
This article was downloaded by: [The University of Manchester Library]
On: 12 October 2014, At: 04:36
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Computer
Mathematics
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/gcom20

Multivariate quasi-interpolation in L 
p (ℝ d ) with radial basis functions for
scattered data
Zongmin Wu a & Zhengchao Xiong a
a Shanghai Key Laboratory for Contemporary Applied
Mathematics , School of Mathematical Sciences, Fudan
University , Shanghai, People's Republic of China
Published online: 27 Sep 2008.

To cite this article: Zongmin Wu & Zhengchao Xiong (2010) Multivariate quasi-interpolation
in L  p (ℝ d ) with radial basis functions for scattered data, International Journal of Computer
Mathematics, 87:3, 583-590, DOI: 10.1080/00207160802158702

To link to this article:  http://dx.doi.org/10.1080/00207160802158702

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the
“Content”) contained in the publications on our platform. However, Taylor & Francis,
our agents, and our licensors make no representations or warranties whatsoever as to
the accuracy, completeness, or suitability for any purpose of the Content. Any opinions
and views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content
should not be relied upon and should be independently verified with primary sources
of information. Taylor and Francis shall not be liable for any losses, actions, claims,
proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or
howsoever caused arising directly or indirectly in connection with, in relation to or arising
out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &

http://www.tandfonline.com/loi/gcom20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/00207160802158702
http://dx.doi.org/10.1080/00207160802158702


Conditions of access and use can be found at http://www.tandfonline.com/page/terms-
and-conditions

D
ow

nl
oa

de
d 

by
 [

T
he

 U
ni

ve
rs

ity
 o

f 
M

an
ch

es
te

r 
L

ib
ra

ry
] 

at
 0

4:
36

 1
2 

O
ct

ob
er

 2
01

4 

http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


International Journal of Computer Mathematics
Vol. 87, No. 3, March 2010, 583–590

Multivariate quasi-interpolation in Lp(Rd) with radial basis
functions for scattered data

Zongmin Wu and Zhengchao Xiong*

Shanghai Key Laboratory for Contemporary Applied Mathematics, School of Mathematical Sciences,
Fudan University, Shanghai, People’s Republic of China

(Received 26 April 2007; revised version received 26 September 2007; second revision received 30 March 2008;
accepted 12 April 2008 )

In this paper, quasi-interpolation for scattered data was studied. On the basis of generalized quasi-
interpolation for scattered data proposed in [Z.M. Wu and J.P. Liu, Generalized strang-fix condition for
scattered data quasi-interpolation, Adv. Comput. Math. 23 (2005), pp. 201–214.], we have developed a
new method to construct the kernel in the scheme by the linear combination of the scales, instead of the
gridded shifts of the radial basis function. Compared with the kernel proposed in [Z.M. Wu and J.P. Liu,
Generalized strang-fix condition for scattered data quasi-interpolation, Adv. Comput. Math. 23 (2005),
pp. 201–214.], the new kernel, which is still a radial function, possesses the feature of polynomial repro-
ducing property. This opens a possibility for us to propose a different technique by obtaining a higher
approximation order of the convergence.

Keywords: quasi-interpolation; scattered data approximation; polynomial reproducing; radial basis
function

2000 AMS Subject Classification: 41A63; 41A25; 65D10

1. Introduction

Quasi-interpolation method is an important approach in approximation theories and applications.
For a uniform grid with spacing h and a set of given basis function �j,h(x), j ∈ Zd , the quasi-
interpolation of a d-variate function f takes the standard form via the linear combination∑

f (jh)�j,h(x) ∼ f (x).

