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Multivalley spin relaxation in n-type bulk GaAs in the presence of high electric field is investigated from the
microscopic kinetic spin Bloch equation approach with the � and L valleys included. We show that the spin
relaxation time decreases monotonically with the electric field, which differs from the two-dimensional case and
is recognized due to to the cubic form of the Dresselhaus spin-orbit coupling of the � valley in bulk. In addition
to the direct modulation of the spin relaxation time, the electric field also strongly influences the density and
temperature dependences of the spin relaxation. In contrast to the monotonic decrease with increasing lattice
temperature in the field-free condition, the spin relaxation time is shown to decrease more slowly under the
influence of the electric field and even to increase monotonically in the case with small electron density and high
electric field. We even predict a peak in weakly doped samples under moderate electric field due to the anomalous
lattice-temperature dependence of the hot-electron temperature. As for the L valleys, we show that instead of
playing the role of a “drain”of the total spin polarization as in quantum-well systems, in bulk they serve as a
“momentum damping area” that prevents electrons from drifting to higher momentum states in the � valley. This
tends to suppress the inhomogeneous broadening and hence leads to an increase of the spin relaxation time.
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I. INTRODUCTION

Semiconductor spintronics, which aims at incorporating
the spin degree of freedom in electronics, has attracted much
attention in the past decades.1–8 One of the main challenges
in realizing spintronic devices lies in the control of spin
lifetime. Many investigations have been devoted to bulk
III-V semiconductors.9–30 Various factors on spin relaxation,
such as carrier and impurity densities,9–20 temperature,18–25

mobility,23 initial spin polarization,20 and electric20,28 and
magnetic fields,10–12,17,24 etc., have been extensively studied.
Remarkably, a spin relaxation time (SRT) as long as 130 ns is
observed in n-type GaAs (Refs. 10 and 11), and an SRT varying
by more than three orders of magnitude with temperature or
density is reported.10 Very recently, Jiang and Wu performed
a systematic investigation on the electron spin relaxation in
bulk III-V semiconductors in a metallic regime from the fully
microscopic kinetic spin Bloch equation (KSBE) approach.20

The D’yakonov-Perel’ (DP) mechanism31 is demonstrated
to be dominant in n-type III-V semiconductors, even in
narrowband ones, and many features are reported that are
in contrast to the previous understandings in the literature.20

Some of their predictions were soon realized in the subsequent
experimental investigations.12–16,24–27 Moreover, the very
recent works29,30 on spin relaxation near the metal-to-insulator
transition have extended the investigation in that regime that
took place back in 2002.11

It is noted that the works discussed above are mainly
concerned with electron spin relaxation in the absence of
or with relatively low electric fields. In Ref. 20, an electric
field applied up to 2 kV/cm is also considered, and the
SRT is found to be effectively manipulated, especially for
the low-temperature case, where the SRT is suppressed down
to 1/10 of its original value with a small electric field up
to 0.05 kV/cm. A clear hot-electron effect is shown and the
different field dependence of the SRT compared to that in
quantum wells is addressed. Nevertheless, since most current

electronic devices are performed under high-field conditions,
new features of the SRT are expected when electrons are drifted
to high valleys.32 The different spin-orbit couplings (SOCs),
momentum relaxations, and effective masses in different
valleys should have pronounced effects on spin dynamics.
In fact, investigations on how the spin relaxation is affected
by high electric field have been carried out in quantum-
well systems. The hot-electron effect33 and the multisubband
effect34 on spin dephasing in n-type GaAs quantum wells
have been studied. Different field dependences of SRT are
observed for different temperatures, well widths, and initial
spin polarizations. Moreover, the multivalley spin relaxation
under high in-plane electric fields has been investigated in
n-type GaAs quantum wells by taking into account the � and L

valleys.35 It is predicted that although the SOC in the L valleys
is much larger than that of the � valley,36 the spin polarization
in the L valleys shares the same damping rate as that in the �

valley. The L valleys are pointed out to play the role of a “drain”
of the total spin polarization due to the large SOC therein. A
nonmonotonic dependence of the SRT on electric field has
been reported, while the spin Gunn effect,37 the spontaneous
spin-polarization generation in the high-electric-field charge
Gunn region, is is shown to be barely realized in GaAs quantum
wells. Despite these works in two-dimensional structures, a
detailed fully microscopic study in a bulk system under high
electric field has yet to be performed. How the temperature and
electron density dependences of the SRT are affected by the
high electric field is still unclear, and the feasibility of the spin
Gunn effect predicted in bulk37 needs to be checked. Because
of the cubic form of the Dresselhaus SOC in the � valley as
well as the absence of quantum confinement in bulk, different
behaviors in spin relaxation are expected.

In this work, we apply the KSBEs to investigate the electron
spin relaxation in n-type bulk GaAs in the presence of high
electric fields with the � and L valleys included. The electric
field dependence of the SRT is calculated and found to be
monotonic, in contrast with the results in quantum wells.35 We
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attribute this to the strong enhancement of inhomogeneous
broadening7,38,39 resulting from the cubic form of the �-
valley Dresselhaus SOC in bulk. The electric field is also
shown to effectively change the density and the temperature
dependences of the SRT. Remarkably, a peak is predicted in the
temperature dependence of the SRT for relatively low electron
density under a moderate electric field. The underlying physics
is analyzed. As for the L valleys, we show that, in contrast to
the two-dimensional system where the L valleys play the role
of a “drain” of the total spin polarization, unexpectedly in bulk
their effect on the total spin dynamics is weak and the total spin
relaxation is mainly determined by the � valley. It is shown that
even with much larger SOC in the L valleys, the inclusion of
the L valleys results in a longer rather than a shorter SRT. We
find that the L valleys serve as a “momentum damping area”
where electrons are blocked from further drifting to higher
momentum states of the � valley if they stay therein. This
tends to suppress the inhomogeneous broadening and hence
leads to the increase of the SRT.

