
(This is a sample cover image for this issue. The actual cover is not yet available at this time.)

This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Neural Networks 33 (2012) 216–227

Contents lists available at SciVerse ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

A Competitive Layer Model for Cellular Neural Networks✩

Wei Zhou a,∗, Jacek M. Zurada b

a College of Computer Science and Technology, Southwest University for Nationalities, Chengdu 610041, PR China
b Computational Intelligence Laboratory, Electrical and Computer Engineering Department, University of Louisville, Louisville, KY, 40292, USA

a r t i c l e i n f o

Article history:
Received 7 December 2011
Received in revised form 18 April 2012
Accepted 18 May 2012

Keywords:
Competitive Layer Model
Cellular Neural Networks
Continuous-time recurrent neural
networks

Discrete-time recurrent neural networks

a b s t r a c t

This paper discusses a Competitive Layer Model (CLM) for a class of recurrent Cellular Neural Networks
(CNNs) from continuous-time type to discrete-time type. The objective of the CLM is to partition a set
of input features into salient groups. The complete convergence of such networks in continuous-time
type has been discussed first. We give a necessary condition, and a necessary and sufficient condition,
which allow the CLM performance existence in our networks. We also discuss the properties of such
networks of discrete-time type, and propose a novel CLM iteration method. Such method shows similar
performance and storage allocation but faster convergence compared with the previous CLM iteration
method (Wersing, Steil, & Ritter, 2001a). Especially for a large scale network with many features and
layers, it can significantly reduce the computing time. Examples and simulation results are used to
illustrate the developed theory, the comparison between two CLM iterationmethods, and the application
in image segmentation.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

For human being’s visual perception, perceptual grouping can
be defined as the ability to detect structural layout of visual objects.
This phenomenon was first studied in the 1920s by the Gestalt
school of psychology and one of their important theories is the
Gestalt law (Koffka, 1962). By virtue of some Gestalt laws, such
as proximity, symmetry, and continuity, human can detect groups
in a set of objects. In computer vision, this grouping process can
be considered as a procedure for feature binding, which aims
at binding some related features into common groups, so as to
separate those groups originating from different features (von der
Malsburg, 1981, 1995).

The Competitive Layer Model (CLM) was first proposed to solve
spatial feature binding and sensory segmentation problems by
Ontrup and Ritter (1998) and Ritter (1990). This model is based
on the combination of competitive and cooperative processes in a
recurrent neural network (RNN) architecture, which can partition
a set of input features into salient groups. Due to competitive
interactions among layers, each feature is unambiguously assigned

✩ The research reported here was supported by National Science Foundation of
China under Grant 61105061, the Fundamental Research Funds for the Central
Universities, Southwest University for Nationalities (11NZYTD04), National Science
Foundation of China under Grant 60973070, and the National Research Foundation
for the Doctoral Program of Higher Education of China (20090185120009).
∗ Corresponding author.

E-mail addresses: wei.zhou.swun@gmail.com (W. Zhou),
jmzura02@louisville.edu (J.M. Zurada).

to one layer and feature binding is achieved by a collection of
competitive layers. Wersing et al. (2001a) designed a continuous-
time CLM RNN with linear threshold (LT) neurons for feature
binding and sensory segmentation. S. Weng et al. also proposed
a hybrid learning method based on CLM (Weng, Wersing, Steil, &
Ritter, 2006). In Yi (2010), Zhang Yi proposed to use continuous-
time Lotka–Volterra recurrent neural networks to implement the
CLM, and proved that the set of stable attractors of such networks
equals the set of minimum points of the CLM energy function in
the nonnegative orthant. However,most of them focus on studying
the CLM properties of different networks, or exploring possible
application field, finding a CLM algorithm more efficiently is still
a challenge.

The CLM networks can be considered as a kind of multistable
Winner-Take-All (WTA) networks. A multistable network can
have multiple stable equilibriums, while a mono-stable one has
always only one stable equilibrium. Those traditional WTA neural
networks are almost mono-stable, in which only one neuron
among all neurons can be the final ‘winner’. The multistability
property can provide an interesting way to mediate WTA
competition between groups of neurons, so the finalwinnerwill be
a group of neurons. More discussion about multistability can been
found in Hahnloser (1998), Hahnloser, Sarpeshkar, Mahowald,
Douglas, and Seung (2000), Hahnloser, Sebastian, and Slotine
(2003), Wersing, Beyn, and Ritter (2001b), Xie, Hahnloser, and
Seung (2002), Yi and Tan (2004b), Yi, Tan, and Lee (2003), Zhang,
Yi, and Yu (2008) and Zhang, Yi, Zhang, and Heng (2009).

In previous CLM work on LT RNN (Wersing et al., 2001a), an
asynchronous CLM iteration method was proposed based on the

0893-6080/$ – see front matter© 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neunet.2012.05.005

Author's personal copy

W. Zhou, J.M. Zurada / Neural Networks 33 (2012) 216–227 217

convergence proof in Feng (1997). Because the whole network
updates only one neuron status each time, this assumption
makes iterations time consuming, especially for a large scale
network. Therefore, a synchronous CLM iteration method would
be helpful to solve this problem. In Zhou and Zurada (2010), we
proposed a novel synchronous CLM iteration method, which has
similar performance and storage allocation but faster convergence
compared with the previous asynchronous CLM iteration method.
In this paper, we extend CLM to Cellular Neural Networks (CNNs)
and significantly improve its efficiency.

The CNN model was first proposed by Chua and Yang (1988b).
Since then, CNNs have been widely studied both in theory and
applications (Hänggi, 2000; Slavova, 2003). Some stability analysis
about the standard CNNs can been found in Chua and Yang
(1988a, 1988b), Wu and Chua (1997) and Yi and Tan (2004a).
Because popular nonlinear qualitative analysis methods always
require the activation function to be differentiable, and the CNN
neuron activation function is continuous but non-differentiable,
the qualitative analysis of CNNs turns out to be difficult.

In this paper, we first discuss a class of continuous-time
recurrent CNNs based on CLM (CLM-CNN). We prove that such
networks can be completely stable. According to the qualitative
analysis of our model, we first prove that there is no stable
equilibrium in the interior of the network outputs’ range.
Through discussing the equilibrium existence condition on the
±1 boundaries of the CNN neuron activation function, we present
a necessary condition for producing feature binding phenomena.
Furthermore, by using the subspacemethod noted inWersing et al.
(2001a), we give a sufficient and necessary condition.

We also discuss the properties of discrete-time type networks
and propose a synchronous CLM iteration method based on
previous work in Zhou and Zurada (2010). This discrete-time
CLM-CNN can have the same solution space for steady states
as the continuous-time one under some conditions. Compared
with another asynchronous CLM iteration method in Wersing
et al. (2001a), our method has similar performance and storage
allocation but is less time consuming. Especially for a large scale
network with many features and layers, it can greatly reduce the
computing time.

The rest of this paper is organized as follows: The architecture of
the proposed continuous-time CLM-CNN is described in Section 2.
Preliminaries are given in Section 3. In Section 4, a theoretical
analysis of the network is given, which includes: the complete
stability of the proposed network, a necessary condition and
a sufficient and necessary condition for feature binding. The
discussion about the discrete-time CLM-CNN and the iteration
method can be found in Section 5. Simulations and illustrative
examples are presented in Section 6. Conclusions are given in
Section 7. The details of the theoretical analysis and the iteration
method about discrete-time CLM-CNN can be found in Appendix.

2. CLM for continuous-time Cellular Neural Networks

The CLM consists of a set of l layers of feature-selective neurons,
and each layer contains n neurons (see in Fig. 1). There are two
kinds of interactions in themodel: the verticalWTA interaction and
the lateral interaction. Noted here, xiα is the activity of a neuron at
position i in layer α, and a column i denotes the set of the neuron
activities xiα, α = 1, . . . , l and i = 1, . . . , n, that share a common
position i in each layer. All neurons in a column i are equally driven
by an external input. More details about the CLM architecture can
be found in Wersing et al. (2001a).

