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a b s t r a c t

The accurate numerical evaluation of nearly singular boundary integrals is a major concerned issue in the
implementation of the boundary element method (BEM). In this paper, the previous distance
transformation method is extended into triangular elements both in polar and Cartesian coordinate
systems. A new simple and efficient method using an approximate nearly singular point is proposed to
deal with the case when the nearly singular point is located outside the element. In general, the results
obtained using the polar coordinate system are superior to that in the Cartesian coordinate system when
the nearly singular point is located inside the element. Besides, the accuracy of the results is influenced
by the locations of the nearly singular point due to the special topology of triangular elements. However,
when the nearly singular point is located outside the element, both the polar and Cartesian coordinate
systems can get acceptable results.

& 2013 Elsevier Ltd. All rights reserved.
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1. Introduction

Nearly singular integrals are involved in many boundary ele-
ment method (BEM) analyses of engineering problems, such as
sensitivity problems [1], the unknowns around crack tips [2],
contact problems [3] and thin structures [4]. Accurate and efficient
evaluation of nearly singular integrals with various kernels is
crucial for successful implementation of the boundary type
numerical methods. Near singularities arise when a source point
ll rights reserved.

: +86 27 87542231.
is very close to but not on the integration elements. Although
these integrals are actually regular in nature, they cannot be
evaluated accurately by the standard Gaussian quadrature,
because the denominator, the distance between the source and
the field point, is close to zero but not zero, resulting in a
drastically spiked integrand.

Effective computation of nearly singular integrals has received
intensive attention in recent years and various numerical techni-
ques have been proposed to remove the near singularities [5–8],
among which the most popular approaches are based on the
various nonlinear transformations, such as cubic polynomial
transformation [9], coordinate optimization transformation [10],
rational transformation [11], sigmoidal transformation [12], the
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PART method [13], exponential transformation [14,15], sinh trans-
formation [16–18] and the distance transformation [19–23]. The
key aspect of the transformation methodology is to cluster more
Gaussian points towards the ‘nearly singular point’ (the projection
point from the source point to the element), which benefit from
the strategies for singular integrals [24,25].

Among these techniques, the distance transformation method
proposed by Ma seems to be a more promising method for dealing
with different orders of nearly singular integrals. This method
employs an asymptotic distance function via Taylor expansion and
has been successfully applied into the evaluation of nearly singular
integrals in 2D and 3D BEM. However, only quadrilateral element
is concerned in 3D BEM, and when the source point is located
outside of the element, conventional triangle subdivision method
is complicated and cannot obtain satisfactory result. In this paper,
we extend the distance transformation method both with the
polar and Cartesian coordinate system into triangular elements.
Besides, a new strategy using an approximate nearly singular point
is proposed to deal with the case when the nearly singular point is
located outside the element. Numerical examples prove the
simplicity and efficiency of the presented method.

This paper is organized as follows. The general forms of nearly
singular integrals are described in Section 2. The distance trans-
formation method based on the triangular element is briefly
reviewed in Section 3. Section 4 presents how to split into sub-
triangles and a new simple and efficient method is proposed to
deal with the case when the nearly singular point is located
outside the element. Numerical examples are given in Section 5
to verify the efficiency and accuracy of the presented method.
The paper ends with conclusions in Section 6.
Fig. 2. The projection from the source point y to the triangular element.
2. General descriptions

Considering 3D potential problems in the domain Ω enclosed
by boundary Γ, the two boundary integrals concerned in the
present work are written in the usual forms in terms of the
potential u and the flux q on the boundary as follows:

cðyÞuðyÞ ¼
Z
Γ
qðxÞunðx; yÞ dΓðxÞ�

Z
Γ
uðxÞqnðx; yÞ dΓðxÞ ð1Þ

cðyÞukðyÞ ¼
Z
Γ
qðxÞun

kðx; yÞ dΓðxÞ�
Z
Γ
uðxÞqn

kðx; yÞ dΓðxÞ ð2Þ

where y and x are the source and the field points, respectively. c is
a coefficient depending on the smoothness of the boundary at y.
unðx; yÞ represents the fundamental solution for 3D potential
problems:

un x; yð Þ ¼ 1
4π

1
r

ð3Þ

and un

kðx; yÞ, qnðx; yÞ and qn

kðx; yÞ are the derived fundamental
solutions:

un

k x; yð Þ ¼ ∂unðx; yÞ
∂xk

; qn x; yð Þ ¼ ∂unðx; yÞ
∂n

; qn

k x; yð Þ ¼ ∂qnðx; yÞ
∂xk

ð4Þ

where r denotes the Euclidean distance between the source and
the field point and n is the unit outward normal on the boundary.
Fig. 1. Node distributions for triangular elements: (a) planar triangular element;
(b) curved triangular element.
When the source point y moves towards the boundary, the
boundary integrals in Eqs. (1) and (2) become nearly singular
with different orders, namely, the nearly weak singularity with
kernel un, the nearly strong singularity with the kernels qn and un

k
and the nearly hyper-singularity with the kernels qn

k . After the
boundary discretization and the coordinate transformation to the
local system, the boundary integrals can be generalized into the
following form:

I¼
Z þ1

�1

Z þ1

�1

f ðξ1; ξ2Þ
rχ

dξ1 dξ2 ð5Þ

where χ denotes the orders of singularities, χ ¼ 1;2;3 and f ðξ1; ξ2Þ
is a well-behaved function, consisting of the shape function,
Jacobian and coefficients from the derivation of the kernels.

In this paper, both the planar and curved triangular boundary
elements are concerned. The distributions of element nodes are
shown in Fig. 1. The corresponding expressions of the shape
functions and Jacobian can be found in Ref. [26].
3. Distance transformation method

In this section, we will briefly review the distance transforma-
tion method based on the triangular element. First, the projection
from the source point y to the triangular element is taken as
shown in Fig. 2, where xc is the projection point, herein we call it
‘the nearly singular point’ and r0 is the minimum distance from
the source point to the triangular element. By employing the one-
order Taylor expansion in the neighborhood of the nearly singular
point xc , we have

xk�yk ¼ xk�xck þ xck�yk

¼ ∂xk
∂ξ1

jξ1 ¼ c1 ξ1�c1ð Þ þ ∂xk
∂ξ2

jξ2 ¼ c2 ξ2�c2ð Þ

þr0nkðc1; c2Þ þ Oðρ2Þ
¼ ρAkðθÞ þ r0nkðc1; c2Þ þ Oðρ2Þ ð6Þ

where

Ak θð Þ ¼ ∂xk
∂ξ1

jξ1 ¼ c1 cos θ þ ∂xk
∂ξ2

jξ2 ¼ c2 sin θ ð7Þ

and

ξ1 ¼ c1 þ ρ cos θ; ξ2 ¼ c2 þ ρ sin θ ð8Þ
where ðc1; c2Þ are the local coordinates of the nearly singular point
xc as shown in Fig. 3.
c c

g

Fig. 3. The distance function g in the local parametric system.



Table 1
The relative errors of various nearly singular integrals for different values of r0=a1=2 bas

xc Kernel 10�1 10�2 10

(0.2,0.2) un 9.0531E�10 3.2445E�07 4.3
qn 3.5335E�09 2.8839E�06 4.2
1=r3 1.4933E�09 6.4514E�06 6.1

(0.2,0.6) un 1.3095E�07 1.1051E�07 1.0
qn 1.1672E�08 6.9344E�09 5.5
1=r3 1.1076E�08 9.3607E�11 7.3

(0.6,0.2) un 1.2863E�07 1.0691E�07 1.0
qn 1.9467E�09 1.9320E�09 2.1
1=r3 6.6010E�09 6.2672E�09 2.0

Fig. 7. The parametric plane of triangular elements.

cx dx

Fig. 6. The position of the approximate nearly singular point xd .

Fig. 5. Mapping each sub-triangle into a quadrangle.

Fig. 4. Subdivision into sub-triangles when the nearly singular point is located
(a) inside the element; (b) on one side; (c) on one vertex.
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With the relation of Eq. (6), the real distance between the
source and field points can be written in the following asymptotic
form:

r2ðρ; θÞ ¼ r20 þ ρ2A2ðθÞ þ 2r0AkðθÞnkðc1; c2Þ þ Oðρ3Þ
¼ A2ðθÞg2ðρ; θÞ þ Oðρ3Þ ð9Þ

where gðρ; θÞ is the distance function in the local parametric
system defined as

gðρ; θÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2ðθÞ þ ρ2

q
ð10Þ

with

AðθÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AkðθÞAkðθÞ

p
ð11Þ

α θð Þ ¼ r0
AðθÞ ð12Þ

In the polar coordinate system, the near singularities appear
only in the radial direction and the corresponding transformation
pairs are expressed as follows:

ηðρ; θÞ ¼ log½gðρ; θÞ� ð13Þ

ρðηÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expð2ηÞ�α2

q
ð14Þ

The distance function can also be defined in the local Cartesian
coordinate system as follows:

giðξiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2i þ ðξi�ciÞ2

q
ði¼ 1;2 with no summationÞ ð15Þ
ed on the transformations in the polar coordinate system.