This paper is organized as follows. In Sec. II, we set
up our model and construct the KSBEs. In Sec. III, we lay
out our main numerical results. The effects of electric fields,
together with the carrier density, temperature, and intervalley
scattering (note that in this paper, with the term “intervalley
scattering,” we always indicate the �-L intervalley scattering
unless otherwise specified) on the SRT, are discussed. We
summarize in Sec. IV.

II. MODEL AND KSBEs

We start our investigation in n-type bulk GaAs where the
four L valleys are located at L points [K0

Li
= π

a0
(1,±1,±1),

with a0 denoting the lattice constant and i = 1–4] and lie ener-
getically E�L = 0.296 eV above the � valley.40 It is noted that
the four L valleys can be arbitrarily chosen from the eight L

points limited by the condition that there is no center inversion
symmetry between any two of them. In the spherically
symmetric approximation, the electron effective masses of
the � and L valleys are represented as m� = 0.067m0 and
mL = 0.23m0,41,42 respectively, with m0 representing the free
electron mass. We do not consider valleys of higher energy,
e.g., the next-nearest valleys X, which are ELX = 0.166 eV
above the L valleys, since even for the highest electric field
(E = 8 kV/cm) employed in this work, the fractions of
electrons in these valleys are negligible.32

The KSBE derived from the nonequilibrium Green function
method reads7,35,38,39

∂tρλkλ
= ∂tρλkλ

|coh + ∂tρλkλ
|drift + ∂tρλkλ

|scat, (1)

in which ρλkλ
is the density matrix of electrons with momentum

kλ in the λ (λ = � or L) valley. Note that kλ is defined in
reference to the valley center in each valley. The diagonal term
ρλkλ,σσ ≡ fλkλ,σ (σ = ±1/2) describes the distribution of each
spin band, and the off-diagonal term ρλkλ,

1
2 − 1

2
= ρ∗

λkλ,− 1
2

1
2

is

the correlation between the two spin bands. The coherent term
is given by

∂tρλkλ
|coh = −i

[
�λ(kλ) · σ + �λ

HF(kλ),ρλkλ

]
, (2)

where [ , ] is the commutator and �λ(kλ) represents the
Dresselhaus SOC in the λ valley.43 By setting the [100] and

[010] directions as x and y axes, respectively, ��(k�) takes
the form43,44

��(k�)

= γD

[
k�x

(
k2
�y − k2

�z

)
,k�y

(
k2
�z − k2

�x

)
,k�z(k

2
�x − k2

�y)
]
.

(3)

By further denoting n̂1/3 = (1,1,±1)/
√

3 and n̂2/4 =
−(1,±1,1)/

√
3, which are the unit vectors of the longitudinal

principal axis of the Li valleys, we have for the L valleys35,43,44

�Li
(kLi

) = βD

(
kLix

,kLiy,kLiz

) × n̂i . (4)

�λ
HF(kλ) = −∑

k′
λ
Vλλ,kλ−k′

λ
ρλk′

λ
in Eq. (2) is the Coulomb

Hartree-Fock term, with Vλλ,kλ−k′
λ

representing the intravalley
Coulomb scattering matrix element. The drift term takes the
form ∂tρλkλ

|drift = eE · ∇kλ
ρλkλ

(e > 0). ∂tρλkλ
|scat stands for

the scattering terms, which include intra- and intervalley parts
with the explicit expressions given in Appendix A.

III. NUMERICAL RESULTS

In this section, we present our results obtained by numer-
ically solving the KSBEs following the scheme laid out in
Refs. 20 and 35. All parameters used in our computation are
listed in Table I.

The initial spin-polarized state of the system is prepared in
a similar way to that in Ref. 35, starting from the unpolarized
equilibrium state. That state is first driven to the drifted
steady state under the electric field. The main difference lies
in the fact that after driving the system to the steady state,
we turn on a circularly polarized laser pulse at t1 = 6 ps to
excite spin-polarized electrons with a degree of injected spin
polarization Pinject = 50% into the � valley:1,45 δf�k�,σ =
ασ exp[−(ε�

k�
− εpump)2/2δ2

ε ][1 − f�k�,σ (t1)]. Here ασ =
npump,σ /{∑k�

exp[−(ε�
k�

− εpump)2/2δ2
ε ][1 − f�k�,σ (t1)]}.

εpump is the energy of pulse center in reference to the band
minimum and δε = h̄/δτ , with δτ denoting the pulse width.
npump,σ is the density of electrons with spin σ after excitation
with npump, 1

2
= 3npump,− 1

2
. In this work, we employ εpump = 4

meV for the case of resonant excitation, δτ = 0.01 ps, and
npump = npump, 1

2
+ npump,− 1

2
= 0.02 × ne. Here ne stands for

the unpolarized electron density before pumping, which is
equal to the doping density, so the total spin polarization
after the pump pulse is P0 ≈ 1%. The spin polarization is
defined as Pλ = (Nλ, 1

2
− Nλ,− 1

2
)/(Nλ, 1

2
+ Nλ,− 1

2
), with Nλ,σ

TABLE I. Material parameters used in the calculation (from
Refs. 35 and 40, unless otherwise specified).

