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a b s t r a c t

In this paper, a modified proximal point algorithm with errors, which consists of a resolvent operator
technique step with errors followed by a modified orthogonal projection onto a moving half-space, is
constructed for approximating the solution of the general variational inclusion in Hilbert space. The
convergence of the iterative sequence is shown under weak assumptions. The results improve and extend
some known results.
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1. Introduction and preliminaries

Let H be a real Hilbert space endowed with a norm ∥ · ∥ and
an inner product ⟨·, ·⟩, respectively, and 2H denote the family of
all the nonempty subsets of H . Let M : H → 2H be a set-valued
mapping, Graph(M) = {(v, u) : u ∈ M(v)} denote the graph of
M , and S denote the root set of M , i.e., S = {x ∈ H : 0 ∈ M(x)}.
Throughout this paper, we assume that S ≠ ∅. We consider the
class of general nonlinear variational inclusions: Find x ∈ H such
that

0 ∈ M(x). (1.1)

As a matter of fact, problems of minimization or maximization of
functions, variational inequality problems, and minimax problems
can be unified into the form (1.1) (see [1,11,10,8,4]). This explains
why many algorithms have been proposed for its solution, see
[11,10,12,13,16,3,2,6,15,5,9,17,14,7]. When M is maximal mono-
tone, Rockafellar [11] introduced the proximal point algorithm,
and showed that the sequence {xk}, generated from an initial point
x0 by

xk+1
= Jk(xk + ek), (1.2)

converges weakly to a solution to (1.1) in Rn, provided the ap-
proximation ismade sufficiently accurate as the iteration proceeds,
where {ek} is an error sequence, Jk = (I + λkM)−1 for a se-
quence {λk} of positive real numbers that is bounded away from
zero.

E-mail addresses: zhangqingbang@126.com, zhangqb@swufe.edu.cn.

In 1992, Eckstein and Bertsekas [3] introduced the generalized
proximal point algorithm and proved that the sequence {xk},
generated from an initial point x0 by

xk+1
= (1 − ρk)xk + ρkwk, ∀k ≥ 0, (1.3)

where ∥wk − Jk(xk)∥ ≤ εk for sequences {εk}
∞

k=0, {ρk}
∞

k=0, {λk}
∞

k=0
satisfying
∞
k=0

εk < ∞, inf
k≥0

ρk > 0, sup
k≥0

ρk < 2 and

inf
k≥0

λk > 0,

converges weakly to a solution to (1.1).
In 2003, based on the projection on the domain ofM , He et al. [6]

presented a new approximate proximal point algorithm in Rn as
follows: for given xk and λk > 0, set

xk+1
= PΩ [x̄k − ek], x̄k = Jk(xk + ek),

where Ω is the domain of M , and {ek} is an error sequence and
obeys ∥ek∥ ≤ ηk∥xk − x̄k∥ with supk≥0 ηk < 1 and infk≥0 λk > 0.

In 2005, Yang and He [15], using x̄k − xk as the search direction,
obtained the inexact iterate {xk+1

} by

x̄k = Jk(xk + ek), xk+1
= PC (xk − ρk(xk − x̄k)),

where C is a nonempty closed convex subset of Rn, infk≥0 λk >
0, ∥ek∥ ≤ ηk∥xk − x̄k∥ with


∞

k=0 η2
k < +∞ and {ρk} ⊂ (0, 2)

is a sequence satisfying 0 < infk≥0 ρk, supk≥0 ρk < 2, and proved
the convergence of the sequence {xk+1

}.
If the set Ω(or C) is simple enough, so that projections onto it

are easily executed, then the methods due to He et al. [6] and Yang
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et al. [15] are useful; but, if Ω(or C) is a general closed and convex
set, then a minimal distance problem has to be solved in order to
obtain the next iterate. This might seriously affect the efficiency of
the approximate proximal point algorithm.

