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O B J E C T I V E S We hypothesized that noninvasive molecular imaging of activated von Willebrand

factor (vWF) on the vascular endothelium could be used to detect a high-risk atherosclerotic phenotype.

B A C K G R O U N D Platelet-endothelial interactions have been linked to increased inflammatory

activation and prothrombotic state in atherosclerosis. These interactions are mediated, in part, by

platelet glycoprotein (GP) Ib�, suggesting that dysregulated endothelial vWF is a marker for high-risk

atherosclerotic disease.

M E T H O D S Microbubbles targeted to activated vWF were prepared by surface conjugation of

recombinant GPIb�. Flow-chamber studies were used to evaluate attachment of targeted microbubbles

to immobile platelet aggregates bearing activated vWF. Contrast-enhanced ultrasound (CEU) molecular

imaging of the aorta from mice was performed: 1) ex vivo after focal crush injury and blood perfusion;

and 2) in vivo in mice with advanced atherosclerosis produced by deletion of the low-density lipoprotein

receptor and ApoBec-1 editing peptide (LDLR–/–/ApoBec-1–/–).

R E S U L T S In flow-chamber studies, tracer attachment to vWF was �10-fold greater for microbubbles

bearing GPIb� compared with control microbubbles (p � 0.01). In the ex vivo aortic injury model, CEU signal

enhancement for vWF-targetedmicrobubbles occurred primarily at the injury site andwas 4-fold greater than

at noninjured sites (p � 0.05). In LDLR–/–/ApoBec-1–/– mice, inflammatory cell infiltrates and dense vWF

expression on the intact endothelium were seen in regions of severe plaque formation. Scanning electron

microscopy demonstrated widespread platelet-endothelial interaction and only few sites of endothelial

erosion. On CEU, signal enhancement for vWF-targeted microbubbles was approximately 4-fold greater (p �

0.05) in LDLR–/–/ApoBec-1–/– compared with wild-type mice. En face aortic microscopy demonstrated regions

where platelet adhesion and microbubble attachment colocalized.

C O N C L U S I O N S Molecular imaging using GPIb� as a targeting moiety can detect the presence of

activated vWF on the vascular endothelium. This strategy may provide a means to noninvasively detect

an advanced prothrombotic and inflammatory phenotype in atherosclerotic disease. (J Am Coll Cardiol
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argeted imaging probes for noninvasive im-
aging of vascular phenotypes are being devel-
oped to evaluate an atherosclerotic profile.
This approach may be useful for identifying

igh-risk patients or lesions and for guiding man-
gement. Molecular imaging strategies for evaluat-
ng an atherosclerotic phenotype broadly include
hose that evaluate inflammation, oxidized lipid
ontent, protease activation, plaque neovasculariza-
ion, or thrombus, all of which are interrelated
hrough common cellular and molecular mediators.

See page 956

In this study, we hypothesized that molecular
maging of von Willebrand factor (vWF) in its
ctivated state with targeted contrast ultrasound

could be used to detect a high-risk and
prothrombotic atherosclerotic phenotype.
Platelet recruitment and adhesion is initi-
ated by the interaction of platelet glyco-
protein (GP) Ib-IX-V complex with the
A1-domain of vWF that has undergone
conformational activation (1,2). Activa-
tion of vWF is promoted by attachment to
matrix proteins, high shear stress, or dys-
regulated vWF multimerization, all of
which may occur in atherosclerosis (1–4).
Hence targeted imaging of activated vWF
could detect the inaugural events that lead
to thrombotic complications of atheroscle-
rosis or to detect an inflammatory milieu
since transient platelet adhesion promotes
endothelial activation (4,5). In this study,
the use of recombinant GPIb as a target-
ing moiety on microbubble contrast agents

s particularly advantageous for promoting attach-
ent in high-shear vessels because GPIb subunit

inding to vWF is characterized by “catch-bond”
inetics (2). To test our hypothesis, we used flow-
hamber experiments to characterize attachment of
argeted microbubbles to activated vWF. Contrast-
nhanced ultrasound (CEU) molecular imaging was
erformed in ex vivo models of endothelial injury
nd microthrombus formation and in vivo in a
urine model of advanced atherosclerosis.