E�
g (eV) 1.519 ��� (meV) 35.4

EL
g (eV) 1.815 �LiLi

(meV) 34.3

EX
g (eV) 1.981 ��L (meV) 20.8

m∗
�/m0 0.067 �LiLj

(meV) 29.0
m∗

L/m0 0.23 DLiLi
(109 eV/cm) 0.3

κ0 12.9 D�L (109 eV/cm) 1.1
κ∞ 10.8 DLiLj

(109 eV/cm) 1.0
γD (eV Å3) 23.9a d (103 kg/m3) 5.36
βD (eV Å) 0.26

aReference 36.
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FIG. 1. (Color online) Typical evolution of the electron spin
polarization and population in the λ valley in the condition with
ne = 1016 cm−3, E = 6 kV/cm, and T = 300 K.

denoting the electron density with spin σ in the λ valley or in
both the � and L valleys (i.e., Ntot = N� + NL). It is noted
that due to the strong electron-electron Coulomb scattering,
the drifted steady-state distribution is established in the time
scale of 0.1 ps after the pump pulse. Therefore, the pulse
characters, i.e., εpump and δτ , have little influence on the SRT.
It is further noted that due to the small initial spin polarization,
the exact value of the polarization has a marginal effect on the
SRT.20

In Fig. 1, we plot the typical time evolution of the spin
polarization and also the electron population in the λ valley
in the condition with electric field E = 6 kV/cm, electron
density ne = 1016 cm−3, and temperature T = 300 K. Clear
transfer of electrons from the � valley to the L valleys is
observed. In order to quantitatively understand the influence
of the L valleys, we calculate the steady-state drift velocities
of λ-valley electrons, the mobilities, the electron populations,
and the hot-electron temperatures in the � and L valleys as
a function of electric field. The explicit results are plotted
in Appendix B with the underlying physics analyzed. From
Fig. 6(a) of Appendix B, one finds that our model is validated
against the experimental data.32

In the following, we focus on how the SRT is influenced by
the electric field, carrier density, and lattice temperature. The
effect of the L valleys is also studied. The SRT τ is obtained
by fitting the temporal evolution of spin polarization Pλ with
an exponential decay (see the inset of Fig. 1). Throughout this
work, the electric field is applied in the x direction and its
strength is limited up to 8 kV/cm, where the X valleys can be
neglected.32

A. Electric-field dependence and effect of L valleys

We first study the electric-field dependence of the SRT
at T = 300 K. In Fig. 2, we plot the SRTs against electric
field for electron densities ne = 1016, 1017, and 1018 cm−3,
corresponding to the nondegenerate, intermediate, and degen-
erate regimes in the field-free condition, respectively. It is
seen that the SRT is effectively modulated by the electric
field. For all three cases, the SRTs decrease monotonically
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FIG. 2. (Color online) SRT τ versus electric field E at temper-
ature T = 300 K for three electron densities: ne = 1016, 1017, and
1018 cm−3.

with the electric field and reach down to the ones with one
order of magnitude smaller than the corresponding field-free
values at E = 8 kV/cm. This is different from the previous
work in n-type GaAs quantum wells, where a nonmonotonic
electric-field dependence is observed,33–35 but it is consistent
with the very recent work in bulk GaAs by Jiang and Wu, where
the electric field is applied up to 2 kV/cm.20 In the regime
with E < 2 kV/cm, according to Fig. 6(c) in Appendix B,
the L valleys are still irrelevant. Therefore, the underlying
physics of the monotonic decrease of the SRT is the same
as that analyzed in Ref. 20: Due to the cubic form of the
Dresselhaus SOC in bulk, the enhancement of inhomogeneous
broadening from the drift effect and the hot-electron effect
[see Fig. 6(d) in Appendix B, where the two–hot-electron-
temperature behavior of �-valley electrons is discussed] is
more pronounced than that in quantum wells with a small
well width where the SOC is in linear form.33–35 Therefore, it
overtakes the enhancement of momentum scattering and leads
to the monotonic field dependence of the SRT. However, when
the electric field is increased over 2 kV/cm, a visible amount
of electrons are drifted into the L valleys [see Fig. 6(c) in
Appendix B] and hence the L valleys are expected to play a
role in the total spin relaxation.

An important feature of the multivalley spin relaxation,
which can be noticed in the inset of Fig. 1, is that the evolutions
of spin polarizations in the � and L valleys share the same
damping rate. This can be understood with respect to the rapid
exchange of electrons between the � and L valleys resulting
from the strong intervalley scattering. As shown in Fig. 3(a),
by artificially removing the intervalley scattering H�L in the
calculation, the spin polarizations in separate valleys now
evolve independently and one finds that the “intrinsic” SRT in
the L valleys (curves with �) becomes one order of magnitude
smaller than that of the � valley (curve with �). This demon-
strates the crucial role of the intervalley scattering in obtaining
the identical damping of spin polarizations in the � and L

valleys. To be more specific, we also calculate the SRT in each
valley by removing only the intervalley electron-phonon or
electron-electron Coulomb scattering. It is seen from Fig. 3(a)
that the SRTs in the � and L valleys without the intervalley
electron-electron Coulomb scattering coincide, whereas those
without the intervalley electron-phonon scattering are far away
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FIG. 3. (Color online) (a), (b), (d), and (e) In bulk with electron density ne = 1018 cm−3: (a) SRTs τ of the � and L valleys as a function of
electric field E by only removing the intervalley scattering HL� (curves with � and �), the intervalley electron-phonon scattering H

ep
L� (curves

with 	 and •), or the intervalley electron-electron Coulomb scattering H ee
L� (curves with � and ×). (b) SRT τ versus electric field E in the

genuine condition [case (i), curve with �], by setting the SOC in the L valleys to zero [case (iii), curve with 	] and without the L valleys [case
(ii), curve with •]. (d) and (e) Mobility μ and hot-electron temperature T� versus electric field with [case (i), curve with �] and without [case
(ii), curve with •] the L valleys. For (c) in a quantum well (QW) with well width a = 6 nm and ne = 6 × 1011 cm−2, SRT τ versus electric
field E in the genuine condition [case (i), curve with �], and by setting the SOC in the L valleys to zero [case (iii), curve with 	]. T = 300 K
in all the situations.