�3 10�4 10�5 10�6

159E�07 4.4262E�07 4.4369E�07 4.4332E�07
896E�06 5.0969E�06 5.3766E�06 5.6708E�06
072E�06 7.3583E�06 6.8012E�06 6.2472E�06

846E�07 1.0827E�07 1.0828E�07 1.0880E�07
024E�09 4.8001E�09 4.9304E�09 4.2103E�09
690E�09 2.7917E�10 7.1086E�09 1.1189E�09

506E�07 1.0487E�07 1.0488E�07 1.0540E�07
197E�09 3.6542E�09 2.7778E�09 3.8972E�09
479E�09 1.3018E�08 8.7797E�10 8.8676E�09

Fig. 8. Comparisons for the results at point (0.2,0.2) between the polar and
Cartesian coordinate systems with kernels un and qn.
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where

α1 ¼ r0
∂xk
∂ξ1

∂xk
∂ξ1

jξ1 ¼ c1

� ��1=2

; α2 ¼ r0
∂xk
∂ξ2

∂xk
∂ξ2

jξ2 ¼ c2

� ��1=2

k¼ 1;2;3ð Þ

ð16Þ
and the corresponding transformation pairs in each direction are
written as follows:

ηiðξiÞ ¼ log½giðξiÞ þ ðξi�ciÞ� ð17Þ

ξi ηi
� �¼ 1

2
exp ηi

� ��α2i exp �ηi
� �� �þ ci ð18Þ

After the two kinds of distance transformation, the nearly
singularities of the integrand resulted from r can be damped out
by the distance function g and the Jacobian of the nonlinear
transformation.
Fig. 9. Curved triangular element.
4. Subdivision into sub-triangles

Before performing the nonlinear transformations, the triangle
should be split into sub-triangles depending on the position of the
nearly singular point in the parametric plane. We categorise into
two cases: case (i) the nearly singular point is located inside the
element or on the sides/vertices of the element; case (ii) the nearly
singular point is located outside the element. The subdivision
method is described as follows.

4.1. Subdivision for case (i)

When the nearly singular point is located inside the element,
we initially split the triangle into three sub-triangles at the nearly
singular point by drawing lines from the nearly singular point to
each vertex of the triangle. If the sub-triangles contain angles
greater than 2π=3, poor result may be obtained [27]. Therefore, we
split these sub-triangles again by drawing lines from the nearly
singular point to the midpoints of each side to ensure that every
angle is less than 2π=3. Similar results can be obtained when the
nearly singular point is located on one of the sides or vertices as
shown in Fig. 4.

When using transformations in the local Cartesian coordinate
system, each sub-triangle should be mapped into a quadrangle as
shown in Fig. 5. Here, we use the mapping method proposed by
Qin [23]. The relation between ξ1, ξ2 and u, v is defined as

ξ1 ¼ x1 þ ðx2�x1Þuþ ðx3�x2Þuv
ξ2 ¼ y1 þ ðy2�y1Þuþ ðy3�y2Þuv

(
ð19Þ

The Jacobian of the transformation is uSΔ, and

SΔ ¼ jx2y3 þ x3y1 þ x1y2�x3y2�x1y3�x2y1j ð20Þ
The advantage of this mapping method is that the nearly

singular point is always located at the origin of the (u, v)
Table 2
The relative errors of various nearly singular integrals for different values of r0=a1=2 bas

Kernel Method 10�1 10�2 10�

un Refer 0.08999601 0.09179458 0
Polar 8.0828E�06 6.4172E�10 1
Cartesian 1.1258E�08 7.7396E�09 3

qn Refer 0.01636314 0.00172724 0
Polar 3.9633E�05 2.2238E�07 1
Cartesian 1.1964E�07 2.6722E�06 3

1=r3 Refer 8.65886976 9.64996493 9
Polar 1.2571E�04 1.7554E�06 3
Cartesian 6.1719E�07 1.6065E�05 �1
coordinate system and no more split is necessary. Therefore, the
transformations can be applied directly in u and v direction.