E T H O D S

argeted microbubble preparation. Biotinylated,
ipid-shelled decafluorobutane microbubbles were
repared as previously described (6). Recombinant

e

-

and

old

r

uman GPIb�, representing amino acids 1 to 290 a
32.3 kD) of GPIb, was used as a targeting moiety.
he peptide was biotinylated and conjugated to bio-

inylated microbubbles via a streptavidin link as pre-
iously described (6). For flow-chamber attachment
tudies, microbubbles were fluorescently labeled with
ioctadecyl-tetramethylindocarbocyanine perchlorate
r dioctadecyloxacarbocyannine perchlorate (DiO).
he mean diameter of microbubbles on electrozone

nalysis (Multisizer III, Beckman Coulter Inc, Fuller-
on, California) was 1.9 to 2.4 �m and was not
ignificantly different between preparations.
low-chamber adhesion. Glass capillary tubes were
oated with fibrillar collagen by incubation with 100
g/ml of collagen (Chrono-Log, Havertown,
ennsylvania) and were blocked with bovine serum
lbumin. The tubes were placed in a flow chamber
ounted on an upright microscope with a �40

bjective (7). Whole blood collected from healthy
olunteers was anticoagulated with corn trypsin
nhibitor (40 �g/ml) and was infused through the
ubes for 3 min at a shear rate of 500 s–1. Either
WF-targeted or control microbubbles (5 � 106 ml–1)
uspended in 4-(2-hydroxyethyl)-1-piperazineethane-
ulfonic acid–Tyrode buffer were infused at a shear
ate of 300 s–1 for 3 min followed by a 4-min wash.
he density of microbubble adhesion in 10 optical
elds (0.3 mm2) was determined using phase-
ontrast and fluorescent microscopy.
argeted imaging ex vivo. The study was approved
y the Animal Care and Use Committee of the
regon Health & Science University. The de-

cending aorta from 20- to 30-week-old C57Bl/6
ice (n � 8) was removed, and the lumen was

annulated at each end. A mild crush injury 3 mm
n length was made in the mid portion of the aorta.

hole blood anticoagulated with heparin (10
/ml) was infused through the aorta for 5 min at a

hear rate of 500 s–1. Targeted or control micro-
ubbles (1 � 106/ml) suspended in a 1:4 dilution of
hole blood in phosphate buffered saline was in-

used for 5 min followed by a 3-min wash. CEU
Contrast-Pulse Sequencing, Sequoia; Siemens

edical Systems, Mountain View, California) was
erformed at 7 MHz using a long-axis imaging
lane. Images were acquired using low-power im-
ging at a mechanical index (MI) of 0.16 before and
fter a brief high-MI (1.9) destructive frame se-
uence. Several high-frequency (14 MHz) B-mode
mages were also captured for anatomic reference.

ata were analyzed as previously described to elim-
nate signal contribution from nonretained agent
6). At the injury and remote noninjured sites,
B B R E V I A T I O N S

N D A C R O N YM S

EU � contrast-enhanced

ltrasound

iO �

ioctadecyloxacarbocyannin

erchlorate

ITC � fluorescein

sothiocyanate

P � glycoprotein

DLR–/–-/ApoBec-1–/– � low

ensity lipoprotein receptor

poBec-1– deficient mice

I � mechanical index

ITA � pixel-intensity thresh

nalysis
coustic signal enhancement was measured, and the



p
m
i
o
i
I
u
5
l
(
o
(
a
b
Z
i
i
I
w
d
A
A
(
i

v
l
C
w
w
w
M
s
p
1
r
b
d
f
w
a
f
m
p
t
t
b
f
u

J A C C : C A R D I O V A S C U L A R I M A G I N G , V O L . 3 , N O . 9 , 2 0 1 0

S E P T E M B E R 2 0 1 0 : 9 4 7 – 5 5

McCarty et al.

Molecular Imaging of Plaque vWF

949
ercentage of pixels demonstrating signal enhance-
ent was determined using an automated pixel-

ntensity threshold analysis (PITA) using a thresh-
ld 3 SDs greater than the mean pre-contrast
ntensity (8).
mmunohistology for platelet adhesion. In 4 aortas
ndergoing ex vivo crush injury and blood infusion,
0 �g/ml of fluorescein isothiocyanate (FITC)–
abeled rat anti-mouse platelet monoclonal antibody
MWReg30; BD Biosciences, San Jose, California)
r FITC-labeled nonspecific monoclonal antibody
R3-34, BD Pharmingen) was infused into the
orta. The endothelial surface was imaged en face
y fluorescent microscopy (Axioscop2-FS; Carl
eiss, Thornburg, New York) with a silicon-

ntensified tube camera (SIT68; Dage-MTI, Mich-
gan City, Indiana).
n vivo targeted imaging of atherosclerosis. Control
ild-type C57Bl/6 mice and mice with genetic
eletion of the low-density lipoprotein receptor and
poBec-1 mRNA editing peptide (LDLR–/–/
poBec-1–/–) (9) were studied at 40 weeks of age

n � 7 each). Mice were anesthetized with inhaled
soflurane, and a cannula was placed in a jugular

