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In this study, a heuristic method known as quantum-behaved particle swarm
optimization (QPSO) is used to solve the inverse advection–dispersion problem of
estimating the strength of a time-varying groundwater contaminant source from
the knowledge of forensic observations. No prior information of the functional
form is given in this study. The implicit upwind finite difference method is used in
the governing advection–dispersion equation. The least squares method is used to
model the inverse problem, which transforms to an optimization problem.
Considering the ill-posedness of the inverse problem, the Tikhonov regularization
method is used to stablize the inverse solution. To ensure the global convergence
properties of the QPSO, an improved version with the perturbation operator is
proposed and its performance is tested by several well-known benchmark
functions. Finally, the proposed method is applied to reconstruct the contaminant
source history and comparisons with other methods are also presented in this
article. The numerical experiments demonstrate the efficiency and validity of our
proposed method.

Keywords: quantum-behaved particle swarm optimization; groundwater
contaminant source identification; inverse problem; advection–dispersion;
Tikhonov regularization; perturbation operator

1. Introduction

Environmental contamination is a widespread problem that may affect the utility of an
environmental resource, such as a groundwater aquifer or a surface water body.
Identifying contaminant sources in groundwater is important for developing effective
remediation strategies and identifying responsible parties in a contamination incident.
Groundwater contamination broadly defines any constituent that reduces the quality of
groundwater. Contamination can be chemical, physical or biological. Chemical contam-
ination can be broken down further into soluble components and non-aqueous phase
liquid components. Soluble components are dissolved in groundwater and are transported
with the groundwater as it moves. Non-aqueous phase liquids are bodies of liquid that are
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separate from the water and are generally not transported with bulk groundwater

movement. This study addresses the transport of dissolved chemicals in water-saturated

porous media. Transport of soluble chemicals is subjected to the process of advection and

dispersion, the mathematical model is given in Equation (1). Advection describes the

movement of a contaminant along with the bulk movement of groundwater. Dispersion

describes the spreading of a contaminant as it moves through the porous media.
If the initial and boundary conditions, model parameters and contaminant release

history are known, the advection–dispersion equation can be solved directly using

analytical techniques or numerical simulations to obtain the distribution of contaminant

concentration. This process is called forward advection–dispersion problem, which has a

unique solution and is well-posed. In contrast, the inverse advection–dispersion problem

for groundwater models considered here involves the determination of the unknown

time-dependent contaminant release history from the knowledge of concentration

measurements taken within the medium. The inverse problem of groundwater source

identification is ill-posed. Because concentration data are sampled at finite discrete points,

infinite number of source history functions can produce the measured data; therefore, the

solution of this inverse problem is not unique. In addition, the solution of the inverse

problem is very sensitive to the unavoidable measurement noise and computing error,

which is known as instability.
In this article, we study a source history reconstruction problem, with a point source of

contamination at a known location in a one-dimensional flow field. The spatial

distribution of the contaminant concentration is sampled at a specific time after the

initial source release, which is used with inverse methods to reconstruct the time-varying

contaminant source history.
During the past decade, inverse problems of groundwater contaminant transport

have received wide attention. A concise review of the most relevant work is given in

Ref. [1]. Gorelick et al. [2] used the least squares and linear programming to determine

the location and strength of the source pollutant in the field. Their numerical model was

tested on two sets of hypothetical data representing a steady-state case and a transient

case. The model assumed other transport parameters, which are previously known.

Wagner [3] estimated the transport parameters and contaminant source simultaneously.

Zou and Parr [4] developed an analytical solution to determine the longitudinal and

transverse dispersivities. Skaggs and Kabala [5–7] solved the inverse source problem with

Tikhonov regularization and the method of quasi-reversibility. Woodbury and Ulrych

[8,9] solved the problem using minimum relative entropy (MRE) inversion. Snodgrass

and Kitanidis [10] used a geostatistical approach to solve the same problem.

In Refs [11–15], some optimization methods, such as conjugate gradient method, are

used to solve various inverse problems, as they converge fast but strongly depend on

initial guess and cannot guarantee the global optimum. The Tikhonov regularization

method is more robust in solving the inverse problem with noisy sampling; however, it

cannot reconstruct the non-smooth source history efficiently. The MRE method is a

gradient-based approach, which is more efficient in dealing with the source history with

many peaks. But it is not effective for problems that contain a measurement error of

unknown magnitude. Furthermore, the gradient computation of the objective function is

very complicated, and the gradient may even not exist for some objective functions.