In this paper, we first study a class of continuous-time recurrent
Cellular Neural Networks based on CLM, which is described by the

Fig. 1. The CLM architecture.

following equation:

˙xiα(t) = −xiα(t) + σ

h
J

−

l
β=1

xiβ(t)

+
1
J

n
j=1

fijxjα(t) + xiα(t)

, (1)

for t ≥ 0, i = 1, . . . , n, and α = 1, . . . , l. The output function
of CNNs is defined as follows: σ(s) =

|s+1|−|s−1|
2 , s ∈ R, which

is continuous but non-differentiable. In our CLM, the vertical WTA
interaction and the lateral interaction are 1 and fij

J , respectively,
fij = fji, for i, j = 1, . . . , n, and the external input is h

J , which is
used tomake the networks stable. Here, the parameters h and J are
used to adjust network performance.

For any vector x ∈ ℜ
n, we denote

σ(x(t)) = (σ (x1(t)), σ (x2(t)), . . . , σ (xn(t)))T ∈ ℜ
n.

Then the equivalent vector form of network (1) can be defined as

ẋ(t) = −x(t) + σ(Wcx(t) + H + x(t)) (2)

for t ≥ 0, and x(t) is an n × l vector

x(t) = [x11(t), . . . , xn1(t), . . . , x1l(t), . . . , xnl(t)]T ,

Wc = (wij)nl×nl is a real symmetric matrix. Each element wij
denotes the synaptic weights and represents the strength of the
synaptic connection from neuron i to neuron j. H ∈ ℜ

nl denotes
the external input and Hiα = −

h
J for all i, α,

Wc =
1
J
f ⊗ Il − Πl ⊗ In =

1
J
F − P, (3)

where ‘‘⊗’’ is the Kronecker product (Horn & Johnson, 1985), Im is
the m × m identity matrix (here m = nl, n, or l), Πl is an l × l
matrix of 1’s, f = (fij)n×n, F = f ⊗ Il, and P = Πl ⊗ In. Clearly,
for a symmetric f ,Wc is also symmetric. In this paper, Wc + Inl is
supposed to be invertible.

Note that the CLM has two types of connections: the vertical
interaction is 1, and the lateral interactionwithin layers is given by
f
J , which represents the input features for thewhole system. In real
applications, f may be the proximity interaction used for clustering
(Wersing et al., 2001a), or the continuity interaction used for
finding continuous curves (Wersing et al., 2001a). In our examples
for image segmentation, we store the pixel-related information in
f , which is based on gray and position relationships. The purpose of
CLM architecture is to enforce a dynamical assignment of the input
features to the layers by using the contextual information stored in
the lateral interactions f . This assignment can be considered as a
process of feature binding.More details about themodel properties
can be found in Section 4. Some examples for image segmentation
are discussed in Section 6.

Author's personal copy

218 W. Zhou, J.M. Zurada / Neural Networks 33 (2012) 216–227

3. Preliminaries

In this section, we provide preliminaries which will be used in
the following to establish our theories.

Definition 1. A vector x∗
= (x∗

11, . . . , x
∗

nl) ∈ Rnl is called an
equilibrium point (fixed point) of network (1), if it satisfies −x∗

iα +

σ

h
J −

l
β=1 x

∗

iβ +
1
J

n
j=1 fijx

∗

jα + x∗

iα

≡ 0 for all i = 1, . . . , n,

and α = 1, . . . , l.

Definition 2. Let x(t, x0) be a trajectory of (1). An equilibrium
point is said to be stable (in the sense of Lyapunov) if the following
statement is true: if for any ε > 0, there exists a δ > 0 such that
∥x0 − x∗∥ ≤ δ implies that ∥x(t, x0) − x∗∥ ≤ ε for all t ≥ 0.

Definition 3. The network (1) is called completely stable if each
trajectory of (1) converges to an equilibrium point.

Definition 4. A neuron is said to be activated if its output does not
equal −1. A neuron is said to be inactivated if it is not activated.
A column of CLM is said to be activated if there exists at least one
activated neuron in this column.

We also denote that f has eigenvalues λi, 1 ≤ i ≤ n and

η = max
1≤i≤n

n

j=1

|fij|

. (4)

4. Properties of CLM for CNN

4.1. Theory proof

In this section, conditions guaranteeing the complete stability
of the network (1) are presented in Lemma 1. We also present a
necessary condition in Theorem 1 to let our networks have CLM
phenomena. Furthermore, a sufficient and necessary condition for
CLM phenomena is given in Theorem 2.

In order to apply the CLM in the CNN, we first need to force
the network to be completely stable, which means that every
trajectory of the CNN converges to an equilibrium point.

Lemma 1. Suppose matrix f is symmetric, then the network (1) is
completely stable.

Proof. By using the similar method in Yi and Tan (2004a), the
complete convergence can be proved.

This completes the proof. �

After establishing the complete stability, we present below a
necessary condition for letting our network have CLM phenomena.

Theorem 1. Suppose matrix f is symmetric. If the lateral interaction
is self-excitatory, fii > 0 for all i, and if there exist constants J and h
such that

J > 0
−Jl − η < h ≤ −J(l − 2) − η, then a stable equilibrium of CLM

in network (1) has in each column i at most one activated neuron x∗

iα
with

n
j=1 fijx

∗

jα ≥
n

j=1 fijx
∗

jβ .

Proof. We first prove that the dynamics (1) has an energy function
of the form

E(t) = −

n
i=1

l
α=1

h
J
xiα(t) +

1
2

n
i=1

l
α=1

l
β=1

xiβ(t)xiα(t)

−
1
2J

n
i=1

l
α=1

l
j=1

fijxjα(t)xiα(t) (5)

under the constraint |xiα(t)| ≤ 1 for all i, α.

Clearly, the network (1) is bounded. From this it follows that

Ė(t) =

n
i=1

l
α=1

−

h
J

+

l
β=1

xiβ(t) −
1
J

n
j=1

fijxjα(t)

˙xiα(t)

= −

n
i=1

l
α=1

Diα(t),

whereEiα(t) =
h
J

−

l
β=1

xiβ(t) +
1
J

n
j=1

fijxjα(t)

Diα(t) = Eiα(t)[−xiα(t) + σ(Eiα (t) + xiα(t))].

(6)

Three cases will be considered. For Case 1: |Eiα(t) + xiα(t)| ≤ 1,
we have σ(Eiα(t) + xiα(t)) = Eiα(t) + xiα(t), then Diα(t) =

Eiα(t)[−xiα(t) + Eiα(t) + xiα(t)] ≥ 0. For Case 2: Eiα(t) +

xiα(t) ≤ −1 and Case 3: Eiα(t) + xiα(t) ≥ 1, we can also easily
have Diα(t) ≥ 0. Therefore, we have Diα(t) ≥ 0, and Ė(t) =

−
n

i=1
l

α=1 Diα(t) ≤ 0 and for all i, α, t ≥ 0, which means
that E(t) ismonotonously decreasing. Furthermore,wehave Ė(t) =

0 ⇔ Diα(t) = 0 ⇔ ˙xiα(t) = 0.
Now assume the contrary: suppose an equilibrium x∗ has at

least two neurons whose activities are bigger than −1 in a column
i at two layers α and β , which means that x∗

iα > −1, and x∗

iβ > −1.
Then two cases will be considered.
Case 1: −1 < x∗

iα < 1 and −1 < x∗

iβ < 1. Then at the position x∗,
by (5), we have

E(t)|x∗ = −

n
i=1

l
ϕ=1

h
J
x∗

iϕ +
1
2

n
i=1

l
ϕ1=1

l
ϕ2=1

x∗

iϕ1
x∗

iϕ2

−
1
2J

n
i=1

l
ϕ=1

l
j=1

fijx∗

iϕx
∗

jϕ . (7)

Now consider a small perturbation x′
= x∗

+ ε near x∗, and

ε = (ε11, . . . , εn1, . . . , ε1l . . . , εnl) ∈ Rnl,

where εiα = −εiβ ≠ 0 and εjϕ = 0 for all other j, ϕ. By (7), we
have

∆E = E(t)|x′ − E(t)|x∗

= −
h
J
(εiα + εiβ) +

l
ϕ=1

x∗

iϕεiα +

l
ϕ=1

x∗

iϕεiβ

+
1
2
(εiα + εiβ)2 −

1
J

n
j=1

fijx∗

jαεiα

−
1
J

n
j=1

fijx∗

jβεiβ −
fii
2J

((εiα)2 + (εiβ)2)

= −
fii
J
(εiα)2 < 0.

