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Microscopic calculations describing the bandgap varia-
tions of armchair graphene nanoribbons (AGNRs) subjected
to an applied uniaxial strain (ε) have been the focus of numer-
ous recent reports.1–11 Currently, the strain induced bandgap
modulation is an important topic as graphene nanoribbons
(GNRs) present great interest for applications. Theoretical in-
sights are very valuable as it is difficult for experiment to mea-
sure the response of GNRs to external forces.

The principal goal of this Note is to clarify that
an emblematic mechanism for one-dimensional metal
structures—the spontaneous Peierls distortion of the lattice
that converts a metal into a semiconductor12—is present in
AGNRs at selected strain levels. The effect was reported
in density functional theory (DFT) calculations carried out
in trans-polyacetylene13 and carbon nanotubes.14–16 The
possibility of a Peierls distortion mechanism was considered
in stress-free GNRs with zigzag edges, but found to be
suppressed by the strong edge effect.17 To our knowledge
the effect was overlooked till now in the literature of axially
elongated and compressed GNRs, including Refs. 1–11.

Here we present evidence for the Peierls effect in a
strained AGNR with H-saturated edges and 11 dimer lines,
treated with DFT within the generalized gradient approxima-
tion. As in one previous investigation,2 the Becke exchange
gradient correction and the Lee-Yang-Parr correlation gradi-
ent correction18, 19 implemented in the DMol package20 were
employed. Our basis set consists of the double numerical
atomic orbitals augmented by polarization functions. Self-
consistent field procedures were carried out with a conver-
gence criterion of 1.0 × 10−6 a.u. in energy and electron den-
sity. The strained AGNR was considered optimized when the
convergence criteria of 1 × 10−5 in the gradient, 1 × 10−4

in the displacement, and 1 × 10−7 a.u. in energy were met.
Medium grid mesh points were employed for the matrix in-
tegration procedures. The real-space global cutoff radius was
set at 5.5 Å. Calculations considered explicitly only atoms lo-
cated in one primitive motif under periodic boundary con-
ditions. In order to achieve good convergence in reciprocal
space integration, a set of 123 K points uniformly spaced
along the one-dimensional Brillouin zone was used. Note that
the K = 0 point is included in this set.

The stress-free 11 AGNR considered here is a semicon-
ductor. Its direct bandgap located at K = 0 is solely due to
the edge shrinking effect,21 since the quantum confinement

effect alone predicts a vanishing bandgap.10 The linear
bandgap variation displayed in Fig. 1(a) resembles well the
zigzag behavior reported in Refs. 1–9 and attributed to the
coupling of ε to the valence and conduction bands. However,
there is also a difference with the metallic state predicted
analytically by simple π orbital tight-binding theory1 and

FIG. 1. (a) Bandgap vs. applied ε in 11 AGNR with H-saturated edges.
Empty squares and filled circles represent data from calculations carried out
without and with point-symmetry constraints, respectively. (b) Evolution of
the selected bond lengths vs. ε. (c) Schematics of the Kekulé type bond al-
ternation pattern. The thicker (blue) lines identify the bonds that suddenly
shrink at ε = 0.015 in (b). The empty circles represent the H atoms. The
AGNR long axis is vertical.
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obtained by some DFT calculations:3, 9 while the application
of ε gradually lowers the initial bandgap in a linear manner,
we obtain that a metallic state is not really reached. This
observation is fully consistent with what was obtained in
some other existing DFT investigations.2, 5–8 Unfortunately,
the origin of this result has never been addressed.

Here we recognize in our DFT calculations an additional
electron-phonon interaction effect emerging in the narrow
vicinity of the metallic state. A closer look at Fig. 1(b) reveals
that right before the metallic state is expected, the AGNR
undergoes a sudden decrease in selected bond lengths. The
compressed bonds delineate a clear Kekulé type bond alter-
nation pattern, Fig. 1(c), which is typical for the Peierls effect
in a honeycombed lattice.14, 22–24 When the development of
this pattern is prevented by using additional point-symmetry
constraints, the strain-driven metallic state is still reached at
ε = 0.016. At this strain level, the bandgap opening due to
the Kekulé morphology is of 40 meV. Based on this evidence,
we interpret the obtained result as a Peierls effect.

The uncovered electron-phonon interaction effect is the
likely mechanism that prevents the onset of the metallic state
under ε obtained in other DFT calculations employing the
same as here2 and other approximate functionals,5–8 carried
out on slightly wider AGNRs. At the same time, our finding
calls for additional first principles studies of strained GNRs
that will employ functionals especially constructed for the de-
scription of the Peierls distortion.14 Such calculations could
predict more accurately the magnitude of the bandgap open-
ing and thus determine whether the effect is relevant for ex-
periment. Since two dimensional graphene is metallic, quali-
tatively it can be expected that the Peierls effect is suppressed
by an increase in AGNR’s width.
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