The most useful and simplest form is Schoenberg’s model [14]
∑

f (jh)�
(x

h
− j

)
∼ f (x), x ∈ R

d , (1)

which has been used, for instance, with the Shannon sampling theorem and the B-spline series.
Taking �j,h(x) to be scaled shifts of a single kernel function � on R

d benefits the computing and
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584 Z. Wu and Z. Xiong

storage of the kernel function in computer. In [12,17], the Strang-Fix condition is shown to be a
necessary and sufficient condition for the convergence of the quasi-interpolation. In details, the
quasi-interpolation possesses an approximation order of n if and only if the Fourier transform of the
kernel � possesses zero points of order n at 2πj, j �= 0, and �̂ − 1 possesses a zero point of order
n at the origin. If the kernel does not satisfy the Strang-Fix condition that �̂ − 1 possesses only a
lower order of zero at origin, in [16], a new kernel � is introduced, which is a linear combination
of shifts of � to satisfy the condition. In [20], a full Strang-Fix condition is introduced, by which
we are able to take the kernel to satisfy the Strang-Fix condition asymptotically. On the basis of
the full Strang-Fix condition, the quasi-interpolation scheme can be constructed for multivariate
scattered data as follows:

f ∗(x) =
∑

j

f (xj )�

(
x − xj

hq

)
�j

hqd
, (2)

where the kernel � is also constructed as in [16]. With this Scheme (2) and the kernel � in [16],
an optimal convergence order of the quasi-interpolation has been presented in [20].

In this paper, the quasi-interpolation of the form (2) for scattered data is also studied. We have
developed a new technique to construct the kernel �. With the new kernel, the convergence order
is improved. Our technique is carried out through a linear combination of the scales, instead of
the shifts of � in [20]. Compared with the method in [20], our technique has several advantages.
First, the new kernel possesses a polynomial reproducing property under convolution operator.
This makes it possible for us to propose a different technique, which do not base on the Strang-
Fix condition, to prove the convergence of the quasi-interpolation of the form (2) and to obtain a
higher approximation order. Second, the radial property of the kernel remains. If � is radial, � is a
radial function too. This is important while dealing with the problems in multidimensional space.
Third, the construction technique is independent of the dimension, and we only need to solve a
system of n linear equations in order to obtain the kernel, whereas in [20] nd linear equations are
required.

We refer to [1,5–8,11–13,15,16,18,21] and the references therein for more details of quasi-
interpolation and related topics. The scheme is also used for numerical solution of partial
differential equations (PDEs). For example, see [2,3,9,10,19].

The remainder of the paper is organized as follows. Section 2 is devoted to introduce some
notation necessary for the study. In Section 3, we develop a new technique to construct a new kind
of kernel. In the end, we complete the error analysis of the new quasi-interpolation and conclude
the advantages of the new kind of kernel.

2. Preliminaries

In this section, we list some notation used throughout this paper. For xT = (x1, . . . , xd) ∈ R
d ,

|x| :=
√

x2
1 + x2

2 + · · · + x2
d

stands for its Euclidean norm. For α ∈ Z
d+ := {β ∈ Z

d : β ≥ 0}, we set α! := α1! · · ·αd ! and
|α| := ∑d

k=1 αk.

πd
k stands for the space of all d variables polynomials whose degree does not exceed k. Denote

the monomial by

Vα(x) := xα

α! .
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International Journal of Computer Mathematics 585

For a discrete set X ⊂ R
d , we define the density of X by

h := h(X) := sup
x∈Rd

inf
xj ∈X

|x − xj |.

For a given function f , denote the scale of f with h of power q by

fh,q(x) := h−qdf (h−qx)

and the partial derivatives of f by

(Dαf )(x) := ∂α1+···+αd f

∂x
α1
1 · · · ∂x

αd

d

.

Our approximands in this paper are chosen from the Sobolev space

Ws
p(Rd), 1 ≤ p ≤ ∞, s ∈ Z+,

of all functions that the function and its derivatives, whose order does not exceed s, are all in
Lp(Rd). We denote the homogeneous sth order Lp-Sobolev semi-norm by | · |s,p, i.e.

|f |s,p :=
∑
|α|=s

‖Dαf ‖p.