The determination of the Lagrange multiplier is also a key difficulty in the MRE

method.
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For these types of problems, heuristic global search approaches, such as particle swarm

optimization (PSO) are more effective, Bharat et al. [16] first use PSO to solve the inverse

source problem, but PSO is not robust enough to stabilize the inverse solution.
In this study, another swarm intelligence method named as quantum-behaved particle

swarm optimization (QPSO) is presented to reconstruct the contaminant source history.

QPSO, inspired by quantum mechanics, was proposed by Sun [17–19] from the knowledge

of PSO. PSO was originally proposed by Kennedy and Eberhart [20] as a simulation of

social behaviour, such as fish schooling and bird flocking. QPSO can be easily
implemented and is computationally inexpensive, since its memory and CPU speed

requirements are low. Moreover, it does not require gradient information of the objective

function under consideration, but only its values, and it uses only primitive mathematical

operators. Compared with PSO, QPSO has fewer parameters to set and has only position
to iterate but no velocity. In order to enhance the global search ability of QPSO, an

improved version with a perturbation operator is proposed in this article. The numerical

experimental results demonstrate the validity and efficiency of the proposed method to

solve the inverse source history problems. Comparison with other stochastic methods is
also presented in this study.

The rest of this article is organized as follows. In Section 2, the mathematical model of

the inverse source history problem is described. Section 3 describes the PSO and QPSO in

detail, the description of improved QPSO with perturbation operator is also given in this

section. The benchmark tests of the proposed method are presented in Section 4.
In Section 5, the improved QPSO is applied to the inverse source history problems.

Finally, Section 6 gives the conclusion.

2. Mathematical model of inverse source problems

In general, the governing equation for contaminant transport in groundwater is the
advection–dispersion equation, which, for a one-dimensional contaminant solute transport

through a saturated homogeneous porous medium, is:

@Cðx, tÞ

@t
¼ D

@2Cðx, tÞ

@x2
� V

@Cðx, tÞ

@x
, 05 x5L, t4 0, ð1Þ

Cðx, 0Þ ¼ C0ðxÞ, 0 � x � L, ð2Þ

Cð0, tÞ ¼ CinðtÞ, t � 0, ð3Þ

CðL, tÞ ¼ 0, t � 0, ð4Þ

where C(x, t) is the contaminant concentration at a spatial location x and time t, D is a

constant dispersion coefficient, V is a uniform steady pore velocity, Cin(t) is the source
history for a source located at x¼ 0 and C0(x) is the initial spatial distribution of the

contaminant concentration. The first term on the right-hand side of Equation (1) is the

dispersion term and the second term is advection term.
Measurements of contaminant concentration are available at N discrete locations

Y(xi, t)(where xi is the ith sampling location, i ¼ 1, . . . ,N ). In the literature, three types of
samples are included: samples taken at one location over a period of time, samples taken at
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many locations at one time or a combination of the two. Comparison of the results

obtained by different types of samples will be presented in Section 5.
We want to find such a source, with which the concentration Cðxi, tÞ computed from

Equations (1)–(4) is as close to the measured concentration Yðxi, tÞ as possible, so

the following equation is modelled by the least squares method:

min J ½CinðtÞ� ¼

Z tf

t¼0

XN
i¼1

ðCðxi, tÞ � Yðxi, tÞÞ
2 dt: ð5Þ

Then the inverse source problem is cast as an optimization problem, which intends to

minimize Equation (5).
For the forward advection–dispersion problem, analytical techniques or numerical

simulation can be used to obtain the solution Cðx, tÞ. But there are many limitations for the

analytical techniques if the boundary or initial conditions, dispersion, or flow velocity are

nonlinear, while the numerical methods, such as finite difference method, finite volume

method and finite element method, may be suitable for all types of functional forms of

the equation. In this study, the implicit upwind finite difference method is used to

discretize Equation (1), which is shown in Equation (6), because of the advection term of

Equation (1), the central difference will easily lead to oscillation in the solution:

C jþ1
i � C j

i

Dt
¼ D

C jþ1
iþ1 � 2C jþ1

i þ C jþ1
i�1

Dx2
� V

C jþ1
iþ1 � C jþ1

i

Dx
, ð6Þ

where C j
i is the concentration at the j time step, i mesh step (i ¼ 1, 2, . . . ,Nx, Nx is the

number of spatial grid; j ¼ 1, 2, . . . , ,Nt, Nt is the number of time steps), Dt is the time

incremental size and Dx is the mesh size.
The average error of the estimated source history may be defined as

average error ¼
1

Nt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNt

j¼1

½Cinðtj Þ � Cinðtj Þ�
2

vuut , ð7Þ

where CinðtÞ is the estimated source history and CinðtÞ is the exact source.
This inverse problem is ill-posed, the unavoidable measurement noise and numerical