from each other. This demonstrates that the identical damping
of spin polarizations in the � and L valleys comes from the
intervalley electron-phonon scattering. It is noted that the fast
“intrinsic” spin relaxation in the L valleys hints that they may
serve as a “drain” of the total spin polarization, just as the case
in quantum wells.35

To further elucidate the role of the L valleys in the bulk
system, we calculate the SRTs by artificially removing the L

valleys [labeled as case (ii)] and by setting the SOC in the
L valleys to zero [labeled as case (iii)] in the computation.
The calculated SRTs are compared to those obtained in the
genuine condition [labeled as case (i)]. In Fig. 3(b), we plot
the SRTs as a function of electric field for cases (i)–(iii)
with ne = 1018 cm−3 and T = 300 K. One observes that for
E < 2 kV/cm, the effect of the L valleys is marginal due to
little electrons drifted into the L valleys under weak electric
field. When the electric field further increases, the L valleys
start to play an important role and obvious distinctions are seen
for the three cases. We first compare the genuine SRT with the
one without the L valleys. As shown in Fig. 3(b), by removing
the L valleys in the calculation, surprisingly the SRT (curve
with •) becomes smaller instead of larger than its genuine

value (curve with �). For E = 7 kV/cm, the SRT without
the L valleys reaches down to half of the genuine value. In
order to understand this behavior, we calculate the mobility
and the hot-electron temperature T� , which serve as scales of
the drift and hot-electron effect, respectively. From Figs. 3(d)
and 3(e), pronounced distinctions are seen for E > 4 kV/cm.
In the case without the L valleys, the mobility increases rather
than decreases with the electric field and reaches more than
twice its genuine value at E = 7 kV/cm. Meanwhile, the
hot-electron temperature T� reaches almost twice its genuine
value. Consequently, both the drift and hot-electron effects
are markedly enhanced without the L valleys, which in turn
leads to a drastic increase of the inhomogeneous broadening
due to the cubic form of the �-valley Dresselhaus SOC in
bulk. It overtakes the effect of the absence of the L valleys
and leads to the smaller SRT compared to the case with the L

valleys. This tells us that the L valleys serve as a “momentum
damping area” where electrons from the � valley are blocked
from further drifting to higher momentum states of that valley.
Moreover, it is more difficult for the transferred electrons in
the L valleys to drift to higher momentum states, thanks to the
large effective mass in the L valleys.46
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We then focus on the curves corresponding to cases (i)
(curve with �) and (iii) (curve with 	). The SRT calculated
by setting the SOC in the L valleys to zero becomes a little
larger and reaches less than 3/2 of the corresponding genuine
value at E = 7 kV/cm, indicating that the spin relaxation in
the L valleys only slightly modulates the total spin relaxation.
This is very different from the quantum-well system. As a
comparison, in Fig. 3(c) we plot the SRTs against electric field
in a quantum well in cases (i) and (iii).35,47 The well width is
chosen as 6 nm and the two-dimensional electron density is
ne = 6 × 1011 cm−2. It is seen that the behavior of the field
dependence of the SRT is totally changed in the absence of
the SOC in the L valleys. Instead of decreasing rapidly after a
small increase, the SRT with �L = 0 increases monotonically
and reaches more than ten times the corresponding genuine
value at E = 7 kV/cm.

The underlying physics is understood as follows: in bulk,
due to the cubic form of the Dresselhaus SOC in the � valley,
the field-induced drift effect and the hot-electron effect lead
to a stronger enhancement of the inhomogeneous broadening
compared to the increase of momentum scattering. Moreover,
a simple calculation shows that, although on average the inho-
mogeneous broadening in the � valley is much smaller than
that in the L valleys, in the energy range of the � valley overlap-
ping with the L valleys (which is roughly where the exchange
of electrons between the � and L valleys happens), the effec-
tive magnetic field from the Dresselhaus SOC is already com-
parable with that in the L valleys. However, in quantum wells
with a small well width, the enhancement of scattering is more
effective than that of the inhomogeneous broadening thanks to
the linear form of the Dresselhaus SOC.35 In addition, the ef-
fective magnetic field in the energy range of the � valley over-
lapping with the L valleys is still much smaller than that in the
L valleys. In addition, it is further noted that electrons are more
liable to drift into the L valleys in quantum wells. In Fig. 3(c),
nL/ne reaches 45% at E = 7 kV/cm compared to 25% in bulk,
which further enhances the effect of the L valleys in quantum
wells. Nevertheless, in Fig. 3(c), the electric field correspond-
ing to nL/ne = 0.25 is E = 5 kV/cm, at which the SRT
without the SOC in the L valleys is still about five times larger
than the corresponding genuine value. All these lead to the pro-
nounced difference between two- and three-dimensional sys-
tems. It also tells us that the L valleys no longer serve as a “spin
drain” in bulk, differing from the case of quantum wells.35

B. Density dependence

Another interesting feature seen in Fig. 2 is that the τ -E
curve corresponding to the electron density ne = 1018 cm−3

intersects with the other two, indicating that the density
dependence of the SRT changes with the variation of electric
field. In order to elucidate this behavior, we calculate the
SRT by varying the electron density ne from 2 × 1015 to
1018 cm−3 with electric field E = 0, 4, and 6 kV/cm. Note
that in bulk, the impurity density ni is always taken as
ne in this paper. From Fig. 4, one observes that for E =
0 kV/cm, there is a peak at around ne = 2.0 × 1017 cm−3.
This peak in the density dependence of the SRT has been
theoretically predicted20 and experimentally confirmed13–15,48

very recently, and is attributed to the crossover from the
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nondegenerate to degenerate limit when the electron-impurity
and electron-electron Coulomb scatterings are the dominant
scattering processes.20 The crossover between degenerate
and nondegenerate limits can be estimated by the Fermi
temperature TF [=(3π2ne)2/3/(2m)], with the peak determined
by TF ∼ 1

2T − T .13–15,20,49–51 Here the Fermi temperature
corresponding to the electron density at the peak is TF ≈
207 K, comparable to the lattice temperature T = 300 K
(TF /T ∼ 2/3), in agreement with the previous works.

