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Abstract

A kind of three-layer neural network with time delays is introduced. By analyzing its as-

sociated characteristic equation, local stability and the existence of Hopf bifurcation of the

system are investigated. By using the normal form method and center manifold theorem,

formulas to determine the direction of the Hopf bifurcation and the stability of bifurcating

periodic solution are obtained. Numerical simulation results are also given to support our

theoretical predictions.
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1. Introduction

Neural network is the abstraction and modeling of the human brain or biological neural

network. It has ability to learn from the environment, and adapt to the environment in a

interactive mode as creatures. In 1984, Hopfield proposed a simplified neural network model

[2]. For time delays often occur during the signal transmission, Marcus and Westervelt put

forward an Artificial neural network (ANN) model with delay [3]. Since then, many scientists

pay attention to the dynamical characteristics of neural network(see[4][6][19][20][22][23][27]).
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Many scholars researched extensively in stability and multi-stablility of ANN (see[7]-[11][13]).

Meanwhile some scientist discussed the dynamical behaviors such as bifurcation (see[12][14]-

[16] [21]), periodic phenomenon and almost periodic solutions (see[5][24]-[26][31]), and chaos

(see[18][27]-[30]).

Due to the existence of time delay, the delayed neural network is different from the non-

delayed neural network, meanwhile, its solution space to be infinite dimensional as time

delay. Therefore, many results of the non-delayed neural network cant be directly applied to

the delayed neural network. Hopf bifurcation as a kind of common bifurcation phenomenon,

is one of the important characteristics of delayed neural network, and also is one of the im-

portant research directions. We research the Hopf bifurcation of a delayed neural network,

which generally takes the time delay as the bifurcation parameter, and obtain the bifurcation

point. A limit cycle is generated after a tiny disturbance of the bifurcation point, and we

can obtain the condition for losing stability of delayed neural network. By using frequency

domain approach, Yu and Cao [34] studied a BAM (2−2) neural network model with delays.

Xu and He [35] studied a six-neuron BAM neural network model with discrete delays (3−3),

by using the normal form method and center manifold theorem, they get the condition of

Hopf bifurcation occurs, and the direction, stability and the period of the bifurcating peri-

odic solution. In [17], Xiao and Cao studied Hopf bifurcation of a 1−n neural network with

the same method,they also give the Hopf bifurcation occurs condition and other results.

We can take the three layered neural network as a back propagation (BP) neural net-

work. BP neural network is a multilayer feedforward network trained by the error back

propagation algorithm [32]. As one of the most widely used neural networks, it includes

input layer, hidden layer and output layer. The BP neural network has many outstanding

advantages. Firstly, the three layer neural network is able to approximate any nonlinear con-

tinuous function with any accuracy, that is, the BP neural network has a strong nonlinear

mapping ability. Secondly, BP neural network has a high degree of self-learning and adaptive

ability. Thirdly, the BP neural network has the ability to apply the learning results and the

new knowledge. Finally, the BP neural network has a fault tolerance ability, and the global

training results will not be affected by the local neurons. In BP neural network, the hidden

layer is connected with the input layer and the output layer, which has a very important
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position. According to the existing research results, there is no theoretical guidance on the

choice of the number of neurons in the network. In this paper, we study the situation of two

neurons in the hidden layer, and lay the foundation for the next step.

According to the existing literature, this paper is the first time to discuss the Hopf bifur-

cation of the three layered neural network. At present, the results of the Hopf bifurcation

of the neural network are mainly concentrated in the two-layer of neural network and other

simple two neurons , three neurons or four neurons network model. The research results of

high dimensional delayed neural networks are limited, and the research of the three-layer

network has great significance.

Fig.1. three-layer neural network model

In this paper, we consider the situation of a three-layer neuron network with six neurons.

The architecture of this special case of system (1) is illustrated in Fig.1. This simplified

three layer-neural network model can be described by the following system:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = −kx1(t) + c13f13(y1(t− τ3)) + c14f14(y2(t− τ3)),

ẋ2(t) = −kx2(t) + c23f23(y1(t− τ3)) + c24f24(y2(t− τ3)),

ẏ1(t) = −ky1(t) + c31f31(x1(t− τ1)) + c32f32(x2(t− τ1))

+ c35f35(z1(t− τ4)) + c36f36(z2(t− τ4)),

ẏ2(t) = −ky2(t) + c41f41(x1(t− τ1)) + c42f42(x2(t− τ1))

+ c45f45(z1(t− τ4)) + c46f46(z2(t− τ4)),

ż1(t) = −kz1(t) + c53f53(y1(t− τ2)) + c54f54(y2(t− τ2)),

ż2(t) = −kz2(t) + c63f63(y1(t− τ2)) + c64f64(y2(t− τ2))

(1)
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where xi is the input layer, yi is the hidden layer and zi is the output layer. k is the

attenuation coefficient of all neurons, cij (i, j = 1, 2, ..., 6) is the connection weights, τ1 and τ2

are the transmission delays between different layers, τ3 and τ4 are the feedback delays between

different layers. The triggering nonlinear function of the neurons takes the hyperbolic tangent

function, i.e. f(·) = tanh(·). Our aim in this paper is to study the stability and Hopf

bifurcations of the system (1). Taking the sum of the delays, τ = τ1 + τ3 = τ2 + τ4, as a

parameter, we shall show that when the delay τ passes through a critical value, the zero

solution loses its stability and a Hopf bifurcation occurs.

The remainder of this paper is organized as follows. In the next section, we shall consider

the stability and the local Hopf bifurcation. In Section 3, based on the normal form method

and the center manifold reduction introduced by Hassard et al. [1], we derive the formulae

determining the direction, stability and the period of the bifurcating periodic solution at

the critical value of τ . To verify the theoretic analysis, numerical simulations are given in

Section 3. Finally, a conclusion is drawn in Section 4.

2. Local stability and Hopf bifurcation

For simplicity, let u1(t) = x1(t + τ3), u2(t) = x2(t + τ3), u3(t) = y1(t), u4(t) = y2(t),

u5(t) = z1(t+ τ2), u6(t) = z2(t + τ2), then system (1) can be transformed into the following

equations with delay:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇1(t) = −ku1(t) + c13f13(u3(t)) + c14f14(u4(t)),

u̇2(t) = −ku2(t) + c23f23(u3(t)) + c24f24(u4(t)),

u̇3(t) = −ku3(t) + c31f31(u1(t− τ)) + c32f32(u2(t− τ))

+c35f35(u5(t− τ)) + c36f36(u6(t− τ)),

u̇4(t) = −ku4(t) + c41f41(u1(t− τ)) + c42f42(u2(t− τ))

+c45f45(u5(t− τ)) + c46f46(u6(t− τ)),

u̇5(t) = −ku5(t) + c53f53(u3(t)) + c54f54(u4(t)),

u̇6(t) = −ku6(t) + c63f63(u3(t)) + c64f64(u4(t))

(2)

where τ = τ1 + τ3 = τ2 + τ4. We make the following assumption on function fij :