Given a sequence {�j } as weights of a quadrature scheme based on discrete set X, {�j } possesses
an approximation order of v, if for any function f ∈ Wv

p(Rd)

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
xj ∈X

f (xj )�j −
∫

Rd

f (x)dx

∣∣∣∣∣∣
∣∣∣∣∣∣
p

≤ c · |f |v,p · hv, (1 ≤ p ≤ ∞) (3)

as h tends to 0, where c is a constant independent of f and h. Details of the method for constructing
{�j } based on X can be found in Appendix B of [20]. In the rest of this paper, we assume that
{�j } possesses an approximation order of v.

3. Main result

The aim of this paper is to improve the approximation order of the quasi-interpolation scheme
of the form (2). The key point is to replace the kernel introduced in [20] for scheme (2) with
a new kernel. Based on this, we propose a new method, which is different from the Strang-Fix
conditions, to prove the convergence of the quasi-interpolation. The following part of this section
is divided into two steps. First, we approximate f by the convolution operator

Lh,q(f )(x) := (�h,q ∗ f )(x) :=
∫

Rd

f (y)�

(
x − y

hq

)
1

hqd
dy,

where q is a parameter and � the kernel satisfying certain conditions that will be specified later.
Second, we apply the quadrature scheme to discretize the convolution based on scattered data X

and obtain the quasi-interpolation

Qh,q(f )(x) :=
∑
xj ∈X

f (xj )�h,q(x − xj )�j :=
∑
xj ∈X

f (xj )�

(
x − xj

hq

)
�j

hqd
.

To estimate the error, we divide f − Qh,q(f ) into two parts: f − Lh,q(f ) and Lh,q(f ) − Qh,q(f ),
which will be separately estimated. We need the following lemma to estimate f − Lh,q(f ).
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586 Z. Wu and Z. Xiong

Lemma 3.1 Let �(x) ∈ L1(Rd) and for some positive integer s, let � ∗ Vα = Vα when |α| ≤ s.
Then �h,q ∗ Vα = Vα when |α| ≤ s for all h > 0 and q ∈ R.

Proof By hypothesis that � ∗ Vα = Vα , we have

�h,q ∗ Vα =
∫

�h,q(y)Vα(x − y) dy

=
∫

�(y)Vα(x − hqy) dy

= hq|α|
∫

�(y)Vα(h−qx − y) dy

= hq|α|Vα(h−qx) = Vα(x). �

Theorem 3.2 If � ∈ L1(Rd) and, for some positive integer s, it satisfies

(a) Vα · � ∈ L1(Rd) when |α| ≤ s,

(b) � ∗ Vα = Vα when |α| < s,

then for f ∈ Ws
p(Rd), we have

‖Lh,q(f ) − f ‖p ≤ const · hsq .

Proof For f ∈ Ws
p(Rd), we fix x ∈ R

d and let P be the Taylor expansion of degree s − 1 of the
function f at x:

P(y) =
∑
|α|<s

(Dαf )(x)Vα(y − x).

By Taylor’s theorem, the remainder R = f − P of the expansion is

R(y) =
∑
|α|=s

(Dαf )(ξy)Vα(y − x),

where ξy = x + t (y − x), (0 ≤ t ≤ 1). Then

�h,q ∗ f − f = �h,q ∗ (f − P) + (�h,q ∗ P − P) + (P − f )

= �h,q ∗ R + (�h,q ∗ P − P) − R.