4.2. Subdivision for case (ii)

When the nearly singular point is located outside the element,
the result obtained by the conventional subdivision method is not
quite accurate. An alternative method is proposed here using an
approximate nearly singular point xd. The point xd is the nearest
point from the nearly singular point xc to the element in the
parametric plane. When xc is located in regions I–III, xd is on the
sides of the triangle, and on the vertices with regions IV–VI as
shown in Fig. 6. Then we use xd to subdivide the triangle element
as mentioned in Section 4.1 instead of the nearly singular point xc,
and the corresponding transformations can be applied in a
straightforward fashion without introducing extra subdivision
method. Therefore, this method is quite simple for programming
and accurate results can be obtained as demonstrated in Section 5.
5. Numerical examples

In this section, numerical examples for planar and curved
triangular elements are presented to verify the accuracy and
efficiency of presented method. The relative distance from the
nearly singular point to the element is given in terms of r0=a1=2,
where r0 is the minimum distance as shown in Fig. 2 and a stands
for the area of the element. r0=a1=2 varies from 10�1 to 10�6,
ed on the transformations in the polar and Cartesian coordinate systems.

3 10�4 10�5 10�6

.09181360 0.09181379 0.09181379 0.09181379

.5775E�06 1.2544E�05 5.2014E�05 5.8150E�05

.7503E�06 9.8371E�06 9.0062E�05 7.0457E�05

.00017282 0.00001728 0.00000173 0.00000017

.4959E�05 1.0585E�04 9.5053E�05 9.3695E�04

.2466E�06 1.3233E�04 5.8362E�04 8.6919E�04

.66135890 9.66147302 9.66147416 9.66147417

.5059E�05 2.1446E�04 7.2377E�04 2.8336E�03

.4080E�04 8.2862E�04 7.6092E�04 4.7337E�03
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which is thought to be enough for general computational applica-
tions. For the purpose of error estimation, the relative error is
defined as follows:

error¼
			Inum�Iref

Iref

			 ð21Þ

where the subscripts num and ref refer to the numerical and
reference solutions, respectively. The reference solutions are
obtained by subdivision method with enough sub-elements and
denoted as ‘Refer’ in the tables. The relative errors of the results
obtained by transformations in polar or Cartesian coordinate
systems are denoted by ‘Polar’ and ‘Cartesian’. For each sub-
triangle, 10�10 Gaussian points are always used for the conve-
nience of comparisons.
Fig. 10. Comparisons for the results at point (0.2,0.6) between the polar and
Cartesian coordinate systems with kernels un and qn.
5.1. Example for planar triangular element

The first example considers nearly singular integrals on a
planar triangular boundary element with the node coordinates
of (1,0,0), (0,1,0) and (0,0,0). When the source point is located
inside the element, the parametric plane is parted into three
regions to investigate the influence of the position of the nearly
singular point as shown in Fig. 7. Three source point belong to
each region are chose to compute the nearly singular integrals
with kernels un, qn and 1/r3, respectively. Table 1 presents the
relative errors of various nearly singular integrals for different
values of r0=a1=2 based on the transformations in the polar
coordinate system. It can be found that the results for un retain
the precision of 10�7 no matter where the nearly singular point is
located. However, for kernels qn and 1/r3, the results when the
nearly singular point is placed in regions II and III are more
accurate than that in region I by several orders of magnitude. This
is because that when the nearly singular point xc is located at
(0.2,0.2), the angles of sub-triangles may be very close to 2π=3,
even with re-splitting. Therefore, there is an obvious different in
relative error for region I.

The comparisons for the results at point (0.2,0.2) between the
polar and Cartesian coordinate systems with kernels un and qn are
plotted in Fig. 8. It can be observed that the results obtained in the
polar coordinate system are more accurate and stable than that in
the Cartesian coordinate system. The results obtained in the
Cartesian coordinate system are sensitive to the values of r0/a1/2.