By applying an electric field E = 4 kV/cm, one observes
from Fig. 4 that the peak moves to around ne = 5 × 1017 cm−3,
and when the electric field is further increased to E =
6 kV/cm, the peak is shifted to even higher electron density
(at around ne = 9 × 1017 cm−3, hence it is not very obvious
in the figure). We point out that this is due to the increase of
hot-electron temperature induced by the strengthened electric
field. As pointed out by Shen,14 because of the laser-induced
hot-electron effect, the peak of density dependence of the SRT
appears at where the hot-electron temperature Te, rather than
the lattice temperature T , approximately equals the Fermi
temperature TF . The underlying physics is similar here but
with the electric-field-induced hot-electron effect. However,
as shown in Fig. 6 in Appendix B, the L valleys start to
play a role with high electric field and, moreover, the two–
hot-electron-temperature behavior of the �-valley electrons is
seen. This makes the situation more complex. Nevertheless,
since the total SRT is only slightly modulated by setting the
SOC in the L valleys to zero [see Fig. 3(b)], and also by
comparing the curves of “intrinsic” SRTs of the � and L valleys
in Fig. 3(a) with the corresponding genuine one in Fig. 3(b),
one notices that the curve of the “intrinsic” SRT in the � valley
resembles the genuine one while that of the “intrinsic” SRT
in the L valleys is far away from it. This indicates that the
the multivalley spin relaxation in the presence of high electric
field is mainly determined by the � valley. The underlying
physics is because most spin-polarized electrons stay in the �

valley. (As illustrated in Fig. 1, although up to around 20%
of the electrons are drifted to the L valleys, the polarized
ones there are two orders of magnitude smaller than those
in the � valley.) Furthermore, since most electrons stay in
the � valley for electric field up to 6 kV/cm [see Fig. 6(c)
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FIG. 5. (Color online) SRT τ versus lattice temperature T with (a) E = 0 kV/cm, (b) E = 4 kV/cm, and (c) E = 6 kV/cm. Hot-electron
temperatures T� and TL versus lattice temperature T with (d) E = 4 kV/cm and (e) E = 6 kV/cm. The electron densities are ne = 1016, 1017,
and 1018 cm−3 in these figures.

in Appendix B] and these electrons mostly distribute in the
lower-energy regime compared to the high-energy regime
overlapping the L valleys, the behavior of the SRT is mainly
determined by this part of the electrons. In the approximation
that all electrons are in the � valley, for E = 4 kV/cm, we have
TF ≈ 381 K according to the electron density at the peak,
comparable to the corresponding hot-electron temperature
Te ≈ 659 K (TF /Te ∼ 3/5). Meanwhile for E = 6 kV/cm,
we have TF ≈ 563 K compared to Te ≈ 981 K at the peak
(TF /Te ∼ 3/5). We note that this effect of electric field on
the density dependence of the SRT can be observed with the
current optical orientation technology.

C. Temperature dependence

We now turn to investigate the temperature dependence of
the SRT. In Fig. 5, the SRTs obtained are plotted as a function
of lattice temperature with electric field E = 0, 4, and 6 kV/cm
and for three electron densities as in Sec. III A. In the field-free
case, it has been formerly shown both experimentally10,18,19,52

and theoretically20,53 that in n-type samples with low mobility,
the SRT decreases monotonically with temperature. From
Fig. 5(a), it is seen that our result coincides with the previous
ones. However, very different behaviors are seen under high
electric fields. Apart from the overall suppressed values of the
SRT compared to the field-free condition, it is found that for
electron density ne = 1018 cm−3, the decreasing rate becomes
smaller for higher electric fields, whereas for ne = 1017 cm−3,
the SRT turns out to increase with increasing temperature

under electric field E = 6 kV/cm. The most interesting
phenomenon is seen for the case with ne = 1016 cm−3.
From Figs. 5(a)–5(c), one observes that the SRT decreases
monotonically with increasing lattice temperature T in the
absence of the electric field but increases monotonically with
it when electric field E = 6 kV/cm is applied. In between, for
the case with E = 4 kV/cm, the SRT first increases and then
decreases with increasing temperature T , with a peak at around
T = 350 K. This peak in the temperature dependence of the
SRT is very different from the one theoretically predicted by
Zhou et al.53 and experimentally realized by Leyland et al.,54

Ruan et al.,55 and Han et al.48 for high-mobility samples in
the field-free condition. There, the peak is solely caused by
the electron-electron Coulomb scattering38,48,53–59 and appears
in the crossover between the degenerate and nondegenerate
limits where the Fermi temperature TF is comparable to the
lattice temperature.48,53–55 However, in n-type bulk materials,
due to the strong electron-impurity scattering (hence low
mobility), the Coulomb scattering is always less important
and no peak is expected in the temperature dependence of the
SRT.18–20 Moreover, the Fermi temperature corresponding to
ne = 1016 cm−3 is TF ≈ 28 K, which is far below the lattice
temperature, let alone the hot-electron temperature under the
high electric field. This further demonstrates the essential
difference of the peak observed here.