(H1): fij ∈ C2, fij(0) = 0, i, j = 1, 2, 3, 4, 5, 6.
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Under the hypothesis (H1), the linearization of system (2) at equilibrium O(0, 0, 0, 0, 0, 0) is
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇1(t)=−ku1(t)+α13(u3(t))+α14(u4(t)),

u̇2(t)=−ku2(t)+α23(u3(t))+α24(u4(t)),

u̇3(t)=−ku3(t)+α31(u1(t−τ))+α32(u2(t−τ))
+α35(u5(t−τ))+α36(u6(t−τ)),

u̇4(t)=−ku4(t)+α41(u1(t−τ))+α42(u2(t−τ))
+α45(u5(t−τ))+α46(u6(t−τ)),

u̇5(t)=−ku5(t)+α53(u3(t))+α54(u4(t)),

u̇6(t)=−ku6(t)+α63(u3(t))+α64(u4(t))

(3)

where αij = cijf
′
ij(0). The associated characteristic equation of system (3) is

(λ+ k)4eλτ +B(λ+ k)2 +Ae−λτ = 0 (4)

where

A = −(a13a31 + a32a23 + a14a41 + a42a24 + a63a36 + a64a46 + a35a53 + a45a54),

B = (a54a23 − a53a24)(a32a45 − a42a35) + (a54a63 − a64a53)(a36a45 − a46a35)

+(a53a14 − a54a13)(a41a35 − a31a45) + (a14a23 − a24a13)(a41a32 − a31a42)

+(a14a63 − a64a13)(a41a36 − a31a46) + (a64a23 − a24a63)(a46a32 − a42a36).

There are several types of bifurcation.

Case 1: τ = 0.

Equation (4) becomes

λ4 + p1λ
3 + p2λ

2 + p3λ+ p4 = 0, (5)

where p1 = 4k, p2 = 6k2 +B, p3 = 4k3 + 2Bk, p4 = k4 +Bk2 + A. Suppose

(H2): pi > 0, (i = 1, 2, 3, 4, ), (p1p2 − p3)p3 − p21p4 > 0.

The Routh-Hurwitz criterion implies that the equilibrium O(0, 0, 0, 0, 0, 0) is locally

asymptotically stable if (H2) holds.

Case 2: τ �= 0.
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Lemma 2.1 [33] Consider the exponential polynomial

P (λ, e−λτ1, ..., e−λτm) = λn + p01λ
n−1 + · · ·+ p0n−1λ+ p0n + [p11λ

n−1 + · · ·+ p1n−1λ+ p1n]e
−λτ1

+ · · ·+ [pm1 λ
n−1 + · · ·+ pmn−1λ+ pmn ]e

−λτm (6)

where τi ≥ 0 (i = 1, 2, ..., m), pij (i = 1, 2, ..., m; j = 1, 2, ..., n) are constants. As (τ1, τ2, ..., τm)

vary, the sum of the order of the zeros of P (λ, e−λτ1, ..., e−λτm) on the open right half-plane

can change only if a zero appears on or crosses the imaginary axis.

The associated characteristic equation of system (3) is

(λ4 + 4kλ3 + 6k2λ2 + 4k3λ+ k4)eλτ +B(λ2 + 2kλ+ k2) +Ae−λτ = 0. (7)

Let λ = ωi (ω > 0) be the root of (7), separating the real and imaginary parts, then we

have

sinωτ =
2Bkω

ω4 + 2k2ω2 + k4 + A
, (8)

cosωτ =
B(ω2 − k2)

ω4 + 2k2ω2 + k4 + A
. (9)

Then we can obtain

ω8 + h1ω
6 + h2ω

4 + h3ω
2 + h4 = 0, (10)

where

h1 = 4k2, h2 = 6k4 + 2A−B2, h3 = 4k6 + (4A − 2B2)k2, h4 = (k4 +A)2 −B2k4.

If hi(i = 1, ..., 8) of equation (10) are given, it is easy to calculate the roots of (10). From

(9), we derive

τ
(j)
k =

1

ωk
[arccos

B(ω2 − k2)

ω4 + 2k2ω2 + k4 +A
+ 2jπ], k = 1, 2, ..., 8, j = 0, 1, 2, ... (11)

then ±ωki are a pair of purely imaginary root of (7) with τ = τ
(j)
k . Define

τ0 = τ
(0)
k = min

{k∈1,2}
{τ (0)k }, ω0 = ωk0.
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Let

λ(τ) = ξ(τ) + iω(τ) (12)

be the root of (7) near τ = τ0 satisfying

ξ(τ0) = 0, ω(τ0) = ω0. (13)

Theorem 2.1. Suppose (H1) (H2) holds. Then as τ increases from zero, there is a value
τ0 such that the positive equilibrium E∗ is locally asymptotically stable when τ ∈ [0, τ0) and
unstable when τ > τ0. Further, for system (3) the the positive equilibrium E∗ undergoes a
Hopf bifurcation when τ = τ0.

Proof We know that when (H2) holds, all the roots of (7) have negative real parts at τ = 0.

Hence, when τ = 0 the system (3) is asymptotically stable. Taking the derivative of λ with

respect to τ in (7), we have

(
dλ

dτ
)−1 =

P

Q
− τ

λ
. (14)

Where

P = (4λ3 + 12kλ2 + 12k2λ+ 4k3)eλτ +B(2λ+ 2k),

Q = −(λ4 + 4kλ3 + 6k2λ2 + 4k3λ+ k4)λeλτ +Aλe−λτ .
(15)

Let λ = ±iω0 at the roots of equation (7) at τ = τ0, we should compute dRe(λ(τ0))
dτ

. By

calculated, we can get

(
dλ

dτ
)−1|τ=τ0 =

M1 + iM2

N1 + iN2
− τ

λ
, (16)

Where

M1 = cosωτ(−12kω2 + 4k3) + sinωτ(4ω3 − 12k2ω) + 2Bk,

M2 = cosωτ(−4ω3 + 12k2ω) + sinωτ(−12kω2 + 4k3) + 2Bω,

N1 = cosωτ(−4kω4 + 4k3ω2) + sinωτ(ω5 − 6k2ω3 + (k4 +A)ω),

N2 = cosωτ(−ω5 + 6k2ω3 − (k4 −A)ω) + sinωτ(−4kω4 + 4k3ω2).

(17)

So, we have

dRe(λ(τ0))

dτ
= Re[(

dλ

dτ
)−1]|τ=τ0 =

M1N1 +M2N2

N2
1 +N2

2

. (18)

Obviously, we know that dRe(λ(τ0))
dτ

�= 0. The conditions of Hopf bifurcation theorem contain

dRe(λ(τ0))
dτ

and λ = ±iω0. So Hopf bifurcation occurs at τ = τ0 in system (3), and when τ
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passes through τ0, a family of periodic solutions appear in system (3). This completes the

proof. �

3. Direction and stability of Hopf bifurcation

In this section, we shall study the direction of the Hopf bifurcation and the stability

of bifurcation periodic solution of system (3). The using approach here is the normal-form

method and center manifold theorem introduced by Hassard et al. [1]. More precisely, we

will calculate the reduced system on the center manifold with the pair of conjugate complex,

purely imaginary solutions of the characteristic equation (7). We can determine the Hopf

bifurcation direction, i.e., to answer the question of supercritical bifurcation or subcritical

bifurcation whether the bifurcation branch of periodic solution exists locally.