Now we consider the case when the nearly singular point is
located outside the element. The nearly singular point is set at
ðc1; c2Þ ¼ ð0:6;0:6Þ and the approximate nearly singular point xd

used to subdivide the element is (0.5,0.5) as shown in Fig. 7. The
results using different transformations are given in Table 2. It can
be seen that both the polar and Cartesian coordinate systems can
get acceptable results.
Table 3
The relative errors of various nearly singular integrals for different values of r0=a1=2 bas

xc Kernel 10�1 10�2 10

(0.2,0.2) un 2.8730E�08 3.0421E�07 4.1
qn 8.0638E�08 2.7776E�06 4.1
1=r3 1.7789E�07 6.3712E�06 5.9

(0.2,0.6) un 1.1783E�07 1.1022E�07 1.0
qn 2.4275E�08 4.2521E�09 5.3
1=r3 6.2595E�08 1.0753E�08 5.8

(0.6,0.2) un 1.1526E�07 1.0661E�07 1.0
qn 3.4380E�08 8.8925E�10 1.5
1=r3 8.0588E�08 5.0173E�09 3.7
5.2. Example for curved triangular element

The second example is computed over a curved triangular
element with the node coordinates of (4.0,0.0,0.2), (0.0,4.0,0.0),
(0.0,0.0,0.5), (2.0,2.0,0.1), (0.0,2.0,0.2), (2.0,0.0,0.3) as shown in
Fig. 9. The same three nearly singular points belong to different
regions are chose. The results obtained with transformations in
the polar coordinate system for kernels un, qn and 1/r3 are
presented in Table 3. The same conclusions can be observed as
the planar triangular element. Comparisons for results at point
(0.2,0.6) between the polar and Cartesian coordinate systems are
shown in Fig. 10. It also can be found that the results obtained in
the polar coordinate system are superior to that in the Cartesian
coordinate system. Besides, the results for qn in the polar coordi-
nate system are better than that for un regardless of the singular
order. When the nearly singular point is located at ðc1; c2Þ ¼ ð0:6;0:6Þ,
The results using different transformations are given in Table 4.
Similarly, both the polar and Cartesian coordinate systems can get
acceptable results.

Now we place the nearly singular point at ð0:5þ d=
ffiffiffi
2

p
;0:5þ

d=
ffiffiffi
2

p
Þ, where d is the distance between xc and xd as shown in

Fig. 7. As d=
ffiffiffi
2

p
varies from 0.01 to 0.1, the relative errors for

different transformations with kernel un are given in Fig. 11. It can
be easily seen that the relative errors increase with decreasing
values of d, due to the fact that the nearly singular point is closer to
element, and the relative errors with both the polar and Cartesian
coordinate systems ground to a 10�5 tolerance or less. Therefore,
ed on the transformations in the polar coordinate system.

�3 10�4 10�5 10�6

035E�07 4.1750E�07 3.8300E�07 2.1247E�07
987E�06 4.9982E�06 5.2660E�06 5.5703E�06
550E�06 7.3926E�06 6.5706E�06 6.2310E�06

840E�07 1.0961E�07 1.2797E�07 2.3062E�07
125E�09 4.8460E�09 5.0046E�09 4.2901E�09
966E�09 5.2349E�10 7.1564E�09 6.6653E�10

499E�07 1.0622E�07 1.2481E�07 2.2899E�07
949E�09 3.1925E�09 2.3582E�09 3.3780E�09
773E�09 1.1980E�08 3.4966E�10 8.2967E�09



Table 4
The relative errors of various nearly singular integrals for different values of r0=a1=2 based on the transformations in the polar and Cartesian coordinate systems.

Kernel Method 10�1 10�2 10�3 10�4 10�5 10�6

un Refer 0.36330679 0.36907234 0.36899138 0.36897639 0.36897482 0.36897466
Polar 8.0582E�06 1.5047E�09 1.5672E�06 1.2463E�05 5.1831E�05 5.8215E�05
Cartesian 1.1534E�08 1.2117E�08 3.7022E�06 9.9388E�06 9.0108E�05 6.8914E�05

qn Refer 0.06629108 0.00694126 0.00069392 0.00006939 0.00000694 0.00000069
Polar 3.9728E�05 2.2510E�07 1.4892E�05 1.0556E�04 9.5087E�05 9.3539E�04
Cartesian 1.2137E�07 2.6806E�06 3.3030E�06 1.3167E�04 5.8358E�04 8.6883E�04

1=r3 Refer 2.19352721 2.41466329 2.41415873 2.41385071 2.41381734 2.41381397
Polar 1.2594E�04 1.7403E�06 3.4815E�05 2.1378E�04 7.2088E�04 2.8282E�03
Cartesian 6.2054E�07 1.5978E�05 1.4033E�04 8.2524E�04 7.6104E�04 4.7241E�03

Fig. 11. Relative errors for the polar and Cartesian coordinate systems with kernel
un corresponding to various values of d.