Inspired and motivated by He et al. [6] and Yang et al. [15], in
this paper, we replace the projection onto Ω(or C) by a projec-
tion onto a specific constructible half-space, and propose a mod-
ified algorithm with errors, which consists of a resolvent operator
technique step with errors followed by amodified orthogonal pro-
jection onto a moving half-space, for approximating the solution
of Problem (1.1). We also prove that the iterative sequence {xk}
converges weakly to a solution of Problem (1.1) under weak as-
sumptions. Our results improve and extend the corresponding re-
sults shown by Rockafellar [11], Eckstein and Bertsekas [3], Yang
et al. [15], and Han and He [5].

Suppose that X ⊂ H is a nonempty closed convex subset and
the distance from z to X is denoted by

dist(z, X) := inf
x∈X

∥z − x∥.

Let PX (z) denote the projection of z onto X , that is, PX (z) satisfies
the condition

∥z − PX (z)∥ = dist(z, X).

The followingwell-known properties of the projection operator
will be used in this paper. For any x, y ∈ H and z ∈ X

(1) u = PX (x) ⇐⇒ ⟨u − x, z − u⟩ ≥ 0.
(2) ∥PX (x) − PX (y)∥ ≤ ∥x − y∥.
(3) ∥PX (x) − z∥2

≤ ∥x − z∥2
− ∥PX (x) − x∥2.

Definition 1.1. A multi-valued operatorM is said to be

(1) monotone if

⟨u − v, x − y⟩ ≥ 0, ∀x, y ∈ H, u ∈ M(x), v ∈ M(y);

(2) maximal monotone, if M is monotone and (I + λM)(H) = H
for all λ > 0, where I denotes the identity mapping on H .

2. Algorithm and convergence

In this section, we shall construct an iterative sequence {xk} for
solving Problem (1.1) involving amaximalmonotonemapping, and
prove its weak convergence.

Algorithm 2.1. Step 0. Select an initial x0 ∈ H and set k = 0.
Step 1. Find yk ∈ H such that

yk = Jk(xk + ek), (2.1)

where the positive sequence {λk} satisfies α := infk≥0 λk > 0
and {ek} is an error sequence.
Step 2. Set K = {z ∈ H : ⟨xk − yk + ek, z − yk⟩ ≤ 0} and

xk+1
= (1 − βk)xk + βkPK (xk − ρk(xk − yk)), (2.2)

where {βk}
+∞

n=0 ⊂ (0, 1] and {ρk}
+∞

n=0 ⊂ [0, 2) are real
sequences.

Theorem 2.1. Let {xk} be the sequence generated by Algorithm 2.1.
If

(i) ∥ek∥ ≤ ηk∥xk − yk∥ for ηk ≥ 0 with


∞

k=0 η2
k < +∞;

(ii) {βk}
+∞

n=0 ⊂ [c, d] for some c, d ∈ (0, 1);
(iii) 0 < infk≥0 ρk and supk≥0 ρk < 2;

then the infinite sequence {xk} converges weakly to a solution of
Problem (1.1).

Proof. Suppose that x∗
∈ H is a solution of Problem (1.1), then

we have 0 ∈ M(x∗). We divide the proof of Theorem 2.1 into three
steps.

Step 1. We show that {xk} is bounded. From (2.1), it follows that

1
λk

(xk − yk + ek) ∈ M(yk).

By the monotonicity ofM , we deduce that
0 −

1
λk

(xk − yk + ek), x∗
− yk


≥ 0,

which leads to

x∗
∈ K = {z ∈ H : ⟨xk − yk + ek, z − yk⟩ ≤ 0}.

Let tk = PK (xk − ρk(xk − yk)), we deduce that

⟨tk − (xk − ρk(xk − yk)), x∗
− tk⟩ ≥ 0,

and

∥x∗
− tk∥2

≤ ∥(xk − x∗) − ρk(xk − yk)∥2

= ∥x∗
− xk∥2

+ ρ2
k∥x

k
− yk∥2

+ 2ρk⟨x∗
− xk, xk − yk⟩

= ∥x∗
− xk∥2

− ρk(2 − ρk)∥xk − yk∥2

+ 2ρk⟨x∗
− yk, xk − yk⟩

≤ ∥x∗
− xk∥2

− ρk(2 − ρk)∥xk − yk∥2

+ 2ρk⟨yk − x∗, ek⟩.