Note that R(x) = 0, and according to Lemma 3.1, we get

|(�h,q ∗ f − f )(x)| = |(�h,q ∗ R)(x)| =
∣∣∣∣
∫

Rd

�h,q(x − y)R(y) dy

∣∣∣∣
≤

∫
Rd

|�h,q(x − y)|
∑
|α|=s

|(Dαf )(ξy)‖Vα(y − x)| dy

=
∫

Rd

|�(y)|
∑
|α|=s

|Dαf (ξ ′
x,y)‖Vα(−hqy)| dy

= hsq ·
∑
|α|=s

∫
Rd

|Dαf (ξ ′
x,y)||�(y)Vα(y)| dy,
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International Journal of Computer Mathematics 587

where ξ ′
x,y = x − ty. Then, a direct calculation using the generalized Minkowski inequality (for

the case 1 ≤ p < ∞) yields

‖�h,q ∗ f − f ‖p ≤ const · hsq ·
∑
|α|=s

‖Dαf ‖p

∫
Rd

|�(y)Vα(y)| dy.

By condition (a) of the theorem, the integrals in the last expression are finite and their sum should
be bounded by a constant. �

Remark 1 Condition (a) indicates that the kernel � must possess a polynomial decay at least
of order s + d in ∞, and condition (b) requires the polynomial reproducing properties under
convolution operator. The idea of convolution operator with the polynomial reproducing property
comes from [4]. We generalize it to the scale of the kernel with parameters hq .

Theorem 3.2 provides a convolution operator with high approximation power. Based on it, we
improve the approximation order of the quasi-interpolation scheme of the form (2).

Theorem 3.3 Let � ∈ Cu(Rd) and, for some positive integer s, let it satisfy

(a) � · Vα ∈ L1(Rd) when |α| ≤ s,

(b) � ∗ Vα = Vα when |α| < s.

If {�j } are weights of a quadrature scheme with approximation order of v (u ≥ v), then for f ∈
Ws

p(Rd) (s ≥ v), we can put q = v/(s + v) to construct a quasi-interpolation with error bound

∥∥Qh,q(f ) − f
∥∥

p
≤ O(hsv/(s+v)). (4)

Proof As introduced above,

f − Qh,q(f ) = (f − Lh,q(f )) + (Lh,q(f ) − Qh,q(f )).

By Theorem 3.2, we have

‖f − Lh,q(f )‖p = ‖f (x) − (�h,q ∗ f )(x)‖p ≤ const · hsq .

By formula (3),

∥∥Qh,q(f ) − Lh,q(f )
∥∥

p
=

∥∥∥∥∥∥
∑

j

�

(
x − xj

hq

)
f (xj )

�j

hqd
− �h,q ∗ f

∥∥∥∥∥∥
p

=
∥∥∥∥∥∥
∑

j

�

(
x − xj

hq

)
f (xj )

�j

hqd
−

∫
1

hqd
�(

x − y

hq
)f (y) dy

∥∥∥∥∥∥
p

≤ O(hv(1−q)).

Let q = v/(s + v), i.e. sq = v(1 − q), we obtain the optimal error bounds O(hsv/(s+v)). �

Theorem 3.3 shows that we can get a new quasi-interpolation if there exists a kernel with the
polynomial reproducing property under convolution operators. The rest of the paper will concen-
trate on the construction of such kind of kernel. At first, we introduce the notion of ‘admissible
coefficients’.
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588 Z. Wu and Z. Xiong

Definition 3.4 The coefficients {ai, ti : ti �= 0} are termed admissible for πs−1(R) if they satisfy
the following condition:

p(0) =
m∑

i=1

aip(ti), (∀p ∈ πs−1(R)). (5)

We note that there exist admissible coefficients when m ≥ s. For example, if t1, t2, . . . , ts are s

different non-zero points in R, we could find the appropriate coefficients ai by using the Lagrange
interpolation formula with ti as nodes. Another simple way to obtain admissible coefficients is to
use the ‘forward difference functional’. See [4] for more details.

Now let us turn to the construction of the kernel. We use the linear combination of the scales
instead of the gridded shifts of the function �, which is used in [20], to construct the new kernel.
This technique is first proposed in [4]. The new kernel has the following property.