We assume that fi ∈ C3(R), i = 1, 2, 3, 4, 5, 6. For convenience, let xi = ui(τt) and

τ = τ (j) + μ, where τ (j) is defined by (11) and μ ∈ R, the the system (3) can be written as

an FDE in C = C([−1, 0],R6) as

ẋ(t) = Lμxt + F (μ, xt), (19)

where xt(θ) ∈ C, and Lμ : C → R, F : R × C → R are given, respectively, by

Lμ(θ) =(τ (j)+μ)

⎛
⎜⎝

−k 0 α13 α14 0 0
0 −k α23 α24 0 0
0 0 −k 0 0 0
0 0 0 −k 0 0
0 0 α53 α54 −k 0
0 0 α63 α64 0 −k

⎞
⎟⎠φ(0) + (τ (j)+μ)

⎛
⎝

0 0 0 0 0 0
0 0 0 0 0 0

α31 α32 0 0 α35 α36
α41 α42 0 0 α45 α46
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎠φ(−1)

and

F (μ, φ) = (τ (j) + μ)Λ (20)

where Λ are defined by Appendix A.

From the discussions in Section 2, we know that if μ = 0, then system (19) undergoes a

Hopf bifurcation at the zero equilibrium and the associated characteristic equation of system

(19) has a pair of simple imaginary roots ±iτ (j)ω0.

By the Riesz representation theorem, there exists a function η(θ, μ) of bounded variation

for θ ∈ [−1, 0], such that

Lμ(φ) =

∫ 0

−1
dη(θ, 0)φ(θ) for φ ∈ C. (21)
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In fact, we can choose

η(θ, μ) =(τ (j)+μ)

⎛
⎜⎝

−k 0 α13 α14 0 0
0 −k α23 α24 0 0
0 0 −k 0 0 0
0 0 0 −k 0 0
0 0 α53 α54 −k 0
0 0 α63 α64 0 −k

⎞
⎟⎠ δ(θ)−(τ (j)+μ)

⎛
⎝

0 0 0 0 0 0
0 0 0 0 0 0

α31 α32 0 0 α35 α36
α41 α42 0 0 α45 α46
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎠ δ(θ+1).

(22)

where δ is defined by

δ(θ) =

⎧⎪⎨
⎪⎩

0, θ �= 0,

1, θ = 0.
(23)

Then (19) is satisfied.

Next, for φ ∈ C([−1, 0],R3), we define the operator A(μ) as

A(μ)φ(θ)=

⎧⎪⎪⎨
⎪⎪⎩

dφ

dθ
, θ ∈ [−1, 0),

∫ 0

−1
dη(θ, μ)φ(θ), θ = 0.

(24)

and

R(μ)φ(θ) =

⎧⎪⎨
⎪⎩

0, θ ∈ [−1, 0),

F (μ, φ), θ = 0.
(25)

Since dut

dθ
= dut

dt
, (19) can be rewritten as

ẋ(t) = A(μ)xt +R(μ)xt (26)

where xt = x(t + θ), forθ ∈ [−1, 0], which is an equation of the form we desired. For

ψ ∈ C ′([−1, 0], (R3)∗), we further define the adjoint A∗ of A as

A∗(μ)ψ(s) =

⎧⎪⎪⎨
⎪⎪⎩

− dψ

ds
, s ∈ (0, 1],

∫ 0

−1
dψ(−s)dη(s, μ), s = 0.

(27)

we define a bilinear form

〈ψ(s), φ(θ)〉 = ψ
T
(0)φ(0) −

∫ 0

θ=−1

∫ θ

ξ=0
ψ
T
(0)(ξ−θ)dη(θ)φ(ξ)dξ. (28)

where η(θ) = η(θ, 0). We have the following result on the relation between the operators

A = A(0) and A∗.

Lemma 3.1 A = A(0) and A∗ are adjoint operators.
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Proof. Let φ ∈ C l([−1, 0], R6) and ψ ∈ C l([0, 1], (R6)∗). It follows from (28) and the

definitions of A = A(0) and A∗ that

〈ψ(s), A(0)φ(θ)〉

= ψ(0)A(0)φ(0)−
∫ 0

−1

∫ θ

ξ=0
ψ(ξ−θ)dη(θ)A(0)φ(ξ)dξ

= ψ

∫ 0

−1
dη(θ)φ(θ)−

∫ 0

−1

∫ θ

ξ=0
ψ(ξ−θ)dη(θ)A(0)φ(ξ)dξ

= ψ

∫ 0

−1
dη(θ)φ(θ)−

∫ 0

−1
[ψ(ξ−θ)dη(θ)φ(ξ)]θξ=0 +

∫ 0

−1

∫ θ

ξ=0

dψ(ξ − θ)

dξ
dη(θ)φ(ξ)dξ

=

∫ 0

−1
ψ(−θ)dη(θ)φ(0)−

∫ 0

−1

∫ θ

ξ=0
[−dψ(ξ − θ)

dξ
]dη(θ)φ(ξ)dξ

= A∗ψ(0)φ(0) −
∫ 0

−1

∫ θ

ξ=0
A∗ψ(ξ − θ)dη(θ)φ(ξ)dξ

= 〈A∗ψ(s), φ(θ)〉.

(29)

This shows that A = A(0) and A∗ are adjoint operators and the proof is complete. �

From the above analysis, we obtain that ±iω0 are the eigenvalues of A(0). Let q(θ) be

eigenvector of A(0) corresponding to iω0, then we have

A(0)q(θ) = iω0q(θ). (30)

Since ±iω0 are the eigenvalues of A(0), and other eigenvalues have strictly negative real

parts, ∓iω0 are the eigenvalues of A∗(0). Then we have the following lemma.

Lemma 3.2 The vector

q(θ) = (1, ρ1, ρ2, ρ3, ρ4, ρ5)
T eiω0τ0θ, θ ∈ [−1, 0].

where

ρ1 =
E1

E
, ρ2 =

E2

E
, ρ3 =

E3

E
, ρ4 =

E4

E
, ρ5 =

E5

E
.

is the eigenvector of A(0) corresponding to the eigenvalue iω0, and

q∗(θ) = (1, ρ∗1, ρ
∗
2, ρ

∗
3, ρ

∗
4, ρ

∗
5)

T eiω0τ0θ, θ ∈ [0, 1].

where

ρ∗1 =
E∗

1

E∗ , ρ
∗
2 =

E∗
2

E∗ , ρ
∗
3 =

E∗
3

E∗ , ρ
∗
4 =

E∗
4

E∗ , ρ
∗
5 =

E∗
5

E∗ .
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is the eigenvector of A∗ corresponding to the eigenvalue −iω0, moreover, 〈q∗(s), q(θ)〉 = 1,

where

D={1+
5∑

i=1

ρiρ∗i +(α31+ρ1α32+ρ4α35+ρ5α36)ρ
∗
2e

−iω0τ0

+(α41+ρ1α42+ρ4α45+ρ5α46)ρ
∗
3e

−iω0τ0)}−1.

(31)

Proof Since q(θ) is eigenvector of A(0) corresponding to iω0, then we have

A(0)q(θ) = iω0q(θ). (32)

So (28) can be rewritten as
⎧⎪⎨
⎪⎩
dq(θ)

dθ
, θ ∈ [−τ, 0),

L(0)q(0) = iω0q(0), θ = 0.