Since limk→∞ ηk = 0, there exists k0 ≥ 0 such that 2ηk ≤
2−sup ρk

4 ≤
2−ρk

4 for all k ≥ k0.
From

2ρk⟨yk − x∗, ek⟩ = 2ρk⟨yk − xk, ek⟩ + 2ρk⟨xk − x∗, ek⟩

≤ 2ηkρk∥xk − yk∥2
+

4ρkη
2
k

2 − ρk
∥x∗

− xk∥2

+
ρk(2 − ρk)

4η2
k

∥ek∥2

≤


ρk(2 − ρk)

4
+ 2ηkρk


∥xk − yk∥2

+
4ρkη

2
k

2 − ρk
∥x∗

− xk∥2,

we have that, for all k ≥ k0,

∥x∗
− tk∥2

≤


1 +

4ρkη
2
k

2 − ρk


∥x∗

− xk∥2

−
ρk(2 − ρk)

2
∥xk − yk∥2. (2.3)

Therefore, for all k ≥ k0,

∥x∗
− xk+1

∥
2

= ∥(1 − βk)(x∗
− xk) + βk(x∗

− tk)∥2

= (1 − βk)∥x∗
− xk∥2

+ βk∥x∗
− tk∥2

− (1 − βk)βk∥xk − tk∥2

≤ ∥x∗
− xk∥2

+ βk
4ρkη

2
k

2 − ρk
∥x∗

− xk∥2

− βk
ρk(2 − ρk)

2
∥xk − yk∥2,

≤ ∥x∗
− xk∥2

+
4dρkη

2
k

2 − ρk
∥x∗

− xk∥2

−
cρk(2 − ρk)

2
∥xk − yk∥2. (2.4)
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From


∞

k=0 η2
k < +∞, it follows that

Φ =

∞
k=k0

4dρkη
2
k

2 − ρk
< +∞ and

Ψ =

∞
k=k0


1 +

4dρkη
2
k

2 − ρk


< +∞,

and thus the sequences {∥x∗
− xk∥} and {xk} are bounded.

Step 2. We show that limk→∞ ∥yk − xk∥ = 0. Denoting
µ = inf cρk(2−ρk)

2 , then µ > 0, and from (2.4), we have

µ

∞
k=k0

∥xk − yk∥2
≤

∞
k=k0

cρk(2 − ρk)

2
∥xk − yk∥2

≤

∞
k=k0

(∥x∗
− xk∥2

− ∥x∗
− xk+1

∥
2)

+

∞
k=k0

4dρkη
2
k

2 − ρk
∥x∗

− xk∥2

≤ ∥x∗
− xk0∥2

+

∞
k=k0

4dρkη
2
k

2 − ρk

×


sup

k0≤k≤+∞

∥x∗
− xk∥2


≤ (1 + ΦΨ )∥x∗

− xk0∥2
≤ +∞,

which yields

lim
k→∞

∥yk − xk∥ = 0, (2.5)

and

lim
k→∞

(yk − xk) = 0. (2.6)

It implies that {yk} is bounded also. Moreover, {xk} and {yk} have
the same weak accumulation points.

Step 3. We show that {xk} converges weakly to a solution x̂.
From the boundedness of {xk}, it follows that the sequence has
at least one weak accumulation point. Let x̂ denote such a point.
We can extract a subsequence that weakly converges to x̂. Without
loss of generality, let us suppose that {xk} weakly converges to x̂,
then x̂ is the weak accumulation point of the sequence yk. For any
fixed v ∈ H , select an arbitrary u ∈ M(v). It follows from the
monotonicity ofM that
yk − v,

1
λk

(xk − yk + ek) − u


≥ 0,

and

⟨xk − v, −u⟩ ≥ ⟨xk − yk, −u⟩

−


yk − v,

1
λk

(xk − yk + ek)

. (2.7)

From ∥ek∥ ≤ ηk∥xk − yk∥ and (2.5), it follows that limk→∞ ∥ek∥ =

0. Therefore, by the boundedness of {yk} and {λk}, we have
yk − v,

1
λk

(xk − yk + ek)


≤
1
α

∥yk − v∥

· (∥yk − xk∥ + ∥ek∥) → 0,

when k → ∞. Taking limits in (2.7),

⟨x̂ − v, 0 − u⟩ = lim
k→∞

⟨xk − v, 0 − u⟩ ≥ 0.