computing errors often lead to unstable or inaccurate results. Therefore, a regularization

technique have to be adopted to stabilize the solution, here the Tikhonov regularization

method [21] is used, which change the objective function to a well-posed

min J ½CinðtÞ� ¼

Z tf

t¼0

XN
i¼1

ðCðxi, tÞ � Yðxi, tÞÞ
2 dtþ �2 LCinðtÞ

�� ��2, ð8Þ

where � is the regularization parameter, the first term and the second term on the

right-hand side of Equation (8) is the discrepancy term and the regularization term,

respectively. The regularization operator is generally of the form

LCinðtÞ
�� ��2¼ Z tf

0

dnCinðtÞ

dtn

� �2

dt: ð9Þ

The zeroth- and first-order regularization terms are commonly used.
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If n¼ 0, zeroth-order regularization term is used, which minimizes the norm of the

input function:

min J ½CinðtÞ� ¼

Z tf

t¼0

XN
i¼1

ðCðxi, tÞ � Yðxi, tÞÞ
2 dtþ �2

Z tf

t¼0

ðCinðtÞÞ
2 dt: ð10Þ

If n¼ 1, first-order regularization is used, which minimizes the oscillatory nature of the

input function:

min J ½CinðtÞ� ¼

Z tf

t¼0

XN
i¼1

ðCðxi, tÞ � Yðxi, tÞÞ
2 dtþ �2

Z tf

t¼0

dCinðtÞ

dt

� �2

dt: ð11Þ

The regularization stabilizes the solution, minimization of J ½CinðtÞ� in Equation (8) is a

trade-off between the matching data, and stabilizing solution. The values chosen for �
influence the stability of the solution. As �! 0, the solution exhibits oscillatory behaviour

and becomes unstable. On the other hand, with large values of �, the solution is damped

and deviates from the exact result. Tikhonov suggested that � should be selected according

to the discrepancy principle – the minimum value of the objective function is equal to the

sum of the squares of the errors due to the measurements. It is also possible to use the

L-curve method [22,23] to find the best value of �, in which the regularization term

LCinðtÞ
�� ��2 is plotted on a log–log plot against the residual termR tf
t¼0

PN
i¼1 ðCðxi, tÞ � Yðxi, tÞÞ

2 dt for many values of the regularization parameter �. The
value of the regularization parameter at the corner of the L-curve is the optimal parameter

value. This method illustrates the trade-off between minimizing the residual and

minimizing the regularization.

3. An Improved QPSO with a perturbation operator

3.1. Particle swarm optimization

PSO algorithm is a population-based optimization technique originally introduced by

Kennedy and Eberhart in 1995 [20]. A PSO system simulates the knowledge evolvement of

a social organism, in which individuals (particles) representing the candidate solutions of

an optimization problem traverse through a multidimensional search space in order to

allow the optima or sub-optima to be determined. The position of each particle is

evaluated according to a goal (objective function) at every iteration, and particles in a local

neighbourhood share memories of their ‘best’ positions. These memories are used to adjust

the particles’ own velocities, and their subsequent positions. It has already been shown that

the PSO algorithm is comparable in performance with and may be considered as an

alternative to the genetic algorithm (GA) [24].
In PSO system with M particles, each individual is treated as a volume-less particle in

the D-dimensional space, with the position vector and velocity vector of particle i at the

kth iteration represented as XiðkÞ ¼ ðXi1ðkÞ,Xi2ðkÞ, . . . ,XiDðkÞÞ and ViðkÞ ¼ ðVi1ðkÞ,

Vi2ðkÞ, . . . ,ViDðkÞÞ.
There are different versions of PSO algorithm proposed by various researchers to

improve the performance of the algorithm since it was first proposed in 1995. The most

important improvements are the version with the inertia weight ! [25] and the one with
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constriction factor � [26]. In inertia weight PSO, the velocity is updated by

Viðkþ 1Þ ¼ ! � ViðkÞ þ c1 � r1 � ðPi � XiðkÞÞ þ c2 � r2 � ðPg � XiðkÞÞ, ð12Þ

! ¼ ð!0 � !1Þ � ðkmax � kÞ=kmax þ !1, ð13Þ

while in the constriction factor model, the velocity is manipulated by

Viðkþ 1Þ ¼ � � ½ViðkÞ þ c1 � r2 � ðPiðkÞ � XiðkÞÞ þ c2 � r2 � ðPg � XiðkÞÞ�, ð14Þ

where

� ¼
2

2� ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 4�

p��� ��� , � ¼ c1 þ c2, �4 4: ð15Þ

Then the particle moves according to the following equation:

Xiðkþ 1Þ ¼ XiðkÞ þ Viðkþ 1Þ, ð16Þ

where i ¼ 1, 2, . . . ,M, ! is the inertia weight, which may decrease linearly according to the
generation, c1 and c2 are the acceleration coefficients, r1 and r2 are the random numbers
uniformly distributed in (0, 1), Pi ¼ ðPi1,Pi2, . . . ,PiDÞ is the best previous position (the
position giving the best objective function value) of particle i which is known as the
personal best position and Pg ¼ ðPg1,Pg2, . . . ,PgDÞ is the position of the best particle
among all the particles in the population which is known as the global best position. In this
article, PSO with inertia weight (PSO-IW) is used to solve the inverse source history
problem, in which every particle Xi(k) is treated as a candidate solution of the unknown
source function Cin(t).

XiðkÞ ¼ fXi1ðkÞ,Xi2ðkÞ, . . . ,XiDðkÞg

¼ fCinðt1Þ,Cinðt2Þ, . . . ,CinðtNt
Þg:

ð17Þ

Here the dimension D is equal to the number of time steps Nt. Equation (8) is used as
the objective function to evaluate the particles.

3.1.1. Procedure of PSO-IW for this inverse source problem

Initialize particles with random positions and velocities:

Xð0Þ ¼ fX1ð0Þ,X2ð0Þ, . . . ,Xið0Þ, . . . ,XMð0Þg;

Vð0Þ ¼ fV1ð0Þ,V2ð0Þ, . . . ,Við0Þ, . . . ,VMð0Þg;

Initialize pbest P, gbest Pg, inertia weight ! and acceleration coefficient c1, c2, k¼ 0,
stopping criteria ";

While (k5 kmax) or (" is not reached)
Update position of all particles according to Equation (16);
Update velocity of all particles according to Equation (12);
Apply velocity limits Vmax to velocities;
Evaluate all the particles J ½XiðkÞ�, i ¼ 1, 2, . . . ,M according to Equation (8);
Update pbest P and gbest Pg;
Update inertia weight ! according to Equation (13);
k ¼ kþ 1;

End while
Output gbest Pg.
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3.2. Quantum-behaved particle swarm optimization

The main disadvantage of the original PSO algorithm is that it is not guaranteed to be

global convergent [27]. The concept of a QPSO was developed to address the disadvantage

and first reported at conferences, such as in Refs [17–19]. Trajectory analysis in Ref. [28]

demonstrated the fact that the convergence of the PSO algorithm may be achieved if each

particle converges to its local attractor, pi ¼ ð pi1, pi2, . . . , piDÞ is defined at the coordinate

piðkÞ ¼ ’ � PiðkÞ þ ð1� ’Þ � PgðkÞ, ð18Þ

where Pi is the personal best position of particle i and Pg is the global best position of all

particles, ’ 2 ð0, 1Þ. It can be seen that pi is a stochastic attractor of particle i that lies in a

hyper-rectangle with Pi and Pg being two ends of its diagonal and moves following Pi

and Pg. In fact, when the particles are converging to their own local attractors, their

personal best positions, local attractors and the global best positions will all converge to

one point, leading the PSO algorithm to converge.
The particle moves around and careens towards point pi with its kinetic energy

(velocity) declining to zero, like a returning satellite orbiting the earth. From the point

view of dynamics, to avoid explosion and to guarantee convergence, the particle must be in

bound state, move in an attraction potential field whose centre is point pi. In terms of

classical dynamics, the particle in the original PSO system must fly in an attraction

potential field to guarantee its bound state. Correspondingly, it is also indispensable for

the particles of PSO with quantum behaviour to move in a potential field that can ensure

bound state of the particle. In QPSO, � potential well is employed to bind the particle for

the sake of convergence. The philosophy of the QPSO is formulated as follows.
We assume that the PSO system is a quantum system, with each particle in a quantum

state formulated by wave function  .  
�� ��2 is the probability density function of the

position of the particle. Inspired by the analysis of convergence of the traditional PSO in

Ref. [28], we further assume that, at iteration k, particle i moves in D-dimensional space

with a � potential well at pi(k). Correspondingly, the wave function at iteration kþ 1 is

 ðXiðkþ 1ÞÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
LiðkÞ

p exp �
Xiðkþ 1Þ � piðkÞ
�� ��

LiðkÞ

� �
: ð19Þ

Hence, the probability density function Q is a double exponential distribution

as follows:

QðXiðkþ 1ÞÞ ¼  ðXiðkþ 1ÞÞ
�� ��2¼ 1

LiðkÞ
exp �2 �

Xiðkþ 1Þ
�� ��� piðkÞ

LiðkÞ

� �
ð20Þ

and thus the probability distribution function F is

FðXiðkþ 1ÞÞ ¼ exp �2 �
Xiðkþ 1Þ � piðkÞ
�� ��

LiðkÞ

� �
, ð21Þ

where Li(k) is the standard deviation of the double exponential distribution. Using the

Monte Carlo method, we can obtain the position Xi at iteration kþ 1 as

Xiðkþ 1Þ ¼ piðkÞ �
LiðkÞ

2
ln

1

u

� �
, u 	 Uð0, 1Þ, ð22Þ
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where u is a random number uniformly distributed in (0, 1), Li(k) is evaluated by

LiðkÞ ¼ 2 � � � CðkÞ � XiðkÞ
�� ��, ð23Þ

where C, called mean best position, is defined as the mean of the pbest positions of all
particles. That is

CðkÞ ¼ ðC1ðkÞ,C2ðkÞ, . . . ,CDðkÞÞ ¼
1

M

XM
i¼1

Pi1ðkÞ,
1

M

XM
i¼1

Pi2ðkÞ, . . . ,
1

M

XM
i¼1

PiDðkÞ

 !
, ð24Þ

where M is the population size and Pi is the personal best position of particle i. Hence, the
position of the particle updates according to the following equation:

Xiðkþ 1Þ ¼ piðkÞ � � � CiðkÞ � XiðkÞ
�� �� � ln 1

u

� �
: ð25Þ

The parameter � in Equation (25) is known as the contraction–expansion coefficient,
which can be adjusted to control the speed of convergence, in many cases, good
performance may be achieved if � varies linearly from �0 to �1 (�04�1) over the iteration
in the QPSO method, i.e.

� ¼ ð�0 � �1Þ � ðkmax � kÞ=kmax þ �1, ð26Þ

where kmax is the maximum number of iterations and k is the current iteration number.
The QPSO method is different from the PSO method in that the iterative update of the

former method is given by Equation (25) ensuring particles appear in the entire
D-dimensional search space during each of the iteration steps, while the particles in the
latter method can only move in a bounded space. Using the global convergence criterion in
Ref. [27], one can conclude that the QPSO method is a global convergent algorithm,
whereas the original PSO method with Equation (12) or (14) is not. Moreover, unlike the
original PSO method, the QPSO method does not require velocity vectors for the particles
at all and has fewer parameters to control, making the method easier to implement.
Experimental results performed on some well-known benchmark functions show that the
QPSO method has better performance than the original PSO method [17–19].

3.2.1. Procedure of QPSO for inverse source problems

Initialize particles with random positions

Xð0Þ ¼ fX1ð0Þ,X2ð0Þ, . . . ,Xið0Þ, . . . ,XMð0Þg;

Initialize pbest P, gbest Pg, contraction–expansion coefficient �, k ¼ 0, stopping
criteria ";

While (k5 kmax) or (" is not reached)
Compute the mean best position C by Equation (24);
Compute p by Equation (18);
Update the positions of all particles according to Equation (25);
Evaluate all the particles J ½XiðkÞ�, i ¼ 1, 2, . . . ,M according to Equation (8);
Update pbest P and gbest Pg;
Update contraction–expansion coefficient according to Equation (26);
k ¼ kþ 1;

End while
Output gbest Pg.
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3.3. An improved QPSO

The global convergence of QPSO or other random search algorithm means that the
algorithm will hit the global optimal solution with infinite number of iterations. However,
when the algorithm is applied to the real-world problems, only a finite number of
iterations is allowed, so that the premature convergence is inevitable and there is much
room for improvement for QPSO, particularly when the algorithm is used to solve the
present complex ill-posed problem. So far, many supplication strategies have been
proposed to enhance the search ability of the algorithm [29–31]. In this study, we
incorporate a novel perturbation operation into the algorithm to enhance the efficiency of
QPSO in finding the global optimal solutions on complex functional terrains [32,33]. In
this improved version of QPSO, the diversity of the swarm can be enhanced by exerting the
random perturbation on each particle as follows:

X
per
i ðkÞ ¼ XiðkÞ þ pertcoff � XiðkÞ � ðr1 � r2Þ, ð27Þ

where pertcoff ¼ a� expð2:3025851� ðkmax � kÞ=ðkmax � 1ÞÞ is a nonlinear perturbation
coefficient varying from 10� a to a (a is a scale parameter which can be adjusted
according to the specific problems) shown in Figure 1, and r1, r2 are uniformly distributed
random numbers in (0,1). This diversification strategy can indeed improve the global
search ability of the swarm, particularly at the later stage of search process when the
diversity is at such a low level that the further global search is impossible for the particles,
consequently leading the algorithm to premature convergence.