Figure 1. Attachment of vWF-Targeted Microbubbles to Thromb

Examples illustrating binding of fluorescently-labeled control (A) an
rich thrombus in the flow chamber. (C) Fluorescent immunohistolog
tive staining) in regions of microthrombus formation. (D) Mean (�

–1
(MBGPIb) or control (MBc) microbubbles under shear (500 s ). *p � 0.01
ein. The ascending aorta and arch were imaged in
ong axis from a right parasternal imaging plane.
ontrol and vWF-targeted microbubbles (1 � 106)
ere injected intravenously. CEU with each agent
as performed 7 min after injection. Several frames
ere obtained with high-power (MI 1.2) imaging.
icrobubbles in the sector were then fully de-

troyed by imaging at an MI of 1.9, and several
ost-destructive frames were obtained at an MI of
.2 and a pulsing interval of 1 s. A single image
eflecting only retained microbubbles was created
y digitally subtracting several averaged post-
estructive frames from the first pre-destruction
rame. Intensity measurement and PITA analysis
ere performed from a region of interest placed

round the ascending aorta and arch guided by
undamental imaging at 14 MHz. In additional

ice (LDLR–/–/ApoBec-1–/– and wild type),
latelets were labeled in vivo by intravenous injec-
ion of rhodamine-6G (25 �g) followed by injec-
ion of 1 � 107 DiO-labeled vWF-targeted micro-
ubbles. The aorta was removed after 5 min, and en
ace dual-fluorescent microscopy was used to eval-
ate colocalization of platelets with microbubbles.

nder Shear

n Willebrand factor (vWF)–targeted (B) microbubbles to platelet-
emonstrating surface-bound vWF (fluorescein isothiocyanate–posi-
dard error of the mean) density of attachment for vWF-targeted
i U

d vo
y d
stan
compared with MBGPIb. Raw data available in Online Figure 1.
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istology and immunohistochemistry. Immunohisto-
hemistry for vWF was performed in the collagen-
oated capillary tubes and perfusion-fixed aortas
rom 3 LDLR–/–/ApoBec-1–/– and 3 wild-type
ice. Movat’s pentachrome stain was performed for

ssessment of plaque morphometry. Immunohisto-
hemistry for vWF expression was performed with
rabbit polyclonal primary antibody (Ab6994; Ab-

am, Cambridge, Massachusetts), and secondary
ntibodies were either FITC-labeled (capillary
ubes) or biotinylated (aortas) with secondary per-
xidase staining (ABC Vectastain Elite; Vector
aboratories, Burlingame, California). Control ex-
eriments were performed with secondary antibody
lone.
lectron microscopy. The aorta was collected from
wild-type and 2 LDLR–/ApoBec-1– mice and

xed in Dulbecco’s Modified Eagle Medium
uffer containing 1.5% glutaraldehyde and 1.5%
araformaldehyde, then post-fixed in 1% Os-
ium tetroxide. Samples were dehydrated in a

Figure 2. Targeted CEU Imaging of Ex Vivo Aortic Injury

Images show: (A) the ex vivo aorta after focal injury (I); (B) a high-r
ing infusion of a microbubble agent; (D) CEU after control nontarge
tor–targeted microbubbles (MBGPIb) and wash; and (F) fluorescent m
labeled platelet adhesion. Arrows denote the site of injury. (G) Mea
measured at the injury or remote site. (H) Mean (� SEM) percentag
ment on pixel-intensity threshold analysis. *p � 0.05 versus glycopr

segment. AU � acoustic units; ROI � region of interest.
raded series of ethanol to 100%, rinsed in
etramethyl silane, and air dried. Samples were
putter-coated with gold palladium, and the lu-
inal surface was observed by scanning electron
icroscopy (DS-130, ISI/TOPCON, Tokyo, Ja-

an) operated at 10 KV.
tatistical analysis. Data were analyzed using RS/1
Domain Manufacturing Corp., Burlington, Massa-
husetts). One-way analysis of variance was per-
ormed for normally distributed variables with post-
oc testing of individual comparisons with paired or
npaired t test. Bonferroni correction was applied
or multiple comparisons. Nonparametric data were
ompared with the Mann-Whitney rank-sum test.
alues of p � 0.05 were considered to be statisti-

ally significant.

