, from the assumption Adα � ωdα , by taking the
approximations J0(x) ≈ 1 − (x2/4) and log(1 + x) ≈ x for
x � 1,

∏
α J0(Adα/ωdα) can be calculated as

∏
α

J0

(
Adα

ωdα

)
= exp

[∑
α

log J0

(
Adα

ωdα

)]

= exp

(
−1

4

∑
α

A2
dα

ω2
dα

)

= exp

[
−π

2

∫ ∞

ωcd

Sδq
(ω)

ω2
dω

]
=

√
F, (A6)

where

F = exp

[
−π

∫ ∞

ωcd

Sδq
(ω)

ω2
dω

]
.

Thus, we have∫ t

0
g̃i(t

′)dt ′ =
√

F

∫ t

0
gie

−i(ωq−ωi )t ′dt ′

≡
√

F

∫ t

0

˜̃gi(t
′)dt ′. (A7)

Substituting Eq. (A7) into Eq. (A3), we can obtain

|ψ̃(t)〉

=
[
1+

∞∑
n=1

(−i
√

F )n
∫ t

0

∑
i

( ˜̃giσ̂
(i)
+ Ŝ− + H.c.)dt1 · · ·

]
|ψ0〉

= 
T exp

[
− i

√
F

∫ t

0

ˆ̃̃
HqE(τ )dτ

]
|ψ0〉,

where

ˆ̃̃
HqE =

∑
i

(gie
−i(ωq−ωi )t σ̂

(i)
+ Ŝ− + H.c.).

From the above analysis, we can obtain the following effective
Hamiltonian of the total system in the Schrödinger picture:

Ĥeff = ωq

2
Ŝz +

∑
i

ωi

2
σ̂ (i)

z +
√

F
∑

i

(giσ̂
(i)Ŝ− + H.c.)

= Ĥ0 +
√

FĤI .

(ii) From the definition of �q(t), it can be calculated as

�q (t) = − d

dt
log

∣∣∣∣〈0|trE
{


T exp

[
−i

∫ t

0
ĤqE (τ ) dτ

]
ρ̂qE (0) 
T exp

[
i

∫ t

0
ĤqE (τ ) dτ

]}
|1〉

∣∣∣∣
= − d

dt
log |〈0|trE[exp(−iĤeff t)ρ̂qE(0) exp(iĤeff t)]|1〉|

= − d

dt
log

∣∣∣∣e−iωq t 〈0|trE
{


T exp

[
−i

√
F

∫ t

0

ˆ̃̃
HqE(τ )dτ

]
ρ̂qE(0) 
T exp

[
i
√

F

∫ t

0

ˆ̃̃
HqE (τ ) dτ

]}
|1〉

∣∣∣∣
= − d

dt
log

∣∣∣∣〈0|trE
{


T exp

[
−i

√
F

∫ t

0

ˆ̃̃
HqE(τ )dτ

]
ρ̂qE(0) 
T exp

[
i
√

F

∫ t

0

ˆ̃̃
HqE (τ ) dτ

]}
|1〉

∣∣∣∣ . (A8)
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When F → 0, we have

�q → − d

dt
log |〈0|trE[ρ̂qE(0)]|1〉| = 0. (A9)

(iii) If the initial state of the total system composed of
the qubit and the environment is a separable state ρ̂qE(0) =
ρ̂q0 ⊗ ρ̂E0, we can obtain the following master equation under
the second-order approximation:46

˙̂ρs = −i[(ωq + δq)Ŝz,ρ̂s] +
∑

i

g2
i

∫ t

0
dτ trE{[Ŝ+σ̂

(i)
− (t),

[Ŝ−(τ − t)σ̂ (i)
+ (τ ),ρ̂s(t) ⊗ ρ̂E0]]}

+
∑

i

g2
i

∫ t

0
dτ trE{[Ŝ−σ̂

(i)
+ (t),

[Ŝ+(τ − t)σ̂ (i)
− (τ ),ρ̂s(t) ⊗ ρ̂E0]]},

where

Ŝ±(t) = Ŝ± exp

{
±i

[
ωqt +

∫ t

0
δq(t ′)dt ′

]}

and

σ̂
(i)
± (t) = σ̂

(i)
± exp (±iωit)

are the ladder operators of the qubit and the i-th two-level
fluctuator in the interaction picture; and

ρ̂s = trE 
T exp

[
−i

∫ t

0
ĤqE (τ ) dτ

]
ρ̂qE (0)


T exp

[
i

∫ t

0
ĤqE (τ ) dτ

]
(A10)

is the reduced density operator of the qubit.
Consider a zero-temperature environment, the above master

equation can be rewritten as

˙̂ρs = −i
[

1
2 (ωq + δq + �ωq)Ŝz,ρ̂s

] + 2�̃qD[Ŝ−]ρ̂s ,

(A11)

where

�ωq =
∫ ωc2

ωc1

dωJ (ω) Im
∫ t

0
ei(ωq−ω)(t−t ′)+i

∫ t

t ′ δqdt ′′dt ′

(A12)

and

�̃q =
∫ ωc2

ωc1

dωJ (ω)Re
∫ t

0
ei(ωq−ω)(t−t ′)+i

∫ t

t ′ δqdt ′′dt ′; (A13)

the superoperator D [Ŝ−]ρ̂s is defined as

D[Ŝ−]ρ̂s = Ŝ−ρ̂s Ŝ+ − 1
2 Ŝ+Ŝ−ρ̂s − 1

2 ρ̂s Ŝ+Ŝ−;

and J (ω) = ∑
i g

2
i δ(ω − ωi) is the spectral density of the

environment.
It can be checked from Eq. (A11)