Since M is maximal monotone, and (v, u) is an arbitrary point in
Graph(M), we conclude that (x̂, 0) ∈ Graph(M) and 0 ∈ M(x̂).
Hence, every weak accumulation point of x̂ ∈ X is a solution of
Problem (1.1).

The proof of the uniqueness of weak accumulation point is
standard in this setting. Indeed, let us assume that x̄ is distinctweak
cluster points of {xk} and let

ζ := ∥x̄ − x̂∥ > 0.

Since x̂ is a weakly cluster point of the sequence {xk}, there must
exist an index k0 > 0 such that

∥xk0 − x̂∥ ≤
ζ

2
√

Ψ
.

On the other hand, since x̂ is a solution of Problem (1.1), it follows
from (2.4) that

∥xk − x̂∥ ≤
√

Ψ ∥xk0 − x̂∥ for all k > k0,

and

∥xk − x̄∥ ≥ ∥x̂ − x̄∥ − ∥xk − x̂∥ ≥
ζ

2
, ∀k > k0,

which contradicts the assumption that x̄ is a weak cluster point of
{xk}, and completes the proof. �

Remark 2.2. Theorem 2.1 extends and improves Theorem 2.2 due
to Yang and He [15] and Theorem 2 due to Han and He [5]. Also,
if ρk = 1, then Algorithm 2.1 reduces to the generalized proximal
point algorithm introduced by Eckstein and Bertsekas [3].

Next, we show the convergence of the iterative sequence when
ρk = 0.

Theorem 2.2. If

(i) ∥ek∥ ≤ ηk∥xk − yk∥ for ηk ≥ 0 with supk≥0 ηk < 1;
(ii) {βk}

+∞

n=0 ⊂ [c, 1], for some c > 0;
then the iterative sequence {xk}, generated by Algorithm 2.1 for
ρk = 0, converges weakly to a solution of Problem (1.1).

Proof. Let x∗
∈ H be a solution of problem (1.1), i.e., 0 ∈ M(x∗).

From (2.1), it follows that

1
λk

(xk − yk + ek) ∈ M(yk).

By the monotonicity ofM , we have

x∗
∈ K = {z ∈ H : ⟨xk − yk + ek, z − yk⟩ ≤ 0}.

Then, from ∥x∗
− PK (xk)∥ ≤ ∥xk − x∗

∥ (∀k ≥ 0), it follows that

∥x∗
− xk+1

∥ ≤ (1 − βk)∥x∗
− xk∥ + βk∥x∗

− PK (xk)∥

≤ ∥x∗
− xk∥, (2.8)

which yields that the sequence {∥x∗
− xk∥} is convergent. Hence,

the infinite sequences {xk} and {PK (xk)} are bounded.
By (2.2), (2.8) and property (3) of the projection operator, we

have

∥xk+1
− xk∥2

≤ βk∥PK (xk) − xk∥2

≤ ∥xk − x∗
∥
2
− ∥PK (xk) − x∗

∥
2

= (∥xk − x∗
∥ − ∥PK (xk) − x∗

∥) × (∥xk − x∗
∥

+ ∥PK (xk) − x∗
∥)

≤ 2(∥xk − x∗
∥ − ∥PK (xk) − x∗

∥) × ∥xk − x∗
∥

≤
2
βk

∥xk − x∗
∥(∥xk − x∗

∥ − ∥xk+1
− x∗

∥),
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and then

lim
k→∞

∥xk+1
− xk∥ = 0. (2.9)

From tk = PK (xk) ∈ K , it follows that

∥xk − yk∥2
≤ ⟨xk − tk, xk − yk + ek⟩ + ⟨ek, yk − xk⟩
≤ (∥xk − yk∥ + ∥ek∥) · ∥tk − xk∥

+ ∥ek∥ · ∥xk − yk∥

≤
1 + ηk

βk
∥xk+1

− xk∥ · ∥xk − yk∥ + ηk∥xk − yk∥2

≤

1 + sup
k≥0

ηk

c
∥xk+1

− xk∥ · ∥xk − yk∥

+ (sup
k≥0

ηk) · ∥xk − yk∥2.