3.3.1. Procedure of improved QPSO (QPSO-PER) for inverse source problems

Initialize particles with random positions Xð0Þ ¼ fX1ð0Þ,X2ð0Þ, . . . ,Xið0Þ, . . . ,XMð0Þg;
Initialize pbest P, gbest Pg, contraction–expansion coefficient �, k¼ 0, stopping

criteria ";
While (k5kmax) or (" is not reached)
Compute the mean best by Equation (24);
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percoef = 0.01*exp(2.302585*(1000−gen)/(1000−1))

Figure 1. Perturbation coefficient decreasing with generation.
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Compute p by Equation (18);
Update the positions of all particles according to Equation (25);
Evaluate all the particles J ½XiðkÞ�, i ¼ 1, 2, . . . ,M according to Equation (8)
Do perturbations to all particles according to Equation (27);
Re-evaluate all the particles J ½X

per
i ðkÞ�, i ¼ 1, 2, . . . ,M according to Equation (8);

Update pbest P and gbest Pg;
Update contraction–expansion coefficient according to Equation (26);
k ¼ kþ 1;

End while
Output gbest Pg.

4. Numerical tests for the improved QPSO with perturbation operator

4.1. Benchmarks and parameters settings

Seven well-known benchmarks were used to evaluate the performance of the proposed
improved QPSO method with a perturbation operator (QPSO-PER), both in terms of the
optimum solution and the rate of convergence to the optimum solution. These benchmark
functions were widely used in evaluating performance of evolutionary methods
[17–20,24–28]. All the functions are all minimization problems. Functions (f1–f5) have
the global minimum at the origin or very close to the origin, while functions (f6–f7) have
the global optimum at o ¼ ½o1, o2, . . . , on� and the global minimum at f bias. All
benchmark functions used are given in Table 1, which also shows the range of population
initialization and the search scope for each function.

Table 1. Benchmarks for simulations.

Functions Mathematical expression

Range of

search Initialization

Sphere function f1ðxÞ ¼
Pn
i¼1

x2i ð�100, 100Þn ð50, 100Þn

Rosenbrock function f2ðxÞ ¼
Pn
i¼1

½100ðxiþ1 � x2i Þ
2
þ ðxi � 1Þ2� ð�100, 100Þn ð15, 30Þn

Rastrigrin function f3ðxÞ ¼
Pn
i¼1

½x2i � 10 cosð2�xiÞ þ 10� ð�10, 10Þn ð2:56, 5:12Þn

Griewank function f4ðxÞ ¼
1

4000

Pn
i¼1

x2i �
Qn
i¼1

cosðxiffi
i
p Þ þ 1 ð�600, 600Þn ð300, 600Þn

Schaffer’s function f5ðxÞ ¼ 0:5�
ðsin

ffiffiffiffiffiffiffiffiffiffi
x2þy2
p

Þ
2
�0:5

ð1:0þ0:001ðx2þy2ÞÞ2
ð�100, 100Þ2 ð15, 30Þ2

Shifted sphere function f6ðxÞ ¼ f biasþ
Pn
i¼1

ðxi � oiÞ
2f bias ¼ �450 ð�100, 100Þn ð�100, 100Þn

Shifted Ackley function

f7ðxÞ ¼ 20� 20 exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

xi � oið Þ
2

s !

þ e� exp
1

n

Xn
i¼1

cos 2� xi � oið Þð Þ

 !
þ f bias

f bias ¼ �140

ð�32, 32Þn ð�32, 32Þn

Notes: o ¼ ½o1, o2, . . . , , on� – the shifted global optimum; f_bias – global optimal function value.
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Simulations were carried out to observe the rate of convergence and the quality of the

optimum solution of the proposed method introduced in this investigation in comparison
with the original PSO, GA and simple QPSO. The neighbourhood of a particle is the

whole population, which is named the global best model. All benchmarks with the
exception of Schaffer’s function were tested with dimensions 10, 20, and 30. For each

function, 50 trials were carried out and the average optimal value and the standard
deviations are presented. A different number of maximum generations (Gmax) is used

according to the dimensionality of the problem under consideration. In this article, all
empirical experiments were carried out with a population size of 30.

