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When Does Online BP Training Converge?
Zong-Ben Xu, Rui Zhang, and Wen-Feng Jing

Abstract—The backpropogation (BP) neural networks have
been widely applied in scientific research and engineering. The
success of the application, however, relies upon the convergence of
the training procedure involved in the neural network learning.
We settle down the convergence analysis issue through proving
two fundamental theorems on the convergence of the online BP
training procedure. One theorem claims that under mild condi-
tions, the gradient sequence of the error function will converge to
zero (the weak convergence), and another theorem concludes the
convergence of the weight sequence defined by the procedure to a
fixed value at which the error function attains its minimum (the
strong convergence). The weak convergence theorem sharpens
and generalizes the existing convergence analysis conducted be-
fore, while the strong convergence theorem provides new analysis
results on convergence of the online BP training procedure. The
results obtained reveal that with any analytic sigmoid activation
function, the online BP training procedure is always convergent,
which then underlies successful application of the BP neural
networks.

Index Terms—Backpropagation (BP) neural networks, conver-
gence analysis, online BP training procedure.

I. INTRODUCTION

T HE backpropagation (BP) neural networks have been
widely applied in various areas of scientific research and

engineering [1], [2]. It refers to the feedforward neural networks
plus the corresponding BP training procedure with which the
network weights are updated according to the gradient-descent
principle (that is, the gradient method).

There are two practical ways to implement the gradient
method: either using the batch scheme or using the online
scheme. The batch scheme corresponds to the standard gra-
dient iteration procedure which updates the network weights
after all the training examples are processed. Differently, the
online scheme is the procedure of updating network weights
immediately after one training example is fed. The fed example
may be randomly or circularly selected from the given training
examples, but should keep periodic in the training set. The
online scheme, sometimes called the online gradient method
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also, has been proven to be more useful and sometimes unique
choice in application, especially when the given training exam-
ples are huge. Therefore, convergence of the online BP training
procedure is a prerequisite of any successful application of BP
neural networks.

There have been many convergence analyses of the training
procedures of BP neural networks. Convergence of the online
BP training procedure in the case when the activation function of
the neural networks is linear has been studied in [5], [7], and [8].
For the nonlinear case, a probabilistic asymptotic analysis on
convergence of the online BP training procedure as the training
examples goes to infinity has been conducted [3], [4], [9]–[11],
[14], and [15]. The deterministic convergence analyses of the
online BP training procedure were given in [6], [12], [13], and
[16]–[23]. The neural networks discussed in [16]–[19], [22], and
[23] are, however, two-layered, that is, without hidden elements,
and hence, are of very special form. The analysis conducted
in [16] is only for classification application and the training
examples are supposed to be linearly separable. Moreover, in
[13] and [17], the convergence results under the condition that
the training examples are linearly independent have been estab-
lished, which is obviously very restrictive, because the training
examples in practice are huge and inevitably linearly dependent.
This assumption was then relaxed in [18]–[21]. The results ob-
tained in [18] and [19] are deterministic in nature but the training
examples are asked to be fed in a fixed or specific random order.
Further results were presented in [20] and [21] for the more gen-
eral and important cases in which the training examples are al-
lowed to be linearly dependent, and are supplied to a BP neural
network with a hidden layer. Nevertheless, the researches in [20]
and [21] have all assumed some impractical constraints on set-
ting the step size of the procedure, say, it must satisfy a
posterior condition such as

(1)

(the meaning of each notation here will be clarified in the next
section), which cannot be verified before the BP training starts.
Additionally, the convergence results they obtained have only
concluded the convergence of the gradient of the error function
(namely, ) and by no means justified
the convergence of the online BP training procedure itself (that
is, the convergence of weight sequence ).

In this paper, we present a generalized deterministic analysis
on convergence of the online BP training procedure for the
general case when the training examples are allowed to be
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linearly dependent, and the networks are of general form with
hidden neurons. We will establish a generic convergence theory
of the online BP training procedure that sharpens and gener-
alizes the existing results (particularly, those of [20] and [21])
in the following sense: 1) the convergence of weight sequence

is concluded; 2) all the posterior assump-
tions on step size are dismissed; and 3) several general
convergence theorems of the online BP training procedure are
proven in much weaker conditions than those assumed before.

We will show that the conditions for assuring the convergence
of the online BP training will be met with any analytic error
function. So the use of any analytic sigmoid function as activa-
tion function, as the case of ordinary application, can naturally
yield convergence of the online BP training. This underlies suc-
cessful application of the BP neural networks.