So x∗ can not be a stable equilibrium for the system.
Case 2: Some neurons’ final outputs are equal to 1, and one
neuron’s final output is no more than 1 and bigger than −1.

For simplicity, we just assume x∗

iα = 1 and −1 < x∗

iβ ≤ 1, and
other neurons x∗

iϕ = −1, for ϕ ≠ α, β . Clearly, at x∗

iα = 1, we have
h
J +

1
J

n
j=1 fijx

∗

jα −
l

ϕ=1 x
∗

iϕ ≥ 0. Denote Eiα =
h
J +

1
J

n
j=1 fijx

∗

jα −l
ϕ=1 x

∗

iϕ, and by (4), we have

Eiα <
h
J

+
1
J

n
j=1

fij x∗

jα

− [−(l − 2) + x∗

iα + x∗

iβ]

Author's personal copy

W. Zhou, J.M. Zurada / Neural Networks 33 (2012) 216–227 219

<
h
J

+
η

J
+ (l − 2).

Since h ≤ −J(l − 2) − η, then Eiα < 0. Therefore, x∗ can not be an
equilibrium.

When more than one neuron’s final output is equal to 1, under
the condition h ≤ −J(l− 2) − η, it is also easy to prove that x∗ can
not be a stable equilibrium for the system.

We also notice that if there exists at most one neuron activity
−1 < x∗

iα ≤ 1 and other x∗

iβ = −1 for all β ≠ α, at this moment,
Eiα has

Eiα <
h
J

+
η

J
− [−(l − 1) + x∗

iα] <
h
J

+
η

J
+ l.

If h ≤ −Jl − η, there must be no neuron’s output greater than −1.
Therefore, hmust satisfy that h > −Jl − η.

Furthermore, if there only exist a neuron −1 < x∗

iα ≤ 1 and
x∗

iβ = −1 for all β ≠ α, we have
n

j=1 fijx
∗

jα ≥
n

j=1 fijx
∗

jβ by
comparison between Eiα and Eiβ .

This completes the proof. �

From Theorem 1, we can find that the network (1) has two
operation modes in a column: the first one with an activated
neuron in one column, and the second one with no activated
neuron in one column. Since the condition in Theorem 1 is just
a necessary condition, the outputs of network (1) may be the
second mode for all columns, which is not what we want in real
applications. In the next theorem, new conditions for J and h are
presented to improve the network performance.

Theorem 2. Suppose the network (1) satisfies Theorem 1. If there

exist constants J and h such that

J > max

1
l
max1≤i≤n{λi}, η/2

−Jl < h ≤ −J(l − 2) − η
Jl ≫ λi,

then

a stable equilibrium has at least one activated column.

Proof. In order to prove that the network (1) has at least one
activated column, we just need to prove that x0 = [−1,
−1, . . . ,−1]T ∈ ℜ

nl can not be a stable equilibrium.
We can consider the CLM dynamical system (1) as

˙xiα(t) =

0 for xiα = 1, Eiα(t) > 0
0 for xiα = −1, Eiα(t) 6 0
Eiα(t) for xiα ≠ ±1, |Eiα(t) + xiα| 6 1
1 − xiα for xiα ≠ ±1, Eiα(t) + xiα > 1
−1 − xiα for xiα ≠ ±1, Eiα(t) + xiα < −1

for all i, α, and Eiα(t) is defined in (6).
For the network (1), on the boundary, we have
if xiα = −1, and Eiα(t) > 0 ⇒ ˙xiα(t) > 0
if xiα = −1, and Eiα(t) < 0 ⇒ ˙xiα(t) = 0
if xiα = ±1, and Eiα(t) = 0 ⇒ ˙xiα(t) = 0
if xiα = 1, and Eiα(t) < 0 ⇒ ˙xiα(t) < 0
if xiα = 1, and Eiα(t) > 0 ⇒ ˙xiα(t) = 0.

(8)

And in the interior of Φ = {xiα||xiα| ≤ 1, i = 1, . . . , n, α =

1, . . . , l}, it always holds thatEiα(t) > 0 ⇒ ˙xiα(t) > 0
Eiα(t) = 0 ⇒ ˙xiα(t) = 0
Eiα(t) < 0 ⇒ ˙xiα(t) < 0.

Thus, in the region Φ , we can discuss the dynamics of network
(1) by investigating such linear dynamics

˙xiα(t) = Eiα(t) =
h
J

−

l
β=1

xiβ(t) +
1
J

n
j=1

fijxjα(t), (9)

except for some boundary conditions which are noted in (8).
Furthermore, we can apply the method of eigensubspace analysis
in such linear domain, where the constraints are inactive (Wersing
et al., 2001a).

The equivalent vector form of network (9) is

ẋ(t) = Wcx(t) + H. (10)

From (3), an orthonormal eigenvector basis {V iβ , Λiβ} for Wc can
be obtained from the orthonormal eigenvector bases {bi, λi} and
{qβ , µβ} for f and Πl respectively (Wersing et al., 2001a):

V i1
=

1
√
l

bTi , . . . , b

T
i

T
, Λi1 =

1
J

(λi − Jl)

V iβ≠1
=

 l

α=1

qβ≠1
α

2−
1
2

·

qβ≠1
1 bTi , . . . , q

β≠1
l bTi

T
,

Λiβ≠1 =
1
J
λi.

(11)

If Jl ≫ λi and −Jl < h ≤ −J(l − 1), there is an approximate
equilibrium xF of the linear system (9) in the interior ofΦ (Wersing
et al., 2001a): xF ≈ [

h
Jl ,

h
Jl , . . . ,

h
Jl]

T
∈ ℜ

nl.

If x0 is a stable equilibrium of network (1), there exist a η > 0

and x′
≠ x0, which satisfies

x′

−1 ≤ x′

iα < h
Jl

and ∥x′

− x0∥ < η,

such that

˙xiα(t)|x′ ≤ 0 ⇒ Eiα(t)|x′ ≤ 0

for all i, α.
Now at the same point x′ in the linear system (9), it must hold

˙xiα(t)|x′ ≤ 0 for all i, α, which means ∃△t > 0 and △t → 0, such
that

lim
△t→0

xiα(t + △t) − xiα(t)
△t

x(t)=x′

≤ 0.

Since x′ < xF , at x′, we have x(t +△t)− xF ≤ x(t)− xF < 0, which
means

(x(t + △t) − xF)T (x(t + △t) − xF)

x(t)=x′

≥ (x(t) − xF)T (x(t) − xF)

x(t)=x′

. (12)

By (10), we have ẋ(t) = Wc(x(t) − xF) and

x(t) =

n
i=1

l
α=1

ξiα(t)V iα, (13)

where ξiα(t) is the projection of x(t) on V iα .
According to the subspace method noted in Wersing et al.

(2001a), we can divide the eigenmodes of the linear system into
two subspaces: DC-Subspace and AC-Subspace based on V i1, V iβ≠1

respectively. The projection operators on both subspaces can be
expressed by (11)
PDC

=

n
i=1

Vi1V T
i1 =

1
l
Πl ⊗ In

PAC
=

l
β=2

n
i=1

ViβV T
iβ = Inl −

1
l
Πl ⊗ In.

By simple calculation, we have
PDC (x′

− xF) = x′
− xF

PAC (x′
− xF) = 0.