(33)

Therefore, we have

q(θ) = q(0)eiω0θ, θ ∈ [−τ, 0]. (34)

in addition

∫ 0

−1
dη(θ)q(θ) =τ0

⎛
⎜⎝

−k 0 α13 α14 0 0
0 −k α23 α24 0 0
0 0 −k 0 0 0
0 0 0 −k 0 0
0 0 α53 α54 −k 0
0 0 α63 α64 0 −k

⎞
⎟⎠ q(0)+τ0

⎛
⎝

0 0 0 0 0 0
0 0 0 0 0 0

α31 α32 0 0 α35 α36
α41 α42 0 0 α45 α46
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎠ q(−1)

= A(0)q(0) = iω0τ0q(0). (35)

that is ⎛
⎜⎜⎝

−k+α13ρ2+α14ρ3
−kρ1+α23ρ2+α24ρ3

−kρ2+(α31+ρ1α32+ρ4α35+ρ5α36)e−iω0τ0

−kρ3+(α41+ρ1α42+ρ4α45+ρ5α46)e−iω0τ0

−kρ4+α53ρ2+α54ρ3
−kρ5+α63ρ2+α64ρ3

⎞
⎟⎟⎠ =

⎛
⎜⎝

iω0
ia1ω0
ia2ω0
ia3ω0
ia4ω0
ia5ω0

⎞
⎟⎠ .

Therefore, we can easily obtain

ρ1 =
E1

E
, ρ2 =

E2

E
, ρ3 =

E3

E
, ρ4 =

E4

E
, ρ5 =

E5

E
.

where E,E1, E2, E3, E4, E5 are defined by Appendix B.

On the other hand

∫ 0

−1
q∗(−t)dη(t) =τ0

⎛
⎜⎝

−k 0 α13 α14 0 0
0 −k α23 α24 0 0
0 0 −k 0 0 0
0 0 0 −k 0 0
0 0 α53 α54 −k 0
0 0 α63 α64 0 −k

⎞
⎟⎠

T

q∗(0)+τ0

⎛
⎝

0 0 0 0 0 0
0 0 0 0 0 0

α31 α32 0 0 α35 α36
α41 α42 0 0 α45 α46
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎠

T

q∗(−1)

= A∗(0)q∗(0)τ0 = −iω0τ0q
∗(0). (36)

11



Namely ⎛
⎜⎜⎜⎝

−k+α13ρ∗2+α14ρ∗3
−k+α23ρ∗2+α24ρ∗3

−kρ∗2+(α31+α32ρ∗1+α35ρ∗4+α36ρ∗5)e
−iω0τ0

−kρ∗3+(α41+α42ρ∗1+α45ρ∗4+α46ρ∗5)e
−iω0τ0

−kρ∗4+α53ρ∗2+α54ρ∗3
−kρ∗5+α63ρ∗2+α64ρ∗3

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

−iω0
−iω0ρ∗1
−iω0ρ∗2
−iω0ρ∗3
−iω0ρ∗4
−iω0ρ∗5

⎞
⎟⎟⎠ .

Therefore, we can easily obtain

ρ∗1 =
E∗

1

E∗ , ρ
∗
2 =

E∗
2

E∗ , ρ
∗
3 =

E∗
3

E∗ , ρ
∗
4 =

E∗
4

E∗ , ρ
∗
5 =

E∗
5

E∗ .

where E∗, E∗
1 , E

∗
2 , E

∗
3 , E

∗
4 , E

∗
5 are defined by Appendix C.

In the sequel, we shall verify that 〈q∗(θ), q(θ)〉 = 1. In fact, from (28), we have

〈q∗(θ), q(θ)〉 = (1, ρ∗1, ρ
∗
2, ρ

∗
3, ρ

∗
4, ρ

∗
5)(1, ρ1, ρ2, ρ3, ρ4, ρ5)

T

−
∫ 0

−1

∫ 0

ξ=0
(1, ρ∗1, ρ

∗
2, ρ

∗
3, ρ

∗
4, ρ

∗
5)e

−iω0τ(ξ−θ)dη(θ)× (1, ρ1, ρ2, ρ3, ρ4, ρ5)
T eiω0τξdξ

= D[1+

5∑
i=1

ρiρ
∗
i−
∫ 0

−1
(1, ρ∗1, ρ

∗
2, ρ

∗
3, ρ

∗
4, ρ

∗
5)θe

iω0τθdη(θ)× (1, ρ1, ρ2, ρ3, ρ4, ρ5)
T ]

= D{1+
5∑

i=1

ρiρ
∗
i+(α31+ρ1α32+ρ4α35+ρ5α36)ρ

∗
2e

−iω0τ0+(α41+ρ1α42+ρ4α45+ρ5α46)ρ
∗
3e

−iω0τ0}.

(37)

where

G =

⎛
⎝

0 0 0 0 0 0
0 0 0 0 0 0

α31 α32 0 0 α35 α36
α41 α42 0 0 α45 α46
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎠ .

So, when

D={1+
5∑

i=1

ρiρ
∗
i +(α31+ρ1α32+ρ4α35+ρ5α36)ρ

∗
2e

−iω0τ0+(α41+ρ1α42+ρ4α45+ρ5α46)ρ
∗
3e

−iω0τ0}−1.

(38)

we can get 〈q∗, q〉 = 1. On the other hand, since 〈ψ,Aφ〉 = 〈A∗ψ, φ〉, we can obtain

iω0〈q∗, q〉 = 〈q∗, Aq〉 = 〈A∗q∗, q〉 = 〈−iω0q
∗, q〉 = −iω0〈q∗, q〉.

Therefore, 〈q∗, q〉 = 0. This completes the proof. �

In the remainder of this section, by using the same notations as in Hassard et al. [1],

we first compute the coordinates to describe the center manifold center C0 at μ = 0, which

is locally invariant, attracting three-dimensional manifold in C0. Let ut be solution of (26)

when μ = 0. Define ⎧⎪⎨
⎪⎩
z(t)=〈q∗, xt〉,
W (t, θ)=ut−zq−zq=xt−2Rez(t)q(θ).

(39)
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On the center manifold C0, we have

W (z, z, θ) =W20(θ)
z2

2
+W11(θ)zz+W02(θ)

z2

2
+· · · (40)

z and z are local coordinates of center manifold C0 in direction of q∗ and q∗. Note the W

is real if ut is real. We only consider real solutions.

ż(t) = 〈q∗, ut〉 = 〈q∗, A(0)ut +R(0)ut〉
= 〈A∗(0)q∗, ut〉+ q∗(0)F (ut, 0)
.
= iω0z(t) + q∗

T
(0)f0(z, z) (41)

We rewrite in abbreviated form as

ż(t) = iω0z(t) + g(z, z), (42)

where

g(z, z) =g20
z2

2
+ g11zz + g02

z2

2
+g21

z2z

2
+ · · ·, (43)

Hence we have

g(z, z) = q∗T (0)f0(z, z) = q∗T (0)f(0, xt)

= D(1, ρ∗1, ρ∗2, ρ∗3, ρ∗4, ρ∗5)× (f1(0, xt), f2(0, xt), · · · , f6(0, xt))T ,
(44)

where f1(0, xt), f2(0, xt), f3(0, xt), f4(0, xt), f5(0, xt), f6(0, xt) are defined by Appendix D.