E S U L T S

n vitro molecular imaging of activated vWF. In cap-
llary tubes coated with fibrillar collagen, a thin

ution B-mode image; (C) contrast-enhanced ultrasound (CEU) dur-
microbubbles (MBC) and wash; (E) CEU after von Willebrand fac-
scopy of an aortic whole mount illustrating rhodamine-6G–
standard error of the mean [SEM]) signal enhancement
pixels within the injured territory that demonstrated enhance-
n Ib agent; †p � 0.05 versus corresponding agent in the injured
esol
ted
icro
n (�
e of
otei
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ayer of thrombus covered 20% to 30% of the
urface area after infusion with whole blood.
ecause of the coarse texture of thrombi on
icroscopy, fluorescent microscopy was used to

valuate adhesion of DiO- or dioctadecyl-
etramethylindocarbocyanine perchlorate–labeled
icrobubbles (Online Fig. 1). Adhesion of vWF-

argeted microbubbles was �10-fold greater than
hat for control microbubbles, of which �80%
as in the region of thrombus formation (Fig. 1).

mmunohistochemistry revealed the presence of
urface-bound vWF on the thrombi.
x vivo molecular imaging of vascular injury. In the ex
ivo aortic injury studies (Fig. 2), signal from
WF-targeted microbubbles was approximately
-fold greater at the injury site compared with the
emote noninjured regions (Fig. 2). Some enhance-
ent at the injury site was also seen for control

ontargeted microbubbles, although significantly
ess than for the vWF-targeted preparation. The
patial extent of enhancement at the injury site
etermined by PITA was also greater for vWF-
argeted versus control microbubbles. Fluorescent
icroscopy of aortic whole mounts demonstrated

he presence rhodamine-6G–labeled platelet adhe-
ion at the site of injury, which was not observed in
ontrol experiments performed with nonspecific
uorescent antibody.
n vivo molecular imaging of atherosclerosis. On his-
ology with Movat’s pentachrome (Figs. 3A and 3B),
here were advanced lumen-encroaching athero-
clerotic lesions, often with necrotic cores, in all
0-week-old LDLR–/–/ApoBec-1–/– mice, with a
ean transaxial plaque area of 116,557 � 78,303
m2. Atherosclerotic lesions were not observed in

ontrol wild-type mice. Endothelial vWF expres-
ion in LDLR–/–/ApoBec-1–/– mice was particu-
arly dense at sites overlying these severe atheroscle-
otic lesions (Fig. 3D). On molecular imaging of the
ortic arch, the degree and percent area of enhance-
ent for vWF-targeted microbubbles in the ascend-

ng aorta was greater in LDLR–/–/ApoBec-1–/– mice
elative to wild-type mice (Fig. 4). Signal was also
reater for vWF-targeted compared with control
icrobubbles in LDLR–/–/ApoBec-1–/– mice. On

ual fluorescent microscopy, there was a significant
onlinear relationship between labeled platelets and

abeled vWF-targeted microbubbles and on a per-
ptical field analysis (Fig. 5), yet there was little
olocalization on a pixel-by-pixel basis, suggesting
hat platelets and vWF-targeted microbubbles ad-
ered in the same regions but not to one another.

dhesion for both was greatest in regions of large
laques, and almost no adhesion was seen in wild-
ype mice. Scanning electron microscopy of the
uminal surface demonstrated severe lesion forma-
ion in LDLR–/–/ApoBec-1–/– mice (Fig. 6). On
he surface of these lesions, there were large regions
here leukocyte and platelet adhesion to the intact

ndothelial surface was seen. Although uncommon,
here were also occasional focal endothelial erosions
ith overlying fibrin, platelets, and leukocytes.