(14)

Author's personal copy

220 W. Zhou, J.M. Zurada / Neural Networks 33 (2012) 216–227

Therefore, the vector x′
− xF is in the DC-Subspace and has no

components in the AC-Subspace, which means that ξiβ(t)

x(t)=x′

=

0, for i = 1, . . . , n, and β = 2, . . . , n. Then by (13), we have

(x(t) − xF)

x(t)=x′

=

n
i=1

l
α=1

ξiα(t)V iα

=

n
i=1

ξi1(t)V i1, (15)

(x(t + △t) − xF)

x(t)=x′

=

n
i=1

l
α=1

eΛiα△tξiα(t)V iα

=

n
i=1

eΛi1△tξi1(t)V i1. (16)

Since in the DC-Subspace

J > max

1
l
max
1≤i≤n

{λi}, η/2

⇒ Λi1 =
1
J

(λi − Jl) < 0, (17)

by (15)–(17), we have

(x(t + △t) − xF)T (x(t + △t) − xF)

x(t)=x′

< (x(t) − xF)T (x(t) − xF)

x(t)=x′

. (18)

From (12), (18), we find the contradiction that x0 is a stable
equilibrium of network (1).

This completes the proof. �
The condition Jl ≫ λi is important but seems too hard to

evaluate. If J is not large enough, (18) can not be satisfied, then xF
will not locate in (−1, 1) and no activated column can be found.
Here, we approximately solve such problem by increasing J step
by step to make sure that xF is located in (−1, 1), which can
guarantee that at least one activated column exists in the network.
This technical approach is used in our proposed synchronous CLM
iteration method in Section 5.

5. CLM for discrete-time Cellular Neural Networks

5.1. CLM for discrete-time Cellular Neural Networks

There are two main approaches to study the relationship be-
tween the discrete-time system and the continuous-time one. The
first one is to transform the system into a corresponding deter-
ministic continuous-time system, which is based on a fundamen-
tal theorem of stochastic approximation theory (Ljung, 1977). To
use this fundamental theorem of stochastic approximation, some
crucial conditions must be satisfied, just like the roundoff limi-
tation and tracking requirements. Additional important condition
is that the learning rate of algorithms must approach zero. All of
these restrictive conditions may not be satisfied in many theoret-
ical models and practical applications. The second one is to trans-
form the system into a deterministic discrete-time system (Yi, Ye,
Lv, & Tan, 2005). It focuses on the stability analysis of the system
and the qualitative analysis on equilibrium, and it does not require
the learning rate to approach zero.

In this article, we choose the last approach to build our discrete-
time model described by the following equations:

xiα(k + 1) = σ(xiα(k) +
h
JC

−
1
C

l
β=1

xiβ(k)

+
1
JC

n
j=1

fijxjα(k)) (19)

for k ≥ 0, i = 1, . . . , n, and a = 1, . . . , l, whose dynamic
properties are testified in Appendix A.1.

Comparing network (1) with network (19), we added a
parameter C to make the discrete-time system completely stable.
Furthermore, if both networks satisfy Theorems 2 and 5, their
equilibriums are in the same solution space by inspecting positive
or negative signs of h

J −
l

β=1 x
∗

iβ +
1
J

n
j=1 fijx

∗

jα . Therefore, we can
use the discrete-time system instead of the continuous-time one in
real applications.

5.2. Comparison betweenCNN-CLM-Dynamics andCLM-LT-Dynamics
(Wersing et al., 2001a) implementation methods

In Wersing et al. (2001a), an asynchronous CLM-LT-Dynamics
implementation method was proposed based on the convergence
theory in Feng (1997) (CLM-LT method). The brief introduction
about this method can be found in Appendix A.3.

The CLM-CNN-Dynamics implementation in discrete-time type
can be found in Appendix A.2 (CLM-CNN method), which is done
in parallel. Since the CLM-CNN method adopts the similar idea
of implementing CLM in synchronous update compared with our
previous synchronous LTmethod in (Zhou & Zurada, 2010), it is not
difficult to testify that bothmethods have similar performance and
efficiency. Therefore, we only compare the CLM-CNNmethod with
the CLM-LT method.

Although these methods are used in two different neural
networks, CLM-CNN Dynamics is similar to CLM-LT Dynamics by
virtue of linear system analysis (Wersing et al., 2001a). Here, we
compare two methods in three aspects: memory requirement,
performance and iteration speed.

First, we compare the memory requirement. Because the
weight Wd always needs an enormous size of memory, it is
impossible to directly use network (21) for a large-scale network
on a PC. For example, for 10000 features and 10 layers, and
assuming 2 bytes to store one data point, then the storage for
Wd is (10,000 × 10 × 2)2/(1024)3 ≃ 37.25 GB. Our CLM-
CNN method can greatly decrease the storage requirements. For
previous example, we do not need to store Wd but f and Πl (Here
l = 10), which respectively occupy (10,000 ∗ 2)2/(1024)2 ≃

381.47 M and (10 ∗ 2)2/1024 ≃ 0.39 KB, and related memory
occupation is only about 1% of previous storage request (Here
1 GB = 1024 MB = 10242 KB). Both the CLM-LT and CLM-CNN
methods have similar memory requirements.

In order to estimate the performance of two methods, we
use a lateral contribution energy function to provide an indirect
measure, which is described as

ECLM = −

n
i=1

n
j=1

l
α=1

fijz∗

iαz
∗

jα.

For CLM-CNN methods, z∗

iα is defined by z∗

iα =

1, if x∗iα ≠ −1
0, if x∗iα = −1,

where x∗

iα is the stable fixed point of network (19). For CLM-LT

methods, z∗

iα is defined by z∗

iα =

1, if x∗iα ≠ 0
0, if x∗iα = 0,where x∗

iα is the final
LT network output. In brief, for fixed n and l, the lower the energy
value, the better the performance.

Here we want to point out that J is an importance parameter
for both CLM methods. Through simulations, we find that if J is
too small, the iterations will be very fast but the performance will
be very low; while for large J , the iteration speed will decrease
but the performance will increase. Such relationship can also be
observed from their iteration expressions and be obtained from
the dynamic analysis of CLM (Wersing et al., 2001a). However, the
lateral connections provide the contextual information. If J is too
big, the lateral connections may be negligible. Therefore, J should
be chosen carefully.

Author's personal copy

W. Zhou, J.M. Zurada / Neural Networks 33 (2012) 216–227 221

In the CLM-LT method, J is fixed as a constant. In the CLM-
CNNmethod, we adopt a different strategy to balance the iteration
speed and the CLM performance. Here, we first set J to be a small
value, which guarantees fast iteration speed. When the iteration
variety between ziα(k + 1) and ziα(k) decreases to some desirable
value, we increase J step by step to improve performance. When J
seems to be too big, we stop the whole iterations.

With above parallel execution and variable adjustment for
parameter J , our CLM-CNN method greatly improves the CLM
efficiency. From the simulation results, we find that the CLM-
CNN method can run faster than the CLM-LT one and have similar
memory requirement as the CLM-LT one. On the other hand, the
performance differences between both methods are not distinct.

Through simulations, we also find that if we fix J as the same
value for both methods, the CLM-LT method always performs
better than the CLM-CNN one. It seems that the CLM-LT method is
easier than the CLM-CNN one to escape from some local minima.
But even with the same J , the CLM-CNN method is faster than the
CLM-LT method.

A self-inhibitory annealing schedule was used to increase the
system performance for the CLM-LT method. Through simulation,
we find that this annealing schedule is also applicable for our CLM-
CNNmethod. The related simulation results are given in Section 6.

6. Simulation

In this section, we provide examples of simulation results to
illustrate and verify the theory developed. Almost all programs,
which were coded in MATLAB 2008a, were run in a PC with
1 Intel i7 920@2.67 GHz CPU, 6 GB RAM, and Windows Vista
Ultimate Service Pack 1 64-bit operation system. We also provide
the original code of Example 5 (Computational Intelligence
Laboratory).

Example 1. Consider a CLM neural network with 3 layers with 4
neurons in each layer

ẋ(t) = −x(t) + σ(Wcx(t) + H + x(t)), (20)

where Wc =
1
J [f ⊗ I3 − Π3 ⊗ I4] + I12,H =

J
C [1, 1, . . . , 1]T , J =

1.9667, h = −1.9667, and

f =

 0.5493 0.1435 0.6019 −0.5720
0.1435 0.0804 −0.1325 0.6247
0.6019 −0.1325 0.3964 0.0652

−0.5720 0.6247 0.0652 1.4676

 .