Fig. 12. Comparisons for the results at point (0.2,0.2) between the distance and
sinh transformations with kernels un.
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the new method proposed to deal with the case when the nearly
singular point is located outside the element is stable and efficient.

Among the nonlinear variable transformations, the sinh trans-
formation [16,17] is a competitive method. The comparisons with
the sinh method are performed for kernel at point (0.2,0.2) and the
results based on the polar coordinate system are plotted in Fig. 12.
It can be seen that both the distance transformation and the sinh
transformation methods can get results with high accuracy, and
the results of the sinh transformation is slightly better than the
distance transformation.
6. Conclusions

In this paper, the previous distance transformation method is
extended into the triangular elements in the polar and Cartesian
coordinate system, and a simple and efficient method to deal with
the case when the nearly singular point is located outside the
element is proposed. Some meaningful conclusions have been
obtained as follows:
(1)
 When the nearly singular point is located inside the element,
the results obtained using the transformations in the polar
coordinate system is more accurate and stable than that in the
Cartesian coordinate.
(2)
 When the nearly singular point is located inside the element,
the locations of the nearly singular point may influence the
accuracy of the result due to its special topology, which is
different from the quadrilateral element.
(3)
 The new method proposed to deal with the case when the
nearly singular point is located outside the element is proved
to be simple and efficient, regardless of the locations of the
nearly singular point.
For the accurate numerical evaluation of the nearly hyper-
singular integrals, the results can be improved by making use of
the properties of the derived fundamental solutions, which will be
the future work.
Acknowledgments

Financial support for the project from the National Basic Research
Program of China (973 Program: 2011CB013800) and the Natural
Science Foundation of China (nos. 51278213, 51278217).

References

[1] Zhang D, Rizzo FJ, Rudolphi TJ. Stress intensity sensitivities via hypersingular
boundary integral equations. Comput Mech 1999;23(5–6):389–96.

[2] Dirgantara T, Aliabadi MH. Crack growth analysis of plates loaded by bending
and tension using dual boundary element method. Int J Fract 2000;105(1):
27–47.

[3] Aliabadi MH, Martin D. Boundary element hyper-singular formulation for
elastoplastic contact problems. Int J Numer Methods Eng 2000;48(7):
995–1014.

[4] Liu YJ. Analysis of shell-like structures by the boundary element method based
on 3-d elasticity: formulation and verification. Int J Numer Methods Eng
1998;41(3):541–58.

[5] Eberwien U, Duenser C, Moser W. Efficient calculation of internal results in 2d
elasticity BEM. Eng Anal Boundary Elem 2005;29(5):447–53.

http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref1
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref1
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref2
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref2
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref2
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref3
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref3
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref3
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref4
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref4
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref4
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref5
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref5


Y. Miao et al. / Engineering Analysis with Boundary Elements 37 (2013) 1311–1317 1317
[6] Chen HB, Lu P, Huang MG, Williams FW. An effective method for finding
values on and near boundaries in the elastic BEM. Comput Struct 1998;69(4):
421–31.

[7] Sladek V, Sladek J, Tanaka M. Regularization of hypersingular and nearly
singular integrals in the potential theory and elasticity. Int J Numer Methods
Eng 1993;36(10):1609–28.

[8] Zhou HL, Niu ZR, Cheng CZ, Guan ZW. Analytical integral algorithm applied to
boundary layer effect and thin body effect in BEM for anisotropic potential
problems. Comput Struct 2008;86(15):1656–71.

[9] Telles J. A self-adaptive co-ordinate transformation for efficient numerical
evaluation of general boundary element integrals. Int J Numer Methods Eng
1987;24(5):959–73.

[10] Sladek V, Sladek J, Tanaka M. Optimal transformations of the integration
variables in computation of singular integrals in BEM. Int J Numer Methods
Eng 2000;47(7):1263–83.