By (40), we have

xt(θ) = (x1t, x2t, x3t, x4t, x5t, x6t) =W (t, θ) + zq(θ) + zq(θ), (45)

and

q(θ) = (1, ρ1, ρ2, ρ3, ρ4, ρ5)
T eiθω0τ (j) , (46)

we can obtain

x3t(0)=zρ2 + zρ2 +W
(3)
20 (0)

z2

2
+W

(3)
11 (0)zz +W

(3)
02 (0)

z2

2
+O(|(z, z)|3),

x4t(0)=zρ2 + zρ3 +W
(4)
20 (0)

z2

2
+W

(4)
11 (0)zz +W

(4)
02 (0)

z2

2
+O(|(z, z)|3),

x1t(−1)=ze−iω0τ (j)+zeiω0τ (j)+W
(1)
20 (−1)

z2

2
+W

(1)
11 (−1)zz +W

(1)
02 (−1)

z2

2
+O(|(z, z)|3),

x2t(−1)=zρ1e
−iω0τ (j)+zρ1e

iω0τ (j)+W
(2)
20 (−1)

z2

2
+W

(2)
11 (−1)zz +W

(2)
02 (−1)

z2

2
+O(|(z, z)|3),
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x5t(−1)=zρ4e
−iω0τ (j)+ zρ4e

iω0τ (j)+W
(5)
20 (−1)

z2

2
+W

(5)
11 (−1)zz +W

(5)
02 (−1)

z2

2
+O(|(z, z)|3),

x6t(−1)=zρ5e
−iω0τ (j)+ zρ5e

iω0τ (j)+W
(6)
20 (−1)

z2

2
+W

(6)
11 (−1)zz +W

(6)
02 (−1)

z2

2
+O(|(z, z)|3).

From (42) and (43), we get the result of g(z, z) (see Appendix E) and then we obtain

g20 = D{[a1ρ22 + a3ρ
2
3] + ρ∗1[b1ρ

2
2 + b3ρ

2
3] + ρ∗2[(c1 + c3ρ

2
1 + c5ρ

2
4 + c7ρ

2
5)e

−2iω0τ (j) ]

+ρ∗3[(d1 + d3ρ
2
1 + d5ρ

2
4 + d7ρ

2
5)e

−2iω0τ (j) ] + ρ∗4[e1ρ
2
2 + e3ρ

2
2] + ρ∗5[f1ρ

2
2 + f3ρ

2
2]},

g11 = D{[a1|ρ2|2 + a3|ρ3|2] + ρ∗1[b1|ρ2|2 + b3|ρ3|2]
+ρ∗2[c1 + c3|ρ1|2 + c5|ρ4|2 + c7|ρ5|2] + ρ∗3[d1 + d3|ρ1|2 + d5|ρ4|2 + d7|ρ5|2]
+ρ∗4[e1|ρ2|2 + e3|ρ3|2] + ρ∗5[f1|ρ2|2 + f3|ρ3|2]},

g02 = D{[a1ρ22 + a3ρ
2
3] + ρ∗1[b1ρ

2
2 + b3ρ

2
2] + ρ∗2[(c1 + c3ρ

2
1 + c5ρ

2
4 + c7ρ

2
5)e

−2iω0τ (j) ]

+ρ∗3[(d1 + d3ρ
2
1 + d5ρ

2
4 + d7ρ

2
5)e

−2iω0τ (j) ] + ρ∗4[e1ρ
2
2 + e3ρ

2
2] + ρ∗5[f1ρ

2
2 + f3ρ

2
2]},

g21 = D{[2a1ρ2W (3)
11 (0) + 2a3ρ3W

(4)
11 (0) + a1ρ2W

(3)
20 (0) + a3ρ2W

(3)
20 (0)

+3a2|ρ2|2ρ2 + 3a4|ρ3|2ρ3] + ρ∗1[2b1ρ2W
(3)
11 (0) + 2b3ρ3W

(4)
11 (0)

+b1ρ2W
(3)
20 (0) + b3ρ2W

(3)
20 (0) + 3b2|ρ2|2ρ2 + 3b4|ρ3|2ρ3]

+ρ∗2[2e
−iω0τ (j)(c1W

(1)
11 (−1) + c3W

(2)
11 (−1)ρ1 + c5W

(5)
11 (−1)ρ4 + c7W

(6)
11 (−1)ρ5)

+eiω0τ (j)(c1W
(1)
20 (−1) + c3W

(2)
20 (−1)ρ1 + c5W

(5)
20 (−1)ρ4 + c7W

(6)
20 (−1)ρ5)

+3e−iω0τ (j)(c2 + c4|ρ1|2ρ1 + c6|ρ4|2ρ4 + c8|ρ5|2ρ5)]
+ρ∗3[2e

−iω0τ (j)(d1W
(1)
11 (−1) + d3W

(2)
11 (−1)ρ1 + d5W

(5)
11 (−1)ρ4 + d7W

(6)
11 (−1)ρ5)

+eiω0τ (j)(d1W
(1)
20 (−1) + d3W

(2)
20 (−1)ρ1 + d5W

(5)
20 (−1)ρ4 + d7W

(6)
20 (−1)ρ5)

+3e−iω0τ (j)(d2 + d4|ρ1|2ρ1 + d6|ρ4|2ρ4 + d8|ρ5|2ρ5)]
+ρ∗4[2e1ρ2W

(3)
11 (0) + 2e3ρ3W

(4)
11 (0) + e1ρ2W

(3)
20 (0) + e3ρ2W

(3)
20 (0)

+3e2|ρ2|2ρ2 + 3e4|ρ3|2ρ3] + ρ∗5[2f1ρ2W
(3)
11 (0) + 2f3ρ3W

(4)
11 (0)

+f1ρ2W
(3)
20 (0) + f3ρ2W

(3)
20 (0) + 3f2|ρ2|2ρ2 + 3f4|ρ3|2ρ3]}.

In order to determine g21, in the sequel, we need to compute W20(θ) and W11(θ). From
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(26) and (40), we have

Ẇ = u̇t − żq − ˙̄zq̄ = A(0)ut+R(0)ut−(iω0z + g)q−(−iω0z̄+ḡ)q̄

= A(0)ut +R(0)ut − 2Re(gq)

=

⎧⎨
⎩

A(0)W − 2Re(q̄∗(0)f0q(θ)), θ ∈ [−τ, 0),
A(0)W − 2Re(q̄∗(0)f0q(0)) + f0, θ = 0,

= A(0)W +H(z, z̄, θ).

where

H(z, z, θ)=H20(θ)
z2
2
+H11(θ)zz+H02

z2

2
+· · · (47)

On the other hand, note that on the center manifold C0 near to the origin,

Ẇ =Wz ż +Wż +Wz ż. (48)

Substituting (28) and (42) into (48), and comparing the coefficients of the above equation

with those of (41), we get

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(A(0) − 2iω0)W20(θ) = −H20(θ),

A(0)W11 = −H11(θ),

(A(0) + 2iω0)W11(θ) = −H02(θ).