Lemma 3.5 Let �(x) ∈ L1(Rd) and
∫

Rd �(x)dx = 1, and assume that for some positive integer
s, � · Vα ∈ L1(Rd) when |α| ≤ s. The new kernel is constructed as follows:

�(x) =
m∑

i=1

ai�

(
x

ti

)
t−d
i , (x ∈ R

d), (6)

where {ai, ti : ti �= 0} are admissible. Then � ∗ Vα = Vα for |α| < s, and � ∗ Vα − Vα is a
constant function for |α| = s.

Proof If |α| < s,

(� ∗ Vα)(x) =
m∑

i=1

ai

∫
�

(
y

ti

)
Vα(x − y)t−d

i dy =
∫

�(y)

m∑
i=1

aiVα(x − tiy) dy

=
∫

�(y)Vα(x) dy = Vα(x).

If |α| = s, then we use the binomial theorem to write

(� ∗ Vα)(x) =
∫

�(y)

m∑
i=1

∑
β≤α

ai t
|β|
i Vβ(−y)Vα−β(x) dy

=
∫

�(y)
∑
β≤α

AβVβ(−y)Vα−β(x) dy,

where we have put Aβ �
∑m

i=1 ait
|β|
i . By Equation (5), Aβ = 1 if β = 0 and Aβ = 0 if 0 < |β| < s.

Hence, only the terms corresponding to β = 0 and β = α remain in the sum above, and we have

(� ∗ Vα)(x) =
∫

�(y)[Vα(x) + AαVα(−y)]dy

= Vα(x) + Aα

∫
�(y)Vα(−y) dy. �

We notice that the key point of the construction is to find the admissible coefficients. As
discussed above, it can be obtained by solving a linear system of equation only of order n to
obtain the kernel, whereas in [20], the construction needs nd equations . Moreover, we keep the
radial property of the kernel; that is, if � is a radial function, the new kernel � is a radial function
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International Journal of Computer Mathematics 589

too. Furthermore, the construction in [20] depends on the dimension d; however our construction
is dimension independent.

The given kernel �(x) ∈ L1(Rd) can be normalized by multiplying a constant factor c,
where c−1 = ∫

�(x)dx. The normalized kernel satisfies
∫

�(x)dx = 1. We also denote it by
�. Lemma 3.5 states that if the coefficients {ai, ti} are admissible, the new kernel � constructed
by Equation (6) satisfies condition (b) in Theorem 3.3. After all, we obtain the main results of
the paper.

Theorem 3.6 Let � ∈ Cu(Rd) satisfy the following conditions:
(a)

∫
Rd �(x)dx �= 0,

(b) |�| < o(1 + |x|)−s−d as x → ∞.

Assume that {�j } are weights of a quadrature scheme that possesses an approximation order v

as above, where u ≥ v. Then for every f ∈ Ws
p(Rd) (s ≥ v), we can assign q = v/(s + v) to

construct a quasi-interpolation with the error bound
∥∥∥∥
∑

f (xj )�

(
x − xj

hq

)
�j

hqd
− f (x)

∥∥∥∥
p

≤ O(hsv/(s+v)),

where � is constructed by Equation (6).

Proof Based on assumption (a), assume that
∫

�(x) dx = 1. Otherwise, it can be normalized
by multiplying a constant factor c, where c−1 = ∫

�(x)dx. Assumption (b) implies that for all
|α| ≤ s, � · Vα ∈ L1(Rd) . By Lemma 3.5, we can construct a new kind of kernel � as Equation (6)
through admissible coefficients {ai, ti}, and the new kernel possesses the polynomial reproduc-
ing property under convolution operators. Therefore, Theorem 3.6 is the direct consequence of
Theorem 3.3. �

Remark 2 Recalling Theorem 3 of [20], the conditions for the kernel and approximated functions
are related with their Fourier transform. But in Theorem 3.6, the conditions have nothing to do with
the Fourier transform and can be easily verified. Moreover, the approximation order is increased
from sv/(2s + v) to sv/(s + v). The new kind of kernel � is much simpler and much stronger
in approximation.
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