This complex behavior of the SRT can be understood
from the different lattice-temperature dependences of the
hot-electron temperature at the different electron densities
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and electric fields. Corresponding to Figs. 5(b) and 5(c), in
Figs. 5(d) and 5(e) we plot the hot-electron temperatures
against the lattice temperature for E = 4 and 6 kV/cm,
respectively. Note that the same color and type of point are
used for the corresponding electron density. By comparing
the T�-T curves in Fig. 5(b) with the τ -T ones in Fig. 5(d)
and those in Fig. 5(c) with Fig. 5(e), a direct correspondence
of the temperature dependence of the SRT to that of the
hot-electron temperature T� is observed. The order of curves
from top to bottom reverses in the corresponding two figures
as higher hot-electron temperature indicates larger inhomo-
geneous broadening, and hence smaller SRT. Meanwhile, the
decrease (increase) of the hot-electron temperature results in
an increase (decrease) of the SRT in the lattice temperature
dependence. Specifically, the monotonic decrease (increase)
of the SRT with ne = 1018 cm−3 (ne = 1016 cm−3) in Fig. 5(b)
[Fig. 5(c)] corresponds to the monotonic increase (decrease) of
the hot-electron temperature in Fig. 5(d) [Fig. 5(e)]. In particu-
lar, corresponding to the peak in Fig. 5(b) for ne = 1016 cm−3,
there is a valley in the lattice-temperature dependence of the
hot-electron temperature in Fig. 5(d). For the electric field-free
case, the electron temperature equals the lattice temperature,
so the behavior of the SRT in Fig. 5(a) is also in the same trend
as the high-field cases. It is noted that in the discussion above,
we focus on T� instead of TL. This is because, as discussed
in the preceding subsection, the total spin relaxation is mainly
determined by the � valley while most �-valley electrons
stay in the lower-energy regime. Meanwhile, according to the
discussions in Sec. III A, in the variation of the hot-electron
temperature, the variation of inhomogeneous broadening is
more profound than that of the momentum relaxation, thanks to
the cubic k dependence of the �-valley Dresselhaus SOC.43,44

Therefore, the variation of the inhomogeneous broadening
mainly determines the variation of the SRT.

We point out that the different behaviors of hot-electron
temperature with the lattice temperature at different electron
densities and electric fields originate from the temperature
dependence of the energy-gain and -loss rates of the electron
system.60–63 With the increase of lattice temperature, the
mobility is reduced due to the enhancement of scattering,
therefore the energy-gain rate is reduced as well; meanwhile,
the energy-loss rate decreases due to the increase of the phonon
number.60–63 These two effects compete with each other and
lead to the complex behavior of the hot-electron temperature
in different conditions. A more detailed discussion is given in
Appendix C.

IV. SUMMARY

In summary, we have investigated the multivalley spin
relaxation in n-type bulk GaAs in the presence of high electric
field by applying the fully microscopic KSBE approach. The �

and L valleys, which are relevant in determining the properties
of spin dynamics for the high electric field applied in this work,
are taken into account. The effect of the L valleys on spin
relaxation is discussed and is shown to be very different from
the quantum-well system. We find that apart from the effect of
directly manipulating the SRT, the high electric field can also
effectively modulate the density and temperature dependences
of the SRT.

First, the SRT is found to decrease monotonically with the
electric field for electron densities from the nondegenerate
to degenerate limit. This monotonic field dependence of the
SRT is very different from the previous works in n-type GaAs
quantum wells33–35 and is assigned to the pronounced
enhancement of inhomogeneous broadening from the
field-induced drift and hot-electron effects thanks to the cubic
form of the �-valley Dresselhaus SOC in bulk. We show that,
in spite of the very different strength of the SOC in different
valleys, the evolutions of spin polarizations in the � and L

valleys share the same damping rate. This is demonstrated to
come from the strong intervalley electron-phonon scattering,
which leads to a rapid exchange of electrons between the �

and L valleys. It also indicates the feasibility of exploring the
properties of the hot electrons in the L valleys through the
phenomena detected in the � valley. Moreover, differing from
the role of a “spin drain” of the total spin polarization in the
two-dimensional system, we find that in bulk the L valleys
serve as a “momentum damping area” where electrons, which
would otherwise reach higher momentum states of the �

valley if they stay therein, are less drifted in the L valleys
due to the large effective mass. This tends to suppress the
inhomogeneous broadening and in turn leads to a longer rather
than shorter SRT compared to the case without the L valleys.

As for the density dependence of the SRT, the formerly
predicted20 and experimentally observed13,15 density peak in
the field-free condition is recovered and is found to be shifted
to the higher density regime with higher electric field. We
attribute this to the electric-field-induced hot-electron effect.

We also investigate the temperature dependence of the SRT
in conditions with different electron densities and electric
fields. The monotonic decrease of the SRT with increasing
lattice temperature in the field-free condition coincides
with the previous works. Nevertheless, the SRT is found to
decrease more slowly with higher electric field, and even turn
to increase monotonically with increasing lattice temperature
in the condition with low electron density and high electric
field. More interestingly, a peak is predicted in the temperature
dependence with low electron density and moderate electric
field, which is vastly different from the formerly discussed
one in high mobility samples in the field-free condition. We
point out that this peculiar behavior of the SRT originates
from the temperature dependence of the energy-gain and -loss
rates of the electron system.