(49)

By (47), we know that for θ ∈ [−1, 0),

H(z, z, θ) = −2Re(q∗(0)f0q(θ)) = −2Re(g(z, z)q(θ)) = −g(z, z)q(θ)− g(z, z)q(θ)

= −(g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
)q(θ)− (g20

z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
)q(θ) · ··

(50)

Comparing the coefficients of the above equation with those in (47), it is obvious that

H20(θ) = −g20q(θ)− g02q(θ),

H11(θ) = −g11q(θ)− g11q(θ). (51)

It follows from (27) and (49) that

Ẇ20(θ) = AW20(θ) = 2iω0W20(θ)−H20(θ) = 2iω0W20(θ) + g20q(θ) + g02q(θ)

= 2iω0W20(θ) + g20q(0)e
iω0θ + g02q(0)e

−iω0θ.
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Solving for W20(θ), we can obtain

W20(θ) =
ig20q(0)

ω0

eiω0θ +
ig02q(0)

3ω0

e−iω0θ +G1e
2iω0θ. (52)

By similar way, we get

W11(θ) = − ig11q(0)

ω0
eiω0θ +

ig11q(0)

ω0
e−iω0θ +G2 (53)

Where

G1 = (G
(1)
1 , G

(2)
1 , G

(3)
1 , G

(4)
1 , G

(5)
1 , G

(6)
1 )T

and

G2 = (G
(1)
2 , G

(2)
2 , G

(3)
2 , G

(4)
2 , G

(5)
2 , G

(6)
2 )T

are both constant vectors, and can be determined by setting θ = 0 in H(z, z, θ). In what

follows, we shall seek appropriate G1 and G2. From the definition of A and (49), we obtain

∫ 0
−1 dη(0, θ)W20(θ) = 2iω0W20(0) −H20(0),

∫ 0
−1 dη(0, θ)W11(θ) = −H11(0). (54)

where η(θ) = η(0, θ). From (47), we have

H20(θ) = −g20q(0) − g02q(0) + (H1,H2, · · · ,H6)
T . (55)

where

H1 = a1ρ
2
2 + a3ρ

2
3,H2 = b1ρ

2
2 + b3ρ

2
3,H3 = (c1 + c3ρ

2
1 + c5ρ

2
4 + c7ρ

2
5)e

−2iω0τ (j) ,

H4 = (d1 + d3ρ
2
1 + d5ρ

2
4 + d7ρ

2
5)e

−2iω0τ (j) ,H5 = e1ρ
2
2 + e3ρ

2
3,H6 = f1ρ

2
2 + f3ρ

2
3,

H∗ = (H1,H2,H3,H4,H5,H6)
T .

(56)

and

H11(θ) = −g11q(0)− g11q(0) + (P1, P2, · · · , P6)
T . (57)

where

P1 = a1|ρ2|2 + a3|ρ3|2, P2 = b1|ρ2|2 + b3|ρ3|2, P3 = c1 + c3|ρ1|2 + c5|ρ4|2 + c7|ρ5|2,
P4 = d1 + d3|ρ1|2 + d5|ρ4|2 + d7|ρ5|2, P5 = e1|ρ2|2 + e3|ρ3|2, P6 = f1|ρ2|2 + f3|ρ3|2,
P ∗ = (−P1,−P2,−P3,−P4,−P5,−P6)

T .

(58)
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Substituting (52) and (55) into (54) and noticing that

(iω0I −
∫ 0

−1
dη(0, θ)eiω0θ)q(0) = 0,

(−iω0I −
∫ 0

−1
dη(0, θ)e−iω0θ)q(0) = 0. (59)

we can obtain

(2iω0I −
∫ 0

−1
dη(0, θ)e2iω0θ)G1 = (H1,H2, · · · ,H6)

T . (60)

which leads to

(L
(1)
1 , L

(2)
1 , L

(3)
1 , L

(4)
1 , L

(5)
1 , L

(6)
1 )G1 = H∗. (61)

where L
(1)
1 , L

(2)
1 , L

(3)
1 , L

(4)
1 , L

(5)
1 , L

(6)
1 andG1 are defined by Appendix F.

Similarly, substituting (53) and (57) into (54), we can get

(L
(1)
2 , L

(2)
2 , L

(3)
2 , L

(4)
2 , L

(5)
2 , L

(6)
2 )G2P

∗. (62)

where L
(1)
2 , L

(2)
2 , L

(3)
2 , L

(4)
2 , L

(5)
2 , L

(6)
2 andG2 are defined by Appendix G.

Thus, we can determine W20(θ) and W11(θ) from lemma 3.1 and (68). Furthermore, we

can see that each gij in (50) is determined by parameters and delays in system (3). Thus,

we can compute the following quantities.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1(0) =
i

2ω0
(g20g11−2|g11|2−|g02|2

3
)+

g21
2
,

μ2 =− Re{c1(0)}
Re{λ′(τ0)} ,

β2 =2Re{c1(0)},

T2 =− Im{c1(0)}+ μ2Im{λ′(τ0)}
ω0

.

(63)

Theorem 3.1. In (51), the following results hold:
(i) The sign of μ2 determines the direction of the Hopf bifurcation: if μ2 > 0 (μ2 < 0), then
the Hopf bifurcation is supercritical (subcritical) and the bifurcation periodic solutions exist
for τ > τ 0 (τ < τ 0);
(ii) The sign of β2 determines the stability of the bifurcating periodic solution: the bifurcation
periodic solutions are stable (unstable) if β2 < 0 (β2 > 0);
(iii) The sign of T2 determines the period of the bifurcating periodic solutions: the period
increase (decrease) if T2 > 0 (T2 < 0).
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4. Numerical examples

In this section, we give some numerical results of system (3) to support the analytic

results obtained above. We consider the following system as:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = −0.7x1(t)−0.5 tanh y1(t)+0.6 tanh y2(t),

ẋ2(t) = 0.7x2(t)− 0.8 tanh y1(t) + 1.4 tanh y2(t),

ẏ1(t) = −0.7y1(t) + 0.6 tanh(x1(t− τ))− 0.8 tanh(x2(t− τ))

+ 0.6 tanh(z1(t− τ))− 1.8 tanh(z2(t− τ)),

ẏ2(t) = −0.7y2(t) + 0.7 tanh(x1(t− τ))− 1.5 tanh(x2(t− τ))

+ 0.9 tanh(z1(t− τ))− 1.4 tanh(z2(t− τ)),

ż1(t) = −0.7z1(t) + 0.6 tanh y1(t)− 1.5 tanh y2(t),

ż2(t) = −0.7z2(t) + 1.2 tanh y1(t)− 2 tanh y2(t)

(64)

Obviously, the system have the equilibrium (0, 0, 0, 0, 0, 0), from section 2. we compute

that ω0 = 0.9009, from (11) we can obtain τ = 1.7546, where τ = τ1 + τ3 = τ2 + τ4. From

Theorem 3.1, we know that the zero steady state of system (64) is asymptotically stable

τ ∈ [0, 1.7546). This is illustrated by the numerical simulation shown in Figs.2 and 3 in

which τ1 = 1.3. Further, when τ is increased to the critical value 1.7546, the origin losses its

stability and Hopf bifurcation occurs (see Figs.4 and 5). By Theorem 3.1, the bifurcation

is supercritical and the bifurcating periodic solution is asymptotically stable (see Figs.6 and

7).
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Fig.2. The trajectories graphs when τ = 1.3 < 1.7546.
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Fig.3. The phase graphs when τ = 1.3 < 1.7546.
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Fig.4. The trajectories graphs when τ = 1.75.
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Fig.6. The trajectories graphs when τ = 1.9 > 1.7546.
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Fig.7. The phase graphs when τ = 1.9 > 1.7546.