I S C U S S I O N

he endothelium plays a pivotal role in maintaining
ormal vascular homeostasis. In atherosclerosis, loss
f normal endothelial function includes the transi-
ion from an antithrombotic to a prothrombotic and
roinflammatory state, with increased focal platelet
dhesion and aggregation and eventual loss of
ndothelial barrier in regions of erosion or rupture
10). In this study, our aim was to test whether
olecular imaging of the activated form of vWF

ould be used to detect these processes. Contrast

Figure 3. Aortic Histology and Immunohistochemistry

Movat’s pentachrome stain illustrating normal aorta from a wild-typ
(A) and severe lesion formation in a low-density lipoprotein recepto
bec-1–deficient (LDLR–/–/ApoBec-1–/–) mouse (B). Immunohistochem
von Willebrand factor (vWF) from a wild-type mouse (C) and an LD
ApoBec-1–/– mouse (D), the latter showing dense staining at the en
e mouse
r, Apo-
istry of

LR–/–/
dothelial
surface.
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ltrasound imaging with microbubbles bearing re-
ombinant GPIb� detected a high-risk atheroscle-
otic phenotype manifest by loss of endothelial
ntithrombotic function and occasional endothelial
rosion.

For imaging in this study, we used “platelet
imicry” in the form of microbubbles bearing the
PIb� subunit to detect the presence of activated

WF in advanced spontaneous atherosclerosis. In-
eraction between GPIb and vWF is a high-affinity
vent that occurs early in thrombus formation and
an support cell recruitment even in the face of high
all shear rates (2,11). Molecular imaging with
PIb as a targeting moiety is, therefore, well-suited to

he large vessels of interest when imaging athero-
hrombotic events with particle-based contrast agents.

oreover, competitive inhibition from vWF in the
lood pool is unlikely to be a major obstacle because
he A1-domain is cryptic under static conditions and
ecomes available for GPIb binding when vWF is
atrix-associated or multimerized (1,11). Hence our

pproach could be more sensitive and less prone to
roblems with competitive inhibition than other

ec-1–/– Mice

illustrating marked thickening of the less curvature of the aorta and
ackground-subtracted color-coded contrast ultrasound images after
) Mean (� standard error of the mean [SEM]) signal enhancement
erritory that demonstrated enhancement on pixel-intensity threshold
/ApoBec-1–/–. Abbreviations as in Figures 2 and 3.
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Figure 5. Spatial Relation Between Platelet and vWF-Targeted
Microbubble Adhesion

Relation between number of fluorescent pixels per identical optical field (0.05
mm2) on microscopy of rhodamine-6G–labeled platelets and dioctadecyloxacar-
bocyannine perchlorate (DiO)–labeled vWF-targeted microbubbles. The data
point at the origin (0 pixels for platelets and microbubbles) represented 9 sepa-
Figure 4. Molecular Imaging of vWF in Wild-Type and LDLR–/–/ApoB

(A) Images are of the aortic arch from a single LDLR–/–/ApoBec-1–/– mouse
at the origin of the brachiocephalic vessel on B-mode imaging (left) and b
injection of either vWF-targeted (MBGPIb) or control (MBc) microbubbles. (B
from the aorta. (C) Mean (� SEM) percentage of pixels within the injured t

–/–
hrombus-targeted molecular imaging strategies that
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ave relied on targeting fibrin or platelet GPIIb/IIIa
eceptors (12,13).

The flow chamber and ex vivo aorta protocols in
his study confirmed specific binding of our probe
o vWF in shear flow. In the former, there was
olocalization of vWF on immunostaining and
argeted microbubble attachment, which occurred
rimarily where there were also platelets. This
nding suggested competition of GPIb�-bearing
icrobubbles and platelets for the same vWF-

ich regions. It is also possible that GPIb�
icrobubbles attached to vWF that had adhered

o platelets via non–A1-domain mechanisms such
s through GPIIb/IIIa (14). In the ex vivo aorta
tudies, CEU signal enhancement was greatest
or vWF-targeted microbubbles at the injury site.
ome selective enhancement at the injury site was
lso seen for control microbubbles, which was
ikely caused by either fibrin mesh entrapment of

icrobubbles or nonspecific attachment to leu-
ocytes (15) that also are incorporated in these
icrothrombi (Fig. 7).
In LDLR–/–/ApoBec-1–/– mice, the integration

f histology and CEU data indicated that molecular
maging of activated vWF could detect high-risk
eatures of advanced atherosclerotic disease. On
lectron microscopy, regions of endothelial erosion
ith platelet adhesion were sparse and therefore
nlikely to account for the diffuse vWF-targeted
ignal enhancement. Regions of dense platelet ad-
esion and platelet-leukocyte complexes on the
laque endothelial surface were much more com-
on and have been described in other animal
odels of atherosclerosis (4,5). En face dual fluo-

escent microscopy indicated that microbubbles at-
ached in these areas where platelet adhesion was
ense, but did not attach to platelets themselves.
his observation suggests the presence of microdo-
ains of activated vWF on the endothelial surface,
hich has also been noted in lesion-prone regions