Fig. 2 shows the complete convergence of the four-column
network (20) for 100 trajectories originating from randomly
selected initial points in [−1, 1].

Example 2. Consider the network (20) in Example 1, and just set
J = 0.2, h = −2.0667. Clearly, network (20) satisfies Theorem 1.
And there is only one stable equilibrium: x∗

= [−1 − 1 − 1 −

1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1]T , which means that there
is no activated column in this network.

Example 3. Consider the network (20) in Example 1, and just
set J = 19.6670, h = −39.3340. Clearly, network (20)
satisfies Theorem 2. Fig. 3 shows the group WTA performance
when the initial value −1 < x(0) ≪

h
JL , only one neuron

in a column is activated in the stable state: x∗
= [−1 −

0.0066 0.0314 0.0297 0.0539 −1 −1 −1 −1 −1 −1 −1]T .Note
that there are two layers with 2 group features and three group
winners can be found: (1) x21, x31, x41 in layer 1; (2) x12 in layer 2.

Fig. 2. Complete stability of three components of network (20) in one column:
x11, x12, x13 . Three equilibriums marked with three circles, respectively.

Example 4. Here, we compare our CLM-CNN iteration method
with another CLM-LT iteration method noted in Wersing et al.
(2001a).

We select f randomly, where fij ∈ [−1000, 1000] and fii > 0
for 1 ≤ i, j ≤ n. The feature number n = {50 100 300 600 1000},
and the layer number l = {5 10 15}. For each selected f , the test
number is 10 for each layer number. Therefore, there are totally
5× 3× 10× 4 = 600 tests. For both methods with annealing, T is
set to the biggest eigenvalue of f , and ηT is 0.99.

Tables 1 and 2 are results for n = 50, n = 1000, respectively.
The best results, which include running time and performance
(ECLM), are shown in boldface. From the tables, it is hard to tell
whichmethodperformsbetter. This conclusion can also be inferred
from their similar dynamics. On the other hand, the performance
always depends on the initial value, f and some parameters,
thus the choice between two methods in real applications may
be different. Fig. 4 shows the computing time for two methods.
With more features and layers, the CLM-LT method needs longer
computing time.With the same feature number and layer number,
our method runs faster than the CLM-LT method. For example,
when n = 1000 and l = 15, our method is about 379 times
(without annealing) or 416 times (with annealing) faster than the
previous CLM-LT method. Therefore, it is more suitable to use our
method when we deal with a large scale network with lots of
features and layers.

Since f is totally out-of-order and has little group information,
it offers an objective comparison environment to evaluate two
methods. In the following example, the test data is the Lena image,
which can be seen as organizational data embodying lots of group
information.

Example 5. Image segmentation is an important task in image
processing. It aims to partition the image into meaningful sub-
regions or grouping objects with the same attributes. We compare
two methods for a 64 × 64 Lena image (4096 features) in 5 layers.
How to construct the image segmentation feature can be found in
Appendix A.4. Fig. 5 shows test results.

Compared with the previous asynchronous CLM iteration
method, our synchronous CLM-CNN iteration method can easily
be implemented in GPU (graphics processing unit) parallel
computing. The additional simulations were coded in MATLAB
2010a, and were run in another PC with 1 Intel i7 9600k CPU,
8 GB RAM, 1 NVIDIA R⃝ GeForce R⃝ GTX 560 Ti with 1 GB GDDR
DRAM, and Windows 7 Ultimate Service Pack 1 64-bit operation
system. The simulation results can be found in Table 3. Under the

Author's personal copy

222 W. Zhou, J.M. Zurada / Neural Networks 33 (2012) 216–227

Fig. 3. Trajectory of network (20) in four columns and a columnWTA behavior can be observed in four graphs.

Table 1
Comparisons of CNN-CLM methods and LT-CLM methods (n = 50).

CLM method Number of layers Time (s) ECLM (×105)

Min Max Avg Min Max Avg

CLM-LT with annealing
5 0.8430 2.7930 1.4198 −1.5111 −1.3071 −1.3916

10 1.5760 5.6000 3.2730 −1.4308 −1.2573 −1.3402
15 3.2760 6.4900 4.2886 −1.4527 −1.2494 −1.3736

CLM-LT without annealing
5 0.8580 2.8540 1.4818 −1.4454 −1.2592 −1.3761

10 1.6070 4.3830 3.0014 −1.5312 −1.2435 −1.3858
15 2.0440 8.2520 4.3694 −1.4659 −1.1758 −1.3781

CLM-CNN with annealing
5 0.0310 0.1870 0.0686 −1.5663 −1.4029 −1.4893

10 0.0780 0.1400 0.1075 −1.5686 −1.4036 −1.4932
15 0.1250 0.3280 0.1825 −1.5377 −1.4639 −1.5019

CLM-CNN without annealing
5 0.0310 0.1090 0.0530 −1.5678 −1.3987 −1.4967

10 0.0780 0.1250 0.0905 −1.5377 −1.3630 −1.4637
15 0.1240 0.2340 0.1701 −1.5546 −1.3906 −1.5072

Table 2
Comparisons of CNN-CLM methods and LT-CLM methods (n = 1000).

CLM method Number of layers Time (s) ECLM (×107)

Min Max Avg Min Max Avg

CLM-LT with annealing
5 1.0005 × 103 4.5643 × 103 2.4231 × 103

−1.1373 −1.0885 −1.1087
10 5.0236 × 103 1.5988 × 104 7.9164 × 103

−1.0966 −1.0184 −1.0616
15 7.4818 × 103 2.2760 × 104 1.5436 × 104

−1.1210 −1.0223 −1.0701

CLM-LT without annealing
5 1.5355 × 103 3.3628 × 103 2.4224 × 103

−1.1485 −1.0850 −1.1117
10 4.9369 × 103 1.6160 × 104 8.8480 × 103

−1.1211 −1.0041 −1.0644
15 7.5082 × 103 2.2895 × 104 1.4063 × 104

−1.1063 −1.0220 −1.0652

CLM-CNN with annealing
5 25.3500 60.1070 39.4181 −1.2072 −1.1574 −1.1714

10 28.5170 44.8040 35.6650 −1.1337 −1.0552 −1.0971
15 29.2020 48.7040 37.0221 −1.1328 −1.0018 −1.0624

CLM-CNN without annealing
5 25.0380 47.7990 36.1390 −1.1967 −1.1517 −1.1717

10 28.7820 47.8140 37.6070 −1.1489 −1.0524 −1.1012
15 31.6530 42.4940 37.0469 −1.0821 −1.0136 −1.0593

same condition, the average time cost is 215.2966 (no more than
4 min). By adjusting some parameters, we can decrease time cost
to about 2 min while keeping enough accuracy further more. More
discussion about GPU computing can be found in Kirk and Hwu
(2010).

Example 6. Here, the CLM-CNN method is applied to a 128 × 128
Lena picture (1282

= 16,384 features), the layer number l = {3 6}
(see in Fig. 6). The time and the energy for 3 layers are 8.7820 ×

103 s, 3.6972 × 106, respectively. For 6 layers, the time and the
energy are 2.1317 × 103 s, −7.0325 × 107, respectively. Clearly,

Author's personal copy

W. Zhou, J.M. Zurada / Neural Networks 33 (2012) 216–227 223

Table 3
Comparisons of the CNN-CLM method with different parameters by virtue of GPU Computing (n = 64 × 64, layer = 5, test time = 50), here W = with annealing, Wo =

without annealing.

CNN-CLM method Time (s) ECLM (×105)

Min Max Avg Min Max Avg

Default parameters (W) 64.5060 947.877 215.2966 −4.5360 −4.4963 −4.5159
τmax = 1.04 (Wo) 56.1920 347.1630 129.2018 −4.5377 −4.1006 −4.5077
J = 1.04, τmax = 1.04, x1iα(k + 1) > 0.0001 (Wo) 50.2170 295.2150 124.6740 −4.5387 −4.0951 −4.5002

Fig. 4. Computing time for the proposed CLM-CNNmethod with 15 layers, and the
CLM-LT method with 5, 15 layers.

the image segmentation quality can be improvedwithmore layers,
which decreases the lateral contribution energy as well.