Therefore,

(1 − sup
k≥0

ηk) · ∥xk − yk∥ ≤

1 + sup
k≥0

ηk

c
∥xk+1

− xk∥. (2.10)

It follows from (2.9) that

lim
k→∞

∥xk − yk∥ = 0,

which implies that {yk} is bounded also. Moreover, {xk} and {yk}
have the same weak accumulation points.

Similar to Step 3 in the proof of Theorem 2.1, we can show that
the sequence {xk} converges weakly to a solution of Problem (1.1).
This completes the proof. �

Theorem 2.3. If limk→∞ ∥ek∥ = 0, and {βk}
+∞

n=0 ⊂ [c, 1], for some
c > 0, then the iterative sequence {xk}, generated by Algorithm 2.1 for
ρk = 0, converges weakly to a solution of Problem (1.1).

Proof. Suppose that x∗
∈ H is a solution of problem (1.1), thenwe

show that the sequence {∥x∗
− xk∥} is convergent, and the infinite

sequences {xk} and {PK (xk)} are bounded. From

∥yk − x∗
∥ = ∥Jk(xk + ek) − x∗

∥ ≤ ∥xk + ek − x∗
∥

≤ ∥xk − x∗
∥ + ∥ek∥,

and ∥ek∥ → 0, it follows that the sequence {yk} is bounded, and so
is the sequence {∥xk − yk∥}.

By (2.2), (2.8) and property (3) of the projection operator, we
have

∥xk+1
− xk∥2

≤ (1 − βk)∥PK (xk) − xk∥2
≤ ∥xk − x∗

∥
2

− ∥PK (xk) − x∗
∥
2

= (∥xk − x∗
∥ − ∥PK (xk) − x∗

∥) × (∥xk − x∗
∥

+ ∥PK (xk) − x∗
∥)

≤ 2(∥xk − x∗
∥ − ∥PK (xk) − x∗

∥) × ∥xk − x∗
∥

≤
2

(1 − βk)
∥xk − x∗

∥(∥xk − x∗
∥

− ∥xk+1
− x∗

∥),

and then

lim
k→∞

∥xk+1
− xk∥ = 0. (2.11)

From tk = PK (xk) ∈ K , it follows that

∥xk − yk∥2
≤ ⟨xk − tk, xk − yk + ek⟩ + ⟨ek, xk − yk⟩
≤ (∥xk − yk∥ + ∥ek∥) · ∥tk − xk∥

+ ∥ek∥ · ∥xk − yk∥

=
1

1 − βk
∥xk+1

− xk∥ · (∥xk − yk∥ + ∥ek∥)

+ ∥ek∥ · ∥xk − yk∥

≤
1

1 − c
∥xk+1

− xk∥ · (∥xk − yk∥ + ∥ek∥)

+ ∥ek∥ · ∥xk − yk∥.

Therefore,

lim
k→∞

∥xk − yk∥ = 0.

Moreover, {xk} and {yk} have the same weak accumulation points.
Similar to Step 3 in the proof of Theorem 2.1, we can show that

the sequence {xk} converges weakly to a solution of Problem (1.1).
This completes the proof. �

Corollary 2.4. If ∥ek∥ ≤ σ∥xk−yk∥with σ ∈ [0, 1), and {βk}
+∞

n=0 ⊂

[c, 1], for some c > 0, then the iterative sequence {xk}, generated
by Algorithm 2.1 for ρk = 0, converges weakly to a solution of
Problem (1.1).
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