〈Ŝ−〉(t) = e
∫ t

0 [−�̃q+i(ωq+δq+�ωq)]dτ 〈Ŝ−〉(0),

where 〈Ŝ−〉(t) = tr(Ŝ−ρ̂s(t)). Thus, from the definition of �q ,
we have

�q = − d

dt
log

∣∣∣∣〈0|trE
{


T exp

[
−i

∫ t

0
ĤqE (τ ) dτ

]
ρ̂qE(0)

× 
T exp

[
i

∫ t

0
ĤqE (τ ) dτ

]}
|1〉

∣∣∣∣
= − d

dt
log |〈0|ρ̂s(t)|1〉| = − d

dt
log |〈Ŝ−(t)〉|

= − d

dt
log |e− ∫ t

0 �̃q (τ )dτ | · |〈Ŝ−〉(0)| = �̃q . (A14)

From the derivation of Eq. (A4), we have∫ t

0
ei2ω−(t−t ′)+i

∫ t

t ′ δq (t ′′)dt ′′dt ′ ≈ Feiω−t

(
sin ω−t

ω−

)
, (A15)

where ω− = (ωq − ω)/2. Then, from Eqs. (A12), (A14), and
(A15), it can be shown

�q = �̃q = F

∫ ωc2

ωc1

dω
J (ω) sin(ωq − ω)t

ωq − ω
= F�q0. (A16)

APPENDIX B: DYNAMICS OF THE QUBIT INDUCED BY
THE DUFFING OSCILLATOR

The total Hamiltonian of the qubit, the Duffing oscillator,
and the environment can be written as

Ĥtot = ωq

2
Ŝz + gqoŜzâ

†â + ĤDuff

+
∑

i

ωi

2
σ̂ (i)

z +
∑

i

(giσ̂
(i)
+ Ŝ− + H.c.), (B1)

from which the system state of the total system can be written
as

ρ̂tot = e−iĤtott [ρ̂qE(0) ⊗ |α〉〈α|]eiĤtott ,

where ρ̂qE(0) and |α〉〈α| are the initial states of the qubit-
environment system and the Duffing oscillator.

It can be calculated that

〈Ŝ−〉 = trŜ−ρ̂tot(t) = trE trDuff〈0|e−iĤtott [ρ̂qE(0) ⊗ |α〉〈α|]eiĤtott |1〉
= trE trDuff[e

−it(ĤDuff−gqoâ
†â)|α〉〈α|eit(ĤDuff+gqoâ

†â)〈0|e−i(Ĥ0+ĤI )t ρ̂qE(0)ei(Ĥ0+ĤI )t |1〉]
= f01(t)〈0|trE[e−i(Ĥ0+ĤI )t ρ̂qE(0)ei(Ĥ0+ĤI )t ]|1〉
≡ e− ∫ t

0 �Duff (t ′)dt ′+i
∫ t

0 δq (t ′)dt ′ 〈0|trE[e−i(Ĥ0+ĤI )t ρ̂qE(0)ei(Ĥ0+ĤI )t ]|1〉,
〈Ŝz〉 = tr[Ŝzρ̂tot(t)] = tr[Ŝze

−i(Ĥ0+ĤI )t ρ̂qE(0)ei(Ĥ0+ĤI )t ], (B2)
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where

f01 = 〈α|eit(ĤDuff+gqoâ
†â)e−it(ĤDuff−gqoâ

†â)|α〉
= e− ∫ t

0 �Duff (t ′)dt ′+i
∫ t

0 δq (t ′)dt ′ ,

Ĥ0 = ωq

2
Ŝz +

∑
i

ωi

2
σ (i)

z ,

ĤI =
∑

i

(giσ̂
(i)
+ Ŝ− + H.c.);

and trE(·) and trDuff(·) are the partial trace operations about
the degrees of freedom of the environment and the Duffing
oscillator. From Eq. (B2), the Duffing oscillator leads to two
aspects of effects: (i) an angular frequency shift δq(t) along
the Ŝz axis of the qubit which suppresses the environment-
induced decoherence and (ii) a pure dephasing channel with
damping rate �Duff which deteriorates the quantum coherence
of the qubit state. The dephasing process induced by Duffing
oscillator can be equivalently expressed by a classical Gaussian
noise ξ (t) along the Ŝz axis of the qubit, which satisfies

that

E[ξ (t)] = 0, E

{[ ∫ t

0
ξ (t ′)dt ′

]2}
= 2

∫ t

0
�Duff(t

′)dt ′,

(B3)

where E(·) is the average about the classical stochastic noise
ξ (t) (see, e.g., Ref. 15). In fact, a Hamiltonian term ξ (t)Ŝz

leads to a damping factor E(e−i
∫ t

0 ξ (t ′)dt ′ ) for 〈Ŝ−〉. Since ξ (t)
is a Gaussian noise, we have

E(e−i
∫ t

0 ξ (t ′)dt ′ ) = e−E{[∫ t

0 ξ (t ′)dt ′]2}/2 = e− ∫ t

0 �Duff (t ′)dt ′ .

It means that the classical stochastic noise ξ (t) along the Ŝz

axis of the qubit leads to the same damping effect given by
Eq. (B2). With the above analysis, the Hamiltonian of the
qubit-environment system by averaging out the degrees of
freedom of the Duffing oscillator can be expressed as

ĤqE = [ωq + δq(t) + ξ (t)]

2
Ŝz +

∑
i

ωi

2
σ̂ (i)

z

+
∑

i

(giσ̂
(i)
+ Ŝ− + H.c.).
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