Figure 7. Scanning Electron Microscopy of Murine Thrombus

Images illustrate the complex macromolecular and cellular element

and (B) platelets and the presence of leukocytes (arrowheads). Scale ba
n hypercholesterolemic rabbits where platelets ac-
umulate (4).

The notion that endothelial vWF in atheroscle-
osis is surface-bound, activated, and amenable to
nteraction with the GPIbIX-V complex has not
een fully explored in terms of its importance to
laque growth or instability. vWF is secreted from

eibel-Palade bodies and can remain associated
ith the endothelium after release (16). Subsequent

Figure 6. Scanning Electron Microscopy of the Luminal Aortic S

(A) Normal aortic surface from a wild-type mouse. (B) LDLR–/–/ApoB
aorta demonstrating multiple large protruding plaques. High-magn
images from the plaque surface of LDLR–/–/ApoBec-1–/– mice demo
(C) small regions of erosions with overlying fibrin and platelets, (D)
adhesion to the intact endothelial surface, and (E) leukocyte adhesi
endothelial surface, including (F) occasional platelet-leukocyte comp
Abbreviation as in Figure 3.

thrombus, including (A) the fibrin entrapment of erythrocytes,
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ultimerization of vWF is normally regulated by
he proteolytic activity of a disintegrin and metal-
oproteinase with thrombospondin motifs-13. Be-
ause reduced activity of a disintegrin and metallo-
rotease with thrombospondin motifs-13 has been
ssociated with advanced atherosclerotic disease
3,17), it is possible that dysregulated vWF mul-
imerization was responsible for focal attachment of
latelets and targeted microbubbles rather than
pregulation alone. Alternatively, abnormal shear
orces in regions of plaque could also have contrib-
ted to vWF activation and GP1b�-mediated at-
achment.

Our data suggest that molecular imaging of vWF
ould be used not only to detect a prothrombotic
tate, but also to detect a heightened inflammatory
tate. Brief platelet interactions with endothelial
ells have been shown to potentiate the atheroscle-
otic lesion development through the deposition of
hemokines on the endothelial surface (5). Targeted
maging of surface-bound activated vWF may be a

eans to detect endothelial activation in early or
ate atherosclerosis, similar to what has been shown
or P-selectin, which is also stored within the
ndothelial Weibel-Palade bodies (18).

There are several limitations of this study that
eserve attention. We have not fully characterized
he relation between shear and vWF-targeted mi-
robubble attachment, which could be important in
therosclerotic lesions where shear heterogeneity is
xpected. We have also not definitively shown that
PIb� binding to the A1 domain of vWF was the
5. Huo Y, Schober A, Forlow SB, et al.
Circulating activated platelets exacer- RD, et al. A mous
ent in atherosclerotic mice because GPIb can
nteract with other endothelial and leukocyte sur-
ace proteins (1). There is no gold standard for
uantifying endothelial luminal vWF and differen-
iating this from normal synthesis and storage.

owever, this limitation also highlights the
niqueness of molecular imaging with an intra-
ascular probe that will only be retained if
ounter ligand is encountered within the vascular
umen. It is also worth noting that nontargeted

icrobubbles resulted in higher signals in
DLR–/–/ApoBec-1–/– versus wild-type mice.
he mechanism for this phenomenon, which we
ave encountered in almost all CEU molecular

maging studies of inflammatory conditions, is
ost likely from complement-mediated attach-
ent to leukocytes on the plaque surface (15).

O N C L U S I O N S

n summary, we have demonstrated that advanced
therosclerotic disease with high-risk features can
e detected by molecular imaging of activated vWF.
ur results support the further exploration of vWF

s a molecular imaging target for differentiating
therosclerotic risk and possibly for the detection of
ey events that occur during atherothrombotic
omplications.
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