CLM has its own advantage on feature grouping, which were
shown in feature binding and sensory segmentation successfully
(Wersing et al., 2001a). Although other methods exist for image
segmentation, the simulations presented demonstrate interest-
ing feature grouping ability of CLM. Compared with previous ap-
plications in sensory segmentation (about 2000–3500 features)
(Wersing et al., 2001a), our simulations on image segmentation
have more features (about 4000–16,000 features) and are more
complicated.

7. Conclusions

In this paper, we investigate the Competitive Layer Model for
a class of cellular recurrent neural networks from continuous-
time type to discrete-time type. We establish the complete
stability of both networks. In order to define the feature binding
phenomena for the discussed class of networks, we present

Fig. 5. Image segmentation for 64 × 64 Lena image. (a) Original image; (b) Image segmented with 5 layers using the CLM-LT method with annealing, uses 3.5976 × 104 s
(about 10 h), and ELT

CLM is −4.5324 × 105; (c) Image segmented with 5 layers using the CLM-CNN method with annealing, uses 988.129 s (about 16 min), and ECNN
CLM is

−4.5298 × 105; (d) Lateral contribution energies of two methods. Here, we calculate ECNN
CLM once per l iterative times, and calculate ELT

CLM once per n × l iterative times.

Author's personal copy

224 W. Zhou, J.M. Zurada / Neural Networks 33 (2012) 216–227

Fig. 6. Image segmentation worked with 128 × 128 Lena image using the CLM-CNN method. (a) Original image; (b) Image segmented with 3 layers ; (c) Image segmented
with 6 layers.

necessary conditions and sufficient and necessary conditions. In
addition, we outline the analysis of some dynamic properties of
our model. We also give a novel synchronous CLM-CNN iteration
method, which has similar performance and storage allocation
but is less time consuming and is more suitable for a large scale
network compared with the previous asynchronous CLM iteration
method. Simulations are carried out to validate the performance of
our theoretical findings and provide the comparison.

It should be noted that this study has examined only some
approximate conditions, because few nonlinear qualitative anal-
ysis methods can deal with the dynamics with non-differentiable
condition well. Notwithstanding the model’s limitation, this study
does suggest a method which could be further developed to solve
some related problems of other class of recurrent neural networks.

Considering current technical trends, the multi-core processor
technology significantly increases parallel processing capability
as compared with single-core processing. Therefore, with the
development of software and hardware of parallel computation,
the efficiency and speed of our CLM-CNN method can still be
further improved in future. Eventually, dealing with a large scale
network with millions of features may be simulated perfectly in
finite time, thus makes our approach of high practical value.

Since the essence of CLM can be looked at as an optimization
method to search for a better feature-grouping solution among
those possible solutions, the method described in this paper may
well be extended to other applications dealing with complex
optimization problems.

Acknowledgments

The authors wish to thank Yonglin Zeng, Dr. Ping Li, Artur
Abdullin, Dr. Dongqin Chen, Dr. Lijun Zhang, and Minqing Zhang
for their useful discussions and comments. We also want to thank
those anonymous reviewers for their suggestions.

Appendix

A.1. Proof of theorems for network (19)

The equivalent vector form of (19) can be defined as
x(k + 1) = σ(Wdx(k) + H) (21)
for k ≥ 0, and x(k) = [x11(k), . . . , xnl(k)]T .

Furthermore, we define
Wd = G + Inl, (22)

G =
1
JC

f ⊗ Il −
1
C

Πl ⊗ In. (23)

Note that for Wd being invertible, the network (19) is dynami-
cally equivalent to

yiα(k + 1) = σ(yiα(k)) +
h
JC

−
1
C

l
β=1

σ(yiβ(k))

+
1
JC

n
j=1

fijσ(yjα(k)). (24)

Clearly, we have
xiα(k + 1) = σ(yiα(k + 1)). (25)

The equivalent vector form of (24) can be defined as
y(k + 1) = Wdσ(y(k)) + H (26)
for k ≥ 0, and y(k) = [y11(k), . . . , ynl(k)]T .

A.1.1. Theory proof

Lemma 2. If there exists a diagonal positive definite matrix D such
that D(Inl + Wd) is a symmetric positive definite matrix, then the
network (19) is completely convergent.
Proof. Define a set

S =

e1 0 · · · 0
0 e2 · · · 0
...

... · · ·
...

0 0 · · · enl

 ei = 0 or 1, 1 ≤ i ≤ nl

 .

Clearly, each element of S is an nl × nl matrix and the set S
has total 2nl elements, Using this notation, a representation of each
trajectory of the network (26) can be given.

At each step k, there exist matrices E(i), E1(i), E2(i) ∈ S and
I = [1, 1, . . . , 1]T ∈ Rnl×1 such that

σ(y(k)) = E(k)y(k) + E1(k)I − E2(k)I,

for all k ≥ 0.
Thus, (26) can be rewritten as

y(k + 1) = Wd

E(k)y(k) + E1(k)I − E2(k)I

+ H.

By iterating, the trajectory of (26) starting from y(0) can be
represented as

y(k + 1) =

k−1
j=0

E(k − j)

y(0) + Wd

E1(k)I − E2(k)I

+

k−1
i=0

k−1−i
j=0

WdE(k − j)

Wd

E1(i)I − E2(i)I

+

k−1
i=0

i

j=0

WdE(k − j)

H + H

for all k ≥ 0.

Author's personal copy

W. Zhou, J.M. Zurada / Neural Networks 33 (2012) 216–227 225

Since the set S has 2nl elements, from the trajectory representa-
tion, each component of y(k+ 1) must be a polynomial with order
at most k.

By using the similar method in Yi and Tan (2004b) and Yi et al.
(2003), the complete convergence can be proved.

The proof is completed. �

Theorem 3. Suppose matrix f is symmetric. If the lateral interaction
is self-excitatory, fii > 0 for all i, and if there exist constants J and

C such that

J >

1
l
max1≤i≤n{|λi|}

C > l,
then the network (19) is completely

convergent.

Proof. In order to prove that the network is completely conver-
gent, we need to prove that the matrix Inl + Wd is a positive def-
inite matrix. From (22), (23), an orthonormal eigenvector basis
{Viβ , Λd

iβ} for Wd can be obtained from the orthonormal eigenvec-
tor bases {bi, λi} and {qβ , µβ} for f and Πl respectively (Wersing
et al., 2001a):

V i1
d =

1
√
l

bTi , . . . , b

T
i

T
, Λd

i1 =
1
JC

(λi − Jl) + 1

V iβ≠1
d =

 l

α=1

qβ≠1
α

2−
1
2

·

qβ≠1
1 bTi , . . . , q

β≠1
l bTi

T
,

Λd
iβ≠1 =

1
JC

λi + 1.

(27)

Since J > 1
l max1≤i≤n{|λi|} and C > l, by (27), we have

−1 < Λd
i1 < 1

Λd
iβ≠1 > 0. (28)

Clearly, it holds that Λiβ + 1 > 0 for all i, β . By Lemma 2, the
network is convergent.

The proof is completed. �

Theorem 4. Suppose the network (19) satisfies Theorem 3. If there
exists constant h such that −Jl − η < h ≤ −J(l − 2) − η, then
a stable equilibrium of CLM in network (19) has in each column i at
most one activated neuron x∗

iα with
n

j=1 fijx
∗

jα ≥
n

j=1 fijx
∗

jβ .

Proof. Nowassume the contrary: suppose an equilibrium x∗ has at
least two neurons whose activities are bigger than −1 in a column
i at two layers α and β , which means that x∗

iα > −1, and x∗

iβ > −1.
For the corresponding equilibrium y∗ of network (24), we also have
y∗

iα > −1, and y∗

iβ > −1. Then two cases will be considered.