4.2. Results from benchmark simulations

The mean best values and standard deviation for 50 trials of each algorithm on each of the

nine benchmark functions are listed in Table 2. The numerical results show that the
improved QPSO-PER performed better on almost all the tested functions than the original

PSO and simple QPSO.
The convergences (optimum solution over the iterations) of the original PSO, simple

QPSO and the improved QPSO are shown in Figure 2. All the benchmarks except

Schaffer’s f6 function are considered in 30 dimensions. In Figure 2(a)–(d), QPSO-PER
works almost the same as or even worse than QPSO in the former stages, while due to the

perturbation applied to the particles, the diversity of the population increases, so the
particles can avoid becoming premature and escape from the local optima.

5. Numerical experiments of QPSO for solving the inverse source problems

In order to verify the efficiency and validity of the proposed methods and compare the

performance of the original PSO, simple QPSO and improved QPSO to solve this inverse
source problem, a typical example used by many researchers [1–6] is considered here:

cinðtÞ ¼ exp �
ðt� 130Þ2

2 � 52

� �
þ 0:3 exp �

ðt� 150Þ2

2 � 102

� �
þ 0:5 exp �

ðt� 190Þ2

2 � 72

� �
: ð28Þ

We reconstructed the source history using measured concentration sampling between
t 2 ½0, 300� (tf ¼ 300), with V ¼ 1:0 and D ¼ 1:0. The time step is chosen as Dt ¼ 3:0 and

the mesh size is set as Dx ¼ 1:0.
Figure 3 shows the source history, in which we can easily see that three peaks exist.

This true release history is used to generate the contaminant concentration that is treated
as the simulated measured concentration. Figure 4 shows the concentration distribution

after 300 time units and the locations of the measurements.
In our numerical experiments, the parameters in original PSO are set, respectively, as

M ¼ 50, D ¼ 300=Dt ¼ 300, Vmax ¼ 1:2, c1 ¼ c2 ¼ 2:0, !0 ¼ 0:9, !1 ¼ 0:4 and

kmax ¼ 2000. In order to compare the results in the same condition, most of the
parameters in simple QPSO, and the improved QPSO were set to be the same value as

those in the original PSO.
To compare the results for situations involving random measurement errors, normal

distribution uncorrelated errors with zero mean and constant standard deviation were
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assumed. The simulated inexact measurement data Yðxi, tÞ can be expressed as

Yðxi, tÞ ¼ Cexactðxi, tÞ þ "�iCexactðxi, tÞ, ð29Þ

where Cexactðxi, tÞ is the solution of the direct problem with the exact value of CinðtÞ, " is the
noise level and �i is the ith standard normal random deviation of the noise which lies

within the specified confidence bound. If we use a 99% confidence interval,

�2:5765 �i 5 2:576.
First, numerical tests were performed to evaluate the effects of the sampling time (ts)

and location (xs) on the solution of the inverse source problem. Details of the test runs are

listed in Table 3. The results are presented in Figure 5 and Table 4. Obviously, samples

obtained at many locations over a period of time produce more accurate results than other

two types of sampling.
To analyse the effect of the regularization term on the solution of the inverse source

history problem, two different scenarios were tested. The details are given in Table 5.
Figure 6 shows the reconstructed source history by QPSO, in which exact measure-

ments without noise were used, first- and zeroth-order regularization terms were tested, the

optimal regularization parameters obtained by the L-curve method are � ¼ 6� 10�3. The

compared results are given in Table 6. From the results, we can note that the first-order
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Figure 2. The comparison of convergence between the original PSO, simple QPSO, and QPSO-PER:
(a) f1 (sphere), (b) f2 (Rosenbrock), (c) f3 (Rastrigrin), (d) (Griewank), (e) f6 (Schaffer), (f) (shifted
sphere) and (g) (shifted Ackley).
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Figure 2. Continued.
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Figure 3. The time-varying contaminant release history.
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regularization can deal with the non-smooth function effectively, while the zeroth-order

regularization term cannot reduce the oscillatory feature of the input function. The most

important thing to us is that the QPSO method can reconstruct the unknown source

history effectively.
In order to verify the stability of the QPSO for solving the inverse source history

problem, measured concentration with noise was used in scenarios of Run6 and Run7, and

results are shown in Figure 7 and Table 7. It can be noted from the results that the QPSO

method was able to reconstruct the source history almost accurately even though with

noisy measured samples.
For performance comparison, PSO and GA were also adopted to solve the inverse

source history problems, testing scenarios are listed in Table 8. We can note from (Table 9)

and (Figures 8–9) that the reconstructed source history and performance obtained by the

QPSO were much better than that from the PSO and GA. For the stability in particular,

the QPSO was more robust in dealing with the noisy samplings than its competitors.
Finally, the improved QPSO with a perturbation operator was applied to reconstruct

the contaminant source history, with the test scenarios listed in Table 10. The results are

shown in Figure 10 and Table 11, from which we can observe that the improved QPSO

with perturbation operator was able to estimate the unknown source history function

much more accurately than that obtained by other methods. The convergence of the
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Figure 4. Contaminant plume after 300 time units, with measurement locations denoted by circles.