Finally, we remark on the feasibility of the spin Gunn
effect in n-type bulk GaAs. For the preferred electron density
in Ref. 37 (ne = 1018 cm−3), we note that the SRT is
suppressed down to a value shorter than what is required for
the spontaneous spin amplification to appear under the electric
fields where the charge Gunn effect appears. This fast damping
of spin polarization overtakes the spontaneously generation
process and makes it difficult to realize the spin Gunn effect
in an n-type bulk GaAs system.
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APPENDIX A: SCATTERING TERMS IN KSBES

The scattering term ∂tρλkλ
|scat includes the contribu-

tions from the electron-impurity scattering ∂tρλkλ
|ei, the

electron-phonon scattering ∂tρλkλ
|ep, and the electron-electron

Coulomb scattering ∂tρλkλ
|ee,

∂tρλkλ
|scat = ∂tρλkλ

|ei + ∂tρλkλ
|ep + ∂tρλkλ

|ee, (A1)

where

∂tρλkλ
|ei = −πniZ

2
i

∑
k′

λ

V 2
kλ−k′

λ
δ
(
ελ

k′
λ
− ελ

kλ

)

× (
ρ>

λk′
λ
ρ<

λkλ
− ρ<

λk′
λ
ρ>

λkλ

) + H.c., (A2)

∂tρλkλ
|ep

= −π
∑

λ′,k′
λ′ ,±

∣∣Mλλ′,kλ−k′
λ′

∣∣2
δ
(± �λλ′ + ελ′

k′
λ′ − ελ

kλ

)

× (
N±

λλ′ρ
>
λ′k′

λ′ ρ
<
λkλ

− N∓
λλ′ρ

<
λ′k′

λ′ ρ
>
λkλ

) + H.c., (A3)

∂tρλkλ
|ee

= −π
∑

λ′,k′
λ,k

′′
λ′

δ
(
ελ

k′
λ
− ελ

kλ
+ ελ′

k′′
λ′ − ελ′

k′′
λ′ −kλ+k′

λ

)

× V 2
kλ−k′

λ

[
ρ>

λk′
λ
ρ<

λkλ
Tr

(
ρ<

λ′(k′′
λ′ −kλ+k′

λ)ρ
>
λ′k′′

λ′

)
− ρ<

λk′
λ
ρ>

λkλ
Tr

(
ρ>

λ′(k′′
λ′−kλ+k′

λ)ρ
<
λ′k′′

λ′

)] + H.c. (A4)

In these equations, ρ<
k = ρk and ρ>

k = 1 − ρk. ni is the
impurity density, which equals the electron density in this
paper, and Zi = 1 is the charge number of the impurity. ε�

k�
=

k2
�/(2m∗

�) and ε
Li

kLi
= k2

Li
/(2m∗

L) + ε�L, with ε�L denoting
the energy difference between the � and L points. Nλλ′ =
[e(�λλ′ /T ) − 1]−1 is the Bose distribution of phonons with
frequency �λλ′ . N<

λλ′ = Nλλ′ and N>
λλ′ = 1 + Nλλ′ . Mλλ′,q is

the matrix element of the electron-phonon scattering, with
q standing for the phonon wave vector. Here we take into
account the intra- and intervalley electron–longitudinal-optical
(LO) phonon scattering in and between the � and L val-
leys, respectively.35,41,64–67 For the intravalley electron-phonon

scattering, we have M2
��,q = e2��� (κ−1

∞ −κ−1
0 )

2ε0q2 and M2
LiLi ,q =

D2
LiLi

2d�LiLi

. Also, we have M2
�Li,q = M2

Li�,q = D2
�L

2d��L
for the �-L

intervalley electron-phonon scattering and M2
LiLj ,q = D2

LiLj

2d�LiLj

for the L-L intervalley electron-phonon scattering. Vq is
the screened Coulomb potential under the random-phase
approximation,68

Vq = V
(0)

q

1 − V
(0)

q P (1)(q)
, (A5)

where

P (1)(q) =
∑

λ,kλ,σ

fλ(kλ+q),σ − fλkλ,σ

ελ
kλ+q − ελ

kλ

, (A6)

with V
(0)

q = e2/(ε0κ0q
2) denoting the bare Coulomb potential

and fλk,σ being the electron distribution of the spin-σ band.
It is noted that in Eq. (A4), we include both the intra-
and intervalley electron-electron Coulomb scattering. All
parameters appearing in these equations are listed in Table I.

APPENDIX B: DRIFT VELOCITY, MOBILITY, L-VALLEY
OCCUPATION, AND HOT-ELECTRON TEMPERATURE

UNDER ELECTRIC FIELD

In order to have an overview of the electric properties
influenced by the high electric field, the steady-state drift
velocity vλ of each valley as well as the total drift velocity
are calculated by varying the electric field from 0 to 8 kV/cm.
In Fig. 6(a), we plot the drift velocity vλ as a function of electric
field with ne = 1016 cm−3 and T = 300 K. The negative
differential electric conductance can be seen from the field
dependence of the total drift velocity, and good agreement
is reached with the experimental results.32 We also calculate
the field dependences of the mobility and the high-valley
electron population for three different doping densities. From
Fig. 6(b), one finds that the mobilities first decrease slowly
with the increase of electric field and then more rapidly when
the electric field is increased over E = 4 kV/cm. This can
be understood with the help of Fig. 6(c), where the ratio of
electron densities in the � and L valleys is plotted against the
electric field E. It is seen that the population of electrons in the
L valleys is negligible when E < 2 kV/cm and approaches
10% when E ∼ 4 kV/cm. This contributes to the faster
decrease of mobilities in Fig. 6(b) and leads to the negative
differential electric conductance in Fig. 6(a).

The hot-electron temperature Te is obtained by fitting the
calculated steady-state electron distribution of each valley
with the drifted Fermi distribution f (εkλ,E) = {exp[(εkλ,E −
μλ)/Tλ] + 1}−1. Here εkλ,E = (kλ − k0