Case I : −1 < x∗

iα < 1 and −1 < x∗

iβ < 1. Clearly, by (25), we have
−1 < y∗

iα < 1 and−1 < y∗

iβ < 1. By using the similarmethod in Yi
and Tan (2004b), it can prove that the network (24) has an energy
function of the form

E(y(k)) = −
1
2
σ T (y(k))Wdσ(y(k)) − σ T (y(k))H

+σ T (y(k))y(k) −

n
j=1

l
ϕ=1

 yjϕ (k)

0
σ(s)ds. (29)

Then at the position y∗, by (29), we have

E∗
= E(y(k))|y(k)=y∗

=
1
2
σ T (y∗)Wdσ(y∗) −

n
j=1

l
ϕ=1

 y∗jϕ (k)

0
σ(s)ds. (30)

Now consider a small perturbation y′
= y∗

+ ε near y∗, and
ε = (ε11, . . . , εnl) ∈ Rnl, where εiα ≠ 0, εiβ = −εiα and εjϕ = 0

for all other j, ϕ. Then, by (29), (30), we have

∆E = E(y(k))|y(k)=y′ − E(y(k))|y(k)=y∗

= −
fii
C

ε2
iα < 0.

So, x∗ can not be a stable equilibrium for the system.

Case II: Some neurons’ final outputs are equal to 1, and one
neuron’s final output is nomore than 1 and bigger than−1. Clearly,
this part of the proof is similar to that in Theorem 1 and is skipped
here.

This completes the proof. �

Theorem 5. Suppose the network (19) satisfies Theorem 4. If there
exist constants J, C and h such that
J > max

1
l
max
1≤i≤n

{|λi|},
η

2

−Jl < h ≤ −J(l − 2) − η
Jl ≫ λi,

then a stable equilibrium of CLM in network (19) has at least one
activated column.

Proof. In order to prove that network (19) has at least one acti-
vated column, we just need to prove that x0 = [−1, −1, . . . ,−1]T
∈ ℜ

nl can not be a stable equilibrium.
Denote Eiα(k) = xiα(k)+ h

JC +
1
JC

n
j=1 fijxjα(k)− 1

C

l
ϕ=1 xiϕ(k).

We can consider the CLM dynamical system (1) as

xiα(k + 1) =

1 for Eiα(k) > 1
−1 for Eiα(k) 6 −1
Eiα(k) for |Eiα(k)| 6 1

for i = 1, . . . , n, α = 1, . . . , l.

Therefore, in the region Φ = {xiα

|xiα| ≤ 1, i = 1, . . . , n,

α = 1, . . . , l}, we can discuss the dynamics of network (19) by
investigating such linear dynamics

xiα(k + 1) = Eiα(k) (31)

except for some boundary conditions related to Eiα(k). The
equivalent vector form of network (31) is

x(k + 1) = Wdx(k) + H. (32)

If Jl ≫ λi and −Jl < h ≤ −J(l − 2) − η, there is an
approximate equilibrium xF of the linear system (31) inΦ (Wersing

et al., 2001a): xF ≈

h
Jl ,

h
Jl , . . . ,

h
Jl

T
∈ ℜ

nl.

For the linear system (31), if x0 is a stable equilibrium of
network (19), it must satisfy xiα(k + 1)|xiα(k)=x0 ≤ −1 for all i, α.
Since x0 < xF , at x0, we have x(k + 1)|x(k)=x0 − xF ≤ x0 − xF < 0,
which means

(x(k + 1) − xF)T (x(k + 1) − xF)

x(k)=x0

≥ (x(k) − xF)T (x(k) − xF)

x(k)=x0

. (33)

By (32), we have (x(k + 1) − xF) = Wd(x(k) − xF) and

x(k) =

n
i=1

l
α=1

ξiα(k)V iα
d , (34)

where ξiα(k) is the projection of x(k) on V iα
d .

Author's personal copy

226 W. Zhou, J.M. Zurada / Neural Networks 33 (2012) 216–227

The projections on both AC and DC subspaces can be expressed
by (27)
PDC
d =

n
i=1

V i1
d (V i1

d)T =
1
l
Πl ⊗ In

PAC
d =

l
β=2

n
i=1

V iβ
d (V iβ

d)T = Inl −
1
l
Πl ⊗ In.

At the point x(k) = x0, by (34), we have

(x(k + 1) − xF)T (x(k + 1) − xF)
= (Wd(x(k) − xF))T (Wd(x(k) − xF))

= (x(k) − xF)TVΨ V T (x(k) − xF), (35)

where V = [V 11
d , . . . , V n1

d , V 12
d , . . . , V nl

d] ∈ Rnl×nl and Ψ is an
nl × nl diagonal matrix Ψ = diag((Λd

11)
2, (Λd

21)
2, . . . , (Λd

n1)
2,

0, . . . , 0).
From (28), (35), we have

(x(k + 1) − xF)T (x(k + 1) − xF)
< (x(k) − xF)TVV T (x(k) − xF)

= (x(k) − xF)T (x(k) − xF). (36)

Therefore, by (33), (36), we can find the contradiction that x0 is a
stable equilibrium.

This completes the proof. �

A.2. Implementation of CLM-CNN-Dynamics

1. Initialize all xiα(0) with small random values around xiα(0) ∈

(−1, −1 + ϵ]. Calculate the largest eigenvalue λmax, and the
smallest eigenvalue λmin of the matrix f . Set C0 = l, J0 =

max
 l
2 max{|λmax|, |λmin|},

η

2

, J = 1.01 ∗ J0, C = 1.01 ∗

C0, αf =
1

C∗J , τ = 1.01, τmax = 1.35, ρ = 0.001, ω =

1, ζ = 1,Nqueue = 0,N1
X1(K+1)

= 0,N1
queue = 100, X0 =

[−1, . . . ,−1]n×1, T = λmax, ηT = 0.99, k = 0, h =

−J(l − 1), EC = −
1
C Πl, X(0) =

x11(0) · · · x1l(0)
.
.
.

. . .
.
.
.

xn1(0) · · · xnl(0)

n×l

,H =

−
1

C∗J

h · · · h
.
.
.

. . .
.
.
.

h · · · h

n×l

.

2. Calculate ξ = H+αf ∗f ∗X(k)−αf ∗T ∗X(k)−X(k)∗EC +X(k),
if mod (k + 1, l) == 0, then T = T ∗ ηT .

3. If ζ == 1, thenγ = |ξ∗(−X0)
T/l−X0|−|X(0)∗(−X0)

T/l−X0|;
otherwise go to Step 4. If γ <= 0, then J = J ∗ τ , αf =

1
C∗J , go

to Step 2; otherwise set ζ = 0, go to Step 4.
4. Set X(k + 1) = max(ξ , 0).
5. If ω == 1, then find NX(K+1), which is the number of xiα(k +

1) == −1 in X(k + 1). If NX(K+1) < n, then X(k) = X(k +

1), k = k + 1, go to Step 2; otherwise set ω = 0, go to Step 6.
6. Calculate the error between X(k) and X(k + 1). If |xiα(k +

1) − xiα(k)| < ρ for all i, α, then go to Step 7; otherwise
X(k) = X(k + 1), k = k + 1, go to Step 2.

7. Find X0(K+1), here X0(K+1) = {xiα(k+1)|xiα(k+1) > −1+

ζ } for all i, α. Set X1(K + 1) = X0(K + 1) − Mean(X0(K + 1)),
whereMean(X0(K +1)) is themean number of X0(K +1), then
find NX1(K+1), the number of x1iα(k + 1) > 0.1/n in X1(k + 1).
If NX1(K+1) == 0, then go to the end; otherwise go to Step 8.

8. If Nqueue == 0, then Nqueue = Nqueue + 1, N1
X1(K+1)

= NX1(K+1),
go to Step 11; otherwise go to Step 9.

9. if N1
X1(K+1)

≠ NX1(K+1), then Nqueue = 0, N1
X1(K+1)

= NX1(K+1),
go to Step 11; otherwise Nqueue = Nqueue + 1, go to Step 10.

10. If Nqueue == N1
queue, then go to the end; otherwise go to Step

11.
11. Set J = J ∗ τ , τ = τ + 0.01, αf =

1
C∗J , X(k) = X(k + 1), k =

k + 1. If τ < τmax, then go to Step 2; otherwise go to the end.