Table 3. Test scenarios for the analysis of the sampling time and location.

Run number Sampling time Sampling location

Run1 ts ¼ tf 25 locations denoted in Figure 4
Run2 ts ¼ Dt, 2Dt, . . . , , tf xs ¼ L=2 (middle of the domain)
Run3 ts ¼ Dt, 2Dt, . . . , , tf 25 locations denoted in Figure 4
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Figure 5. Results of sampling time and location verification by simple QPSO in Run1–Run3.
Reconstructed source history with data in: (a) Run1, (b) Run2 and (c) Run3.

Table 5. Test scenarios for the analysis of the regularization.

Run number Regularization order Noise level (")

Run4 First order 0
Run5 Zeroth order 0
Run6 First order 0.05
Run7 First order 0.2

Table 4. Results of analysis of the sampling time and location.

Run number Average error Residual norm

Run1 7.96E�03 5.20E�06
Run2 2.12E�02 1.00E�04
Run3 2.95E�03 3.38E�04
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Figure 7. Results of stability verification for simple QPSO in Run6 and Run7 with noisy
measurements. Reconstructed source history using: (a) Run6 and (b) Run7.
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Figure 6. Results of regularization term verification by simple QPSO in Run4 and Run5, with noise-
free measurements. Reconstructed source history with: (a) Run4 and (b) Run5.

Table 6. Results of the analysis of the regularization.

Run number Average error Residual norm

Run4 1.81E�03 2.03E�04
Run5 3.49E�03 3.12E�04
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Figure 9. Reconstructed source history by GA in: (a) Run10 and (b) Run11.
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Figure 8. Reconstructed source history by original PSO in: (a) Run8 and (b) Run9.

Table 8. Testing scenarios by the original PSO and GA.

Run number Methods Noise level (")

Run8 PSO 0.0
Run9 PSO 0.1
Run10 GA 0.0
Run11 GA 0.1

Table 7. Results of the analysis of noisy measurements.

Run number Average error Residual norm

Run6 2.94E�03 7.66E�02
Run7 2.07E�03 0.29
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methods used in this article for solving the inverse source history problems is shown in
Figure 11, which shows the better convergence properties of QPSO and QPSO-PER.

6. Conclusions

An improved version of the QPSO-PER is proposed in this article, with the test results of
the benchmark functions demonstrating the validity and efficiency of the proposed
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Figure 10. Reconstructed source history by QPSO-PER in: (a) Run12 and (b) Run13.

Table 9. Results of the original PSO and GA for solving the inverse source history problem.

Run number Average error Residual norm

Run8 7.59E�03 2.58E�03
Run9 1.02E�02 0.31
Run10 1.10E�02 0.32
Run11 7.10E�03 0.46

Table 10. Testing scenarios by the improved QPSO (QPSO-PER).

Run number Methods Noise level (")

Run12 QPSO-PER 0.0
Run13 QPSO-PER 0.1

Table 11. Results of QPSO-PER for solving the inverse source problems.

Run number Average error Residual norm

Run12 1.59E�03 1.89E�04
Run13 3.64E�03 0.28
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improved method. Both the optimum solution and the convergence rate of QPSO-PER are
better than other methods, or have competitive performance. Because of the perturbation
operator introduced in the QPSO-PER, particles can escape from the local optimum and
avoid being premature. After that, the proposed methods were used to solve the inverse
contaminant source history problems, in which no prior information about the functional
form is available and many peaks exist in the function. The numerical experimental results
suggest that these methods were all able to converge to the optimal or sub-optimal
solutions. The QPSO-PER was more robust than other methods in dealing with the noisy
samplings.

According to the existing literatures, in which other gradient-based deterministic
methods (MRE, TR) are used to reconstruct the unknown source history, the great
advantages of the stochastic methods, such as QPSO, are that they do not need to compute
the complicated gradient of the objective function, and can guarantee the convergence to
the global optimum.

Considering the difficulty of computing the Lagrange multiplier in the MRE method,
our future study will focus on proposing a hybrid method to combine the stochastic and
MRE methods, and then applying it to solve the more complicated inverse problems.
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