[11] Huang Q, Cruse TA. Some notes on singular integral techniques in boundary
element analysis. Int J Numer Methods Eng 1993;36(15):2643–59.

[12] Johnston PR. Application of sigmoidal transformations to weakly singular and
near-singular boundary element integrals. Int J Numer Methods Eng 1999;
45(10):1333–48.

[13] Hayami K. Variable transformations for nearly singular integrals in the
boundary element method. Publ Res Inst Math Sci 2005;41(4):821–42.

[14] Zhang YM, Gu Y, Chen JT. Boundary layer effect in BEM with high order
geometry elements using transformation. Comput Modeling Eng Sci (CMES)
2009;45(3):227.

[15] Xie GZ, Zhang JM, Qin XY, Li GY. New variable transformations for evaluating
nearly singular integrals in 2d boundary element method. Eng Anal Boundary
Elem 2011;35(6):811–7.

[16] Johnston PR, Elliott D. A sinh transformation for evaluating nearly singular
boundary element integrals. Int J Numer Methods Eng 2005;62(4):564–78.
[17] Elliott D, Johnston PR. The iterated sinh transformation. Int J Numer Methods
Eng 2008;75(1):43–57.

[18] Johnston BM, Johnston PR, Elliott D. A sinh transformation for evaluating two-
dimensional nearly singular boundary element integrals. Int J Numer Methods
Eng 2007;69(7):1460–79.

[19] Ma H, Kamiya N. A general algorithm for accurate computation of field
variables and its derivatives near the boundary in BEM. Eng Anal Boundary
Elem 2001;25(10):833–41.

[20] Ma H, Kamiya N. Distance transformation for the numerical evaluation of near
singular boundary integrals with various kernels in boundary element
method. Eng Anal Boundary Elem 2002;26(4):329–39.

[21] Ma H, Kamiya N. A general algorithm for the numerical evaluation of nearly
singular boundary integrals of various orders for two-and three-dimensional
elasticity. Comput Mech 2002;29(4–5):277–88.

[22] Ma H, Kamiya N. Nearly singular approximations of CPV integrals with end-
and corner-singularities for the numerical solution of hypersingular boundary
integral equations. Eng Anal Boundary Elem 2003;27(6):625–37.

[23] Qin XY, Zhang JM, Xie GZ, Zhou FL, Li GY. A general algorithm for the
numerical evaluation of nearly singular integrals on 3d boundary element.
J Comput Appl Math 2011;235(14):4174–86.

[24] Guiggiani M, Gigante A. A general algorithm for multidimensional cauchy
principal value integrals in the boundary element method. J Appl Mech
1990;57(4):906–15.

[25] Guiggiani M, Krishnasamy G, Rudolphi TJ, Rizzo FJ. A general algorithm for the
numerical solution of hypersingular boundary integral equations. J Appl Mech
1992;59:604.

[26] Brebbia CA, Telles JCF, Wrobel LC. Boundary element techniques: theory and
applications in engineering. Springer-Verlag: Berlin and New York; 1984 478 p.

[27] Scuderi L. On the computation of nearly singular integrals in 3d BEM
collocation. Int J Numer Methods Eng 2008;74(11):1733–70.

http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref6
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref6
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref6
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref7
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref7
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref7
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref8
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref8
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref8
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref9
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref9
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref9
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref10
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref10
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref10
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref11
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref11
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref12
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref12
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref12
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref13
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref13
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref14
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref14
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref14
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref15
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref15
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref15
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref16
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref16
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref17
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref17
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref18
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref18
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref18
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref19
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref19
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref19
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref20
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref20
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref20
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref21
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref21
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref21
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref22
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref22
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref22
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref23
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref23
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref23
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref24
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref24
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref24
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref25
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref25
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref25
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref26
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref26
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref27
http://refhub.elsevier.com/S0955-7997(13)00140-9/sbref27

	Distance transformation for the numerical evaluation of nearly �singular integrals on triangular elements
	Introduction
	General descriptions
	Distance transformation method
	Subdivision into sub-triangles
	Subdivision for case (i)
	Subdivision for case (ii)

	Numerical examples
	Example for planar triangular element
	Example for curved triangular element

	Conclusions
	Acknowledgments
	References