For simulationwithout self-inhibitory annealing simply set T =

0. Although the condition Jl ≫ λi is hard to evaluate, we can solve
this problem approximately by increasing J step by step to make
sure xF located in (−1, 1), which can be found in Step 3. In Step 11,
the reason of increasing J is to pursue better performance. From
Step 7 to Step 11, we use Nqueue to track the change of X(k) and
stop the iteration when Nqueue == N1

queue, which means that the
range and variety of X(k) is very small at that time.

A.3. Implementation of CLM-LT-Dynamics

The CLM-LT-Dynamics can be implemented as follows.
1. Initialize all xiα(0) with small random values around xiα(t =

0) ∈ (hi/l − ϵ, hi/l + ϵ]. In our simulations, hi is set to 1.
Calculate the largest eigenvalue λmax, T = λmax, Jw = 1.1 ∗

max1≤j≤n
n

i=1 max{fij, 0}

.

2. Do n × l times: choose (i, α) randomly and update xi,α =

{max 0, ξ}, where

ξ =

Jwhi − Jw

β≠α

xiβ +

j≠i

fijxjα

Jw − fii + T
.

3. Decrease T by T = ηT ∗ T , here we set ηT = 0.99. Go to Step 2
until convergence.

For simulation without self-inhibitory annealing simply set T = 0.
More details can be found in Wersing et al. (2001a).

A.4. Lateral interaction for image segmentation

In this article, the lateral interaction f is identical in all l layers
and is symmetric.

fij = Γ (φi,j) =

0.5, i == j
φi,j

max
1≤i′,j′≤n

{φi′,j′}
, i ≠ j, φi,j ≥ 0

φi,j

max
1≤i′,j′≤n

{−φi′,j′}
, i ≠ j, φi,j < 0.

The compatibility φi,j between pixels P(ix, iy) and P(jx, jy) with
gray-levels g(ix, iy) and g(jx, jy) is given by φi,j = m1e−ν/k1

(m2e−d/k2 +1)−θ,where v = |g(ix, iy)−g(jx, jy)| is the difference
between the two gray-levels, d =

(ix − jx)2 + (iy − jy)2 is the

Euclidean distance of the two pixels, m1(> 0) and m2(> 0)
balance between the influence of v and d to φ, k1(> 0) controls
the sharpness of v, k2(> 0) controls the spatial range of d, and θ
is the threshold. The parameters used in this paper are: m1 = 2,
m2 = 3, k1 = 100, k2 = 0.5, θ = 1.7.

References

Chua, L. O., & Yang, L. (1988a). Cellular neural networks: application. IEEE
Transactions on Circuits and Systems, 35, 1273–1290.

Chua, L. O., & Yang, L. (1988b). Cellular neural networks: theory. IEEE Transactions
on Circuits and Systems, 35, 1257–1272.

Computational Intelligence Laboratory, Electrical and University of Louisville
Computer Engineering. http://ci.louisville.edu/zurada/publications/2010/
Ex5ForCNNCLM.rar.

Feng, Jianfeng (1997). Lyapunov functions for neural nets with nondifferentiable
input–output characteristics. Neural Computation, 9(1), 43–49.

Hahnloser, Richard H. R. (1998). On the piecewise analysis of networks of linear
threshold neurons. Neural Networks, 11, 691–697.

Hahnloser, Richard H. R., Sarpeshkar, Rahul, Mahowald, Misha A., Douglas, Rodney
J., & Seung, H. Sebastian (2000). Digital selection and analogue amplification
coexist in a cortex-inspired silicon circuit. Nature, 405, 947–951.

Author's personal copy

W. Zhou, J.M. Zurada / Neural Networks 33 (2012) 216–227 227

Hahnloser, RichardH. R., Sebastian, H., & Slotine, Jean-Jacques (2003). Permitted and
forbidden sets in symmetric threshold-linear networks. Neural Computation,
15(3), 621–638.

Hänggi, Martin, & Moschytz, George S. (2000). Cellular neural networks: analysis,
design and optimization. Springer.

Horn, Roger A., & Johnson, Charles R. (1985). Matrix analysis. Cambridge University
Press.

Kirk, David B., & Hwu, Wen mei W. (2010). Applications of GPU computing
series, Programming massively parallel processors: a hands-on approach. Morgan
Kaufmann.

Koffka, Kurt (1962). Principles of gestalt psychology. Routledge & Paul.
Ljung, Lennart (1977). Analysis of recursive stochastic algorithms. IEEE Transactions

on Automatic Control, 22, 551–575.
Ontrup, Jörg, & Ritter, Helge 1998. Perceptual grouping in a neural model:

Reproducing human texture perception, Technical Report SFB360-TR-98/6.
Technical report. University of Bielefeld.

Ritter, Helge (1990). A spatial approach to feature linking. In Proceedings of the
international neural network conference Paris, vol. 2 (pp. 898–901). Kluwer
Publishers.

Slavova, Angela (2003). Cellular neural networks: dynamics and modelling. Kluwer
Academic Publishers.

von der Malsburg, Christoph 1981. The correlation theory of brain function.
technical report 81-2. Technical report. MPI Göttingen.

von der Malsburg, Christoph (1995). Binding in models of perception and brain
function. Current Opinion in Neurobiology, 5, 520–526.

Weng, Sebastian, Wersing, Heiko, Steil, Jochen J., & Ritter, Helge (2006). Learning
lateral interactions for feature binding and sensory segmentation from
prototypic basis interactions. IEEE Transactions on Neural Networks, 17(2),
843–862.

Wersing, Heiko, Beyn, Wolf-Jürgen, & Ritter, Helge (2001b). Dynamical stability
conditions for recurrent neural networks with unsaturating piecewise linear
transfer functions. Neural Computation, 13, 1811–1825.

Wersing, Heiko, Steil, Jochen J., & Ritter, Helge (2001a). A competitive layer model
for feature binding and sensory segmentation.Neural Computation, 13, 357–387.

Wu, Chai Wah, & Chua, Leon O. (1997). A more rigorous proof of complete
stability of cellular neural networks. IEEE Transactions on Circuits and Systems
I: Fundamental Theory and Applications, 44(4), 370–371.

Xie, Xiaohui, Hahnloser, Richard H. R., & Seung, H. Sebastian (2002). Selectively
grouping neurons in recurrent networks of lateral inhibition. Neural Computa-
tion, 14, 2627–2646.

Yi, Zhang (2010). Foundations of implementing the competitive layer model
by Lotka–Volterra recurrent neural networks. IEEE Transactions on Neural
Networks, 21(3), 494–507.

Yi, Zhang, & Tan, Kok Kiong (2004a). Network theory and applications: vol. 13.
Convergence analysis of recurrent neural networks. Kluwer Academic Publishers.

Yi, Zhang, & Tan, Kok Kiong (2004b). Multistability of discrete-time recurrent
neural networks with unsaturating piecewise linear activation functions. IEEE
Transactions on Neural Networks, 15(2), 329–336.

Yi, Zhang, Tan, Kok Kiong, & Lee, T. H. (2003). Multistability analysis for recurrent
neural networks with unsaturating piecewise linear transfer functions. Neural
Computation, 15, 639–662.

Yi, Zhang, Ye, Mao, Lv, Jian Cheng, & Tan, Kok Kiong (2005). Convergence analysis
of a deterministic discrete time system of Oja’s PCA learning algorithm. IEEE
Transactions on Neural Networks, 16(6), 1318–1328.

Zhang, Lei, Yi, Zhang, & Yu, Jiali (2008). Multiperiodicity and attractivity of
delayed recurrent neural networks with unsaturating piecewise linear transfer
functions. IEEE Transactions on Neual Networks, 19(1), 158–167.

Zhang, Lei, Yi, Zhang, Zhang, Stones Lei, & Heng, Pheng Ann (2009). Activity
invariant sets and exponentially stable attractors of linear threshold discrete-
time recurrent neural networks. IEEE Transactions on Automatic Control, 54(6),
1341–1347.

Zhou, Wei, & Zurada, Jacek M. (2010). Competitive layer model of discrete-
time recurrent neural networks with LT neurons. Neural Computation, 22,
2137–2160.