λ)2/2m∗
λ is the energy

spectrum shifted by the electric field, where k0
λ is the drift

momentum and μλ is a fitting parameter denoting the chemical
potential in the λ valley. It is found that electrons in the � valley
carry two temperatures, one in the higher-energy regime that
overlaps with the L valleys (labeled as TL) and the other in the
lower-energy regime (labeled as T�). Electrons in the L valleys
share the same temperature as those in the higher-energy
regime of the � valley due to the rapid exchange of electrons
thanks to the strong intervalley scattering. In Fig. 6(d), we
plot T� and TL against the electric field at lattice temperature
T = 300 K. It is seen that electrons in the � valley are easier to
heat due to the smaller effective mass. Moreover, by increasing
the electron density from 1016 to 1018 cm−3, T� is effectively
reduced while TL stays almost unchanged. The underlying
physics is that by increasing the electron density, the electron-
impurity scattering is enhanced. This tends to reduce the drift
velocity in each valley and suppress the ability of electrons
to gain energy from the electric field, and therefore to reduce
the hot-electron temperature.60–63 Since the electron-impurity
scattering is the leading scattering in the � valley,20 whereas
the intervalley electron-phonon scattering is dominant in the
L valleys,69 the drift velocity, and hence also the hot-electron
temperature of the L valleys, is less affected by the electron
density compared to those of the � valley.
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FIG. 6. (Color online) Electric field dependences of (a) drift velocity vλ for electron density ne = 1016 cm−3, (b) mobility μ, (c) ratio of
electron densities in the L and � valleys, and (d) hot-electron temperature for three electron densities ne = 1016, 1017, and 1018 cm−3. The
lattice temperature is T = 300 K and the experimental data are taken from Ref. 32.

APPENDIX C: ENERGY-GAIN AND -LOSS RATES

For a semiconductor system under uniform electric field,
the electrons accelerate before they are scattered and thus gain
energy from the electric field. Meanwhile, due to the electron-
phonon scattering, the electrons transfer energy to the phonon
system. In steady state, the electron energy-gain rate equals
the energy-loss one.60–63

We calculate the energy-gain and -loss rates in n-
type bulk GaAs by including only the � valley. The
energy-gain rate η (in unit volume here and hereafter)
reads62

η = eneμE2 (C1)

and the energy-loss rate ω is given by63

ω = 2
∑
q,χ

�q,χ |M(q,χ )|2�2(q,�q,χ + ω0)

×
[
n

(
�q,χ

T

)
− n

(
�q,χ + ω0

Te

)]
, (C2)

with

�2(q,ω) = 2π
∑

k

[f (εk,Te) − f (εk+q,Te)]

× δ(εk+q − εk + ω). (C3)

In these equations, �q,χ is the phonon energy with momentum
q and mode χ . Note that here we only need to take into account
the intravalley electron–LO-phonon scattering with |M��,q|2
given the Appendix A. ω0 = q · vd , with vd denoting the drift
velocity. n(x) = 1/(ex − 1) stands for the Bose distribution
and f (x,Te) = 1/[e(x−μ)/Te + 1] is the Fermi distribution, with
Te and μ being the electron temperature and the chemical
potential, respectively.

From Eqs. (C1) and (C2), we calculate the energy-gain
and -loss rates in three cases: (i) ne = 1016 cm−3 with
E = 4 kV/cm; (ii) ne = 1018 cm−3 with E = 4 kV/cm;
and (iii) ne = 1016 cm−3 with E = 5 kV/cm. The lattice
temperature is varied in the range T = 200–500 K and the hot-
electron temperature Te in the proper range according to the
electron density and the electric field. The drift velocity used
in the calculation is obtained by solving the KSBEs. In Fig. 7,
we plot ω − η against T and Te for the three cases. The points
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FIG. 7. (Color online) The difference of energy-gain and -loss rates ω − η against the lattice temperature and hot-electron temperature.
(a) ne = 1016 cm−3 and E = 4 kV/cm; (b) ne = 1018 cm−3 and E = 4 kV/cm; (c) ne = 1016 cm−3 and E = 5 kV/cm. The dashed curves
indicate the points where ω = η, hence they are just the plots of Te-T in equilibrium.

where ω − η = 0 are indicated with a dashed curve, which
is exactly the hot-electron temperature Te versus the lattice
temperature T in the steady state. By comparing the dashed
curves in Figs. 7(a) and 7(b) with the corresponding curves
in Fig. 5(d), one notices that qualitatively, good agreement is
reached. We note that for case (iii), due to the large electric
field, this model does not hold so well in describing the genuine
system since the L valleys start to play an important role and
serve as the “momentum damping area” where electrons are
hardly drifted. Therefore, in the simplified model, the drift
effect is overestimated and the intervalley electron-phonon
scatterings, which serve as additional energy-loss channels,
are missing. These lead to the overestimation of Te. However,
the qualitative behavior of hot-electron temperature with the
lattice temperature in the presence of extremely high electric
field is still captured: Te decreases with increasing T .

The different behaviors of Te with T can be understood
as follows. The increase of the lattice temperature induces
two main effects: (1) It reduces the mobility by enhancing the
electron-phonon scattering, which in turn leads to the decrease
of the energy-gain rate [see Eq. (C1)]. This tends to reduce the
hot-electron temperature. (2) It also modulates the relative

importance of phonon-emitting and -absorbing processes in
the electron-phonon scattering and reduces the energy-loss
rate for the electron system (by reducing the temperature
difference between the electron and phonon systems). This
tends to “heat” the electron system. The competition between
these two factors contributes to the complex T dependence
of Te, hence also that of the SRT. In Fig. 7, we have shown
three typical cases investigated. In Fig. 7(c), with high electric
field and low electron density, the hot-electron temperature
Te is high above the lattice temperature T . As a result, the
small increase in T does not affect the energy-loss rate much
but it does enhance the scattering. This results in the leading
role of the reduction of the energy-gain rate, which in turn
leads to the decrease of Te. In Fig. 7(b), where Te is much
closer to T compared to that in Fig. 7(c), by increasing
the lattice temperature, the temperature difference between
the electron and phonon systems is effectively reduced and
hence the “heating” effect is more efficient. This leads to the
increase of the electron temperature. In between, for the case
with relatively low electric field and low electron density, a
nonmonotonic temperature dependence is expected, which is
precisely the case shown in Fig. 7(a).
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