Finally, from section 4, we compute the direction of Hopf bifurcation. Noting that tanh′′(0) =

0, we can easily obtain g20, g02, g11. Thus we can calculate the following values: C1(0) =

9.1486 + 2.8498i. μ2 = −3.3078, β2 = 18.2972, T2 = −12.7765.
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5. Conclusions

This paper studies a three-layer neural network model with six neurons. So far, the

research in this area has been less fruitful. The main reason is that the three-layer neural

network is more complex than other neural network models, and the it is difficult to describe.

In general, the three-layer neural network has many neurons, and the more neurons in neural

network, the more close to the actual neural network. As the BP neural network has many

outstanding advantages, so it is necessary to study on it.

In this paper, we have investigated local stability of the equilibrium and local Hopf bifurca-

tion in a three-layer neural network model with delays. We have showed that if the condition

(H1) (H2) hold, the equilibrium of system (3) is asymptotically stable for all τ ∈ [0, τ0) and

unstable for τ > τ0. We also have showed that, if the condition (H1) (H2) hold, as the

delay τ increases, the equilibrium loses its stability and a sequence of Hopf bifurcations oc-

cur at (0,0,0,0,0,0), i.e., a family of periodic orbits bifurcates from the positive equilibrium.

Then, the direction of Hopf bifurcation and the stability of the bifurcating periodic orbits

are discussed by applying the normal form theory and the center manifold theorem. At last,

a numerical example illustrated the obtained results.

Appendix A

Λ = (L1, L2, L3, L4, L5, L6)
T .

L1 = a1φ
2
3(0) + a2φ

3
3(0) + a3φ

2
4(0) + a4φ

3
4(0) + h.o.t.

L2 = b1φ
2
3(0) + b2φ

3
3(0) + b3φ

2
4(0) + b4φ

3
4(0) + h.o.t.

L3 = c1φ
2
1(−1) + c2φ

3
1(−1) + c3φ

2
2(−1) + c4φ

3
2(−1)

+c5φ
2
5(−1) + c6φ

3
5(−1) + c7φ

2
6(−1) + c8φ

3
6(−1) + h.o.t.

L4 = d1φ
2
1(−1) + d2φ

3
1(−1) + d3φ

2
2(−1) + d4φ

3
2(−1)

+d5φ
2
5(−1) + d6φ

3
5(−1) + d7φ

2
6(−1) + d8φ

3
6(−1) + h.o.t.

L5 = e1φ
2
3(0) + e2φ

3
3(0) + e3φ

2
4(0) + e4φ

3
4(0) + h.o.t.

L6 = f1φ
2
3(0) + f2φ

3
3(0) + f3φ

2
4(0) + f4φ

3
4(0) + h.o.t.

and φ(θ)=(φ1(θ), φ2(θ), φ3(θ), φ4(θ), φ5(θ), φ6(θ))
T ∈ C, ai = c1mf

k
1m(0)/k!, bi = c2mf

k
2m(0)/k!,

cj = c3nf
k
3n(0)/k!, dj = c4nf

k
4n(0)/k!, ei = c5mf

k
5m(0)/k!, fi = c6mf

k
6m(0)/k!.i = 1, ..., 4;

j = 1, ..., 8; k = 2, 3;m = 3, 4;n = 1, 2, 5, 6.
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Appendix B

E =| F1, F2, F3, F4, F5, |, E1 =| Δ, F2, F3, F4, F5, |, (65)

E2 =| F1,Δ, F3, F4, F5, |, E3 =| F1, F2,Δ, F4, F5, |, (66)

E4 =| F1, F2, F3,Δ, F5, |, E5 =| F1, F2, F3, F4,Δ, | . (67)

where

F1 = (−k − iω0, α32e
−iω0τ0 , α42e

−iω0τ0 , 0, 0)T , F2 = (α23,−k − iω0, 0, α53, α63)
T ,

F3 = (α24, 0,−k − iω0, α54, α64)
T , F4 = (0, 0, 0,−k − iω0, , 0)

T ,

F5 = (0, 0, 0, 0,−k − iω0)
T ,Δ = (0,−α31e

−iω0τ0 ,−α41e
−iω0τ0 , 0, 0)T .

Appendix C

E∗ =| F ∗
1 , F

∗
2 , F

∗
3 , F

∗
4 , F

∗
5 , |, E∗

1 =| Δ∗, F ∗
2 , F

∗
3 , F

∗
4 , F

∗
5 , |,

E∗
2 =| F ∗

1 ,Δ
∗, F ∗

3 , F
∗
4 , F

∗
5 , |, E∗

3 =| F ∗
1 , F

∗
2 ,Δ

∗, F ∗
4 , F

∗
5 , |,

E∗
4 =| F ∗

1 , F
∗
2 , F

∗
3 ,Δ

∗, F ∗
5 , |, E∗

5 =| F ∗
1 , F

∗
2 , F

∗
3 , F

∗
4 ,Δ

∗, | .

where

F ∗
1=(−k+iω0, α23, α24, 0, 0)

T , F ∗
2=(α32e

−iω0τ0 ,−k+iω0, 0, α35e
−iω0τ0 , α36e

−iω0τ0)T ,

F ∗
3=(α42e

−iω0τ0 , 0,−k+iω0, α45e
−iω0τ0 , α46e

−iω0τ0)T , F ∗
4=(0, α53, α54,−k+iω0, 0)

T ,

F ∗
5=(0, α63, α64, 0,−k+iω0)

T ,Δ∗=(0,−α13,−α14, 0, 0)
T .

Appendix D

f1(0, xt) = a1x
2
3t(0) + a2x

3
3t(0) + a3x

2
4t(0) + a4x

3
4t(0) + h.o.t.

f2(0, xt) = b1x
2
3t(0) + b2x

3
3t(0) + b3x

2
4t(0) + b4x

3
4t(0) + h.o.t.

f3(0, xt) = c1x
2
1t(−1) + c2x

3
1t(−1) + c3x

2
2t(−1) + c4x

3
2t(−1)

+c6x
2
5t(−1) + c7x

3
5t(−1) + c7x

2
6t(−1) + c8x

3
6t(−1) + h.o.t.

f4(0, xt) = d1x
2
1t(−1) + d2x

3
1t(−1) + d3x

2
2t(−1) + d4x

3
2t(−1)

+d6x
2
5t(−1) + d7x

3
5t(−1) + d7x

2
6t(−1) + d8x

3
6t(−1) + h.o.t.

f5(0, xt) = e1x
2
3t(0) + e2x

3
3t(0) + e3x

2
4t(0) + e4x

3
4t(0) + h.o.t.

f6(0, xt) = f1x
2
3t(0) + f2x

3
3t(0) + f3x

2
4t(0) + f4x

3
4t(0) + h.o.t.
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Appendix E

g(z, z) = q∗T f0(z, z)

= D[f1(0, xt) + ρ∗1f2(0, xt) + ρ∗2f3(0, xt) + ρ∗3f4(0, xt) + ρ∗4f5(0, xt) + ρ∗5f6(0, xt)]

=
1

2
D{[a1ρ22 + a3ρ

2
3] + ρ∗1[b1ρ

2
2 + b3ρ

2
3] + ρ∗2[(c1 + c3ρ

2
1 + c5ρ

2
4 + c7ρ

2
5)e

−2iω0τ (j) ]

+ρ∗3[(d1 + d3ρ
2
1 + d5ρ

2
4 + d7ρ

2
5)e

−2iω0τ (j) ] + ρ∗4[e1ρ
2
2 + e3ρ

2
2] + ρ∗5[f1ρ

2
2 + f3ρ

2
2]}z2

+D{[a1|ρ2|2 + a3|ρ3|2] + ρ∗1[b1|ρ2|2 + b3|ρ3|2] + ρ∗2[c1 + c3|ρ1|2 + c5|ρ4|2 + c7|ρ5|2]
+ρ∗3[d1 + d3|ρ1|2 + d5|ρ4|2 + d7|ρ5|2] + ρ∗4[e1|ρ2|2 + e3|ρ3|2] + ρ∗5[f1|ρ2|2 + f3|ρ3|2]}zz
+
1

2
D{[a1ρ22 + a3ρ

2
3] + ρ∗1[b1ρ

2
2 + b3ρ

2
2] + ρ∗2[(c1 + c3ρ

2
1 + c5ρ

2
4 + c7ρ

2
5)e

−iiω0τ (j) ]

+ρ∗3[(d1 + d3ρ
2
1 + d5ρ

2
4 + d7ρ

2
5)e

−iiω0τ (j) ] + ρ∗4[e1ρ
2
2 + e3ρ

2
2] + ρ∗5[f1ρ

2
2 + f3ρ

2
2]}z2

+
1

2
D{[2a1ρ2W (3)

11 (0) + 2a3ρ3W
(4)
11 (0) + a1ρ2W

(3)
20 (0) + a3ρ2W

(3)
20 (0)

+3a2|ρ2|2ρ2 + 3a4|ρ3|2ρ3] + ρ∗1[2b1ρ2W
(3)
11 (0) + 2b3ρ3W

(4)
11 (0)

+b1ρ2W
(3)
20 (0) + b3ρ2W

(3)
20 (0) + 3b2|ρ2|2ρ2 + 3b4|ρ3|2ρ3]

+ρ∗2[2e
−iω0τ (j)(c1W

(1)
11 (−1) + c3W

(2)
11 (−1)ρ1 + c5W

(5)
11 (−1)ρ4 + c7W

(6)
11 (−1)ρ5)

+eiω0τ (j)(c1W
(1)
20 (−1) + c3W

(2)
20 (−1)ρ1 + c5W

(5)
20 (−1)ρ4 + c7W

(6)
20 (−1)ρ5)

+3e−iω0τ (j)(c2 + c4|ρ1|2ρ1 + c6|ρ4|2ρ4 + c8|ρ5|2ρ5)] + ρ∗3[2e
−iω0τ (j)(d1W

(1)
11 (−1) + d3W

(2)
11 (−1)ρ1

+d5W
(5)
11 (−1)ρ4 + d7W

(6)
11 (−1)ρ5) + eiω0τ (j)(d1W

(1)
20 (−1) + d3W

(2)
20 (−1)ρ1

+d5W
(5)
20 (−1)ρ4 + d7W

(6)
20 (−1)ρ5) + 3e−iω0τ (j)(d2 + d4|ρ1|2ρ1 + d6|ρ4|2ρ4

+d8|ρ5|2ρ5)] + ρ∗4[2e1ρ2W
(3)
11 (0) + 2e3ρ3W

(4)
11 (0) + e1ρ2W

(3)
20 (0) + e3ρ2W

(3)
20 (0)

+3e2|ρ2|2ρ2 + 3e4|ρ3|2ρ3] + ρ∗5[2f1ρ2W
(3)
11 (0) + 2f3ρ3W

(4)
11 (0)

+f1ρ2W
(3)
20 (0) + f3ρ2W

(3)
20 (0) + 3f2|ρ2|2ρ2 + 3f4|ρ3|2ρ3]}z2z + · · ·

Appendix F

L
(1)
1 = (2iω0+k, 0,−α31e

−2iω0τ(j),−α41e
−2iω0τ(j), 0, 0)T ,

L
(2)
1 = (0, 2iω0+k,−α32e

−2iω0τ(j),−α42e
−2iω0τ(j), 0, 0)T ,

L
(3)
1 = (−α13,−α23, 2iω0+k, 0,−α53,−α63)

T , L
(4)
1 = (−α14,−α24, 2iω0+k, 0,−α54,−α64)

T ,

L
(5)
1 = (0, 0,−α35e

−2iω0τ(j),−α45e
−2iω0τ(j), 2iω0+k, 0)

T ,

L
(6)
1 = (0, 0,−α36e

−2iω0τ(j),−α46e
−2iω0τ(j), 0, 2iω0+k)

T .
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G
(1)
1 =

1

L1
|L(∗)

1 , L
(2)
1 , L

(3)
1 , L

(4)
1 , L

(5)
1 , L

(6)
1 |, G(2)

1 =
1

L1
|L(1)

1 , L
(∗)
1 , L

(3)
1 , L

(4)
1 , L

(5)
1 , L

(6)
1 |,

G
(3)
1 =

1

L1
|L(1)

1 , L
(2)
1 , L

(∗)
1 , L

(4)
1 , L

(5)
1 , L

(6)
1 |, G(4)

1 =
1

L1
|L(1)

1 , L
(2)
1 , L

(3)
1 , L

(∗)
1 , L

(5)
1 , L

(6)
1 |,

G
(5)
1 =

1

L1
|L(1)

1 , L
(2)
1 , L

(3)
1 , L

(4)
1 , L

(∗)
1 , L

(6)
1 |, G(6)

1 =
1

L1
|L(1)

1 , L
(2)
1 , L

(3)
1 , L

(4)
1 , L

(5)
1 , L

(∗)
1 |.

where

L1 = |L(1)
1 , L

(2)
1 , L

(3)
1 , L

(4)
1 , L

(5)
1 , L

(6)
1 |.

Appendix G

L
(1)
2 = (−k, 0, α31, α41, 0, 0)

T , L
(2)
2 = (0,−k, α32, α42, 0, 0)

T ,

L
(3)
2 = (α13, α23,−k, 0, α53, α63)

T , L
(4)
2 = (α14, α24, 0,−k, α54, α64)

T ,

L
(5)
2 = (0, 0, α35, α45,−k, 0)T , L(6)

2 = (0, 0, α36, α46, 0,−k)T .

G
(1)
2 =

1

L2
|L(∗)

2 , L
(2)
2 , L

(3)
2 , L

(4)
2 , L

(5)
2 , L

(6)
2 |, G(2)

2 =
1

L2
|L(1)

2 , L
(∗)
2 , L

(3)
2 , L

(4)
2 , L

(5)
2 , L

(6)
2 |,

G
(3)
2 =

1

L2
|L(1)

2 , L
(2)
2 , L

(∗)
2 , L

(4)
2 , L

(5)
2 , L

(6)
2 |, G(4)

2 =
1

L2
|L(1)

2 , L
(2)
2 , L

(3)
2 , L

(∗)
2 , L

(5)
2 , L

(6)
2 |,

G
(4)
2 =

1

L2
|L(1)

2 , L
(2)
2 , L

(3)
2 , L

(4)
2 , L

(∗)
2 , L

(6)
2 |, G(4)

2 =
1

L2
|L(1)

2 , L
(2)
2 , L

(3)
2 , L

(4)
2 , L

(5)
2 , L

(∗)
2 |.

where

L2 = |L(1)
2 , L

(2)
2 , L

(3)
2 , L

(4)
2 , L

(5)
2 , L

(6)
2 |.
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