Note that the BP training procedure, as the gradient method
in optimization techniques, is the most fundamental method for
the training of neural networks. Most other training algorithms
such as regularization methods, conjugate gradient method, and
Newton methods can be seen as the variants of the BP training
procedure in a certain way. Therefore, to clarify convergence of
the BP training procedure is the first step towards a full under-
standing of other more elaborate training algorithms, and per-
haps an indispensable part of convergence analysis when a more
generic training algorithm is considered. So the results obtained
in this paper are of significance not only for the BP training but
also for any other training algorithm. In particular, the method-
ology used in this paper can shed some light on convergence of
other (at least gradient-like) training procedures.

The remainder of this paper is organized as follows.
In the next section, we formulate mathematically the BP
training problem and procedure. We present the main results
in Section III with a series of necessary lemmas. The rig-
orous proofs of the main results and lemmas are presented in
Section IV. In Section V, we conclude the paper with some
useful remarks.

II. THE ONLINE BP TRAINING: A FORMULATION

Without loss of generality, we consider the three-layer feed-
forward neural networks with input, hidden neurons, and
one output neuron. The activation functions used in the hidden
and output neurons are all the same, a continuously differen-
tiable function, denoted henceforth by .

Let be the given training
example set. Denote by

the weight matrix connecting the input and hidden layers of the
networks, and

the weight vector connecting the hidden and output layers. We
write

Clearly, for any input , the output of the hidden layer is
where is the threshold

in the hidden-layer output. Let ,
. Then, . Therefore,

without loss of generality, here we can suppose that . In
the same way, the final output of the networks can be written as

where denotes the inner product of and .
For any fixed weights , the error of the neural networks

is defined as

where

The neural network training problem is then to look for the op-
timal choice of the weights so as to minimize the error
function .

The BP training scheme is an approach to find
through applying the gradient-descent method, combined with
the BP scheme of computation for gradient of the error function
[26].

We easily calculate that

(2)

Then, the online BP training procedure can be formulated as the
following iteration procedure:

(3)

Here is the step size or, as it is called, the learning rate, whose
value may be changed after each cycle of iteration.

Equation (3) is the formulation of the online BP training pro-
cedure that we will focus on in this paper with a detailed anal-
ysis.



XU et al.: WHEN DOES ONLINE BP TRAINING CONVERGE? 1531

As in [20] and [21], the analysis of the online BP training
procedure will be conducted under a set of assumptions. We
formulate our assumptions as follows:
(A1) and are uniformly bounded for and

is Lipschitz continuous, that is, there is a positive
constant such that

(A2) the weight sequence is
upper bounded;

(A3) and , that is

and

Remark 1: For comparison purpose, we also list the assump-
tions used in [20] and [21] as follows:
(W1) , and are uniformly bounded for

(W2) the weight sequence is bounded;
(W3) the initial learning rate satisfies (1);
(W4) with , where

for some positive
constants and ,

Comparing (A1)–(A3) with (W1)–(W4), we see that a weaker
condition “ is Lipschitz continuous” in (A1) is used to re-
place the stronger condition “ is uniformly bounded” in
(W1); conditions (A2) and (W2) both include the boundedness
of . This seems sufficient for the weak convergence anal-
ysis in [20] and [21], but we must suppose the similar bound-
edness of instead of in order to derive a
strong convergence result. As pointed out in the Introduction,
(W3) is a posterior condition on the step size that cannot be
tested offline, and it is dismissed in our assumptions; (W4) es-
sentially implies that , which obviously satisfies
all the three conditions in (A3). So (W4) is just a special case of
(A3). Besides the setting of as in (W4), there are also other
possible choices of meeting with (A3), such as
where and are any positive constants with .
Moreover, different from (W4), in (A3) does not depend on
the initial learning rate any more. That is to say, no matter
how is, the convergence of the online BP training procedure
will always follow. This relaxes the loading of specifying the
initial learning rate . It is clear that (A3) is a more general
and weaker setting for the step size than (W4). This shows
that our assumptions are generally weaker than those assumed
in [20] and [21].

Remark 2: It should be noted that the formulation of the on-
line BP training procedure presented in this section is by no
means the most generic form. An infinite number of samples
can be fed one by one in the training according to some defi-
nite physical processes. It is also possible to feed the training
samples according to a random mechanism. All these schemes
of training cannot be included in the formulation (3). Neverthe-
less, the model presented in this section is typical in ordinary
application of BP neural networks.

III. MAIN RESULTS

In this section, we summarize the main results we have ob-
tained for convergence of the online BP training procedure (3)
under assumptions (A1)–(A3). The proofs of the results are,
however, postponed to the next section so as to make the pre-
sentation more readable.

For any , , we denote by the matrix
... , and by the Frobenius norm of

... , which is
defined by

(4)

with

Let be the weight sequence defined
by (3). Then, in the following, we say that the procedure (3)
is weakly convergent whenever con-
verges to zero as , and, it is strongly convergent when-
ever converges to a limit such
that .

Note that, in these terms, the weak convergence of (3) im-
plies that the error function will decrease to a stable value as

, while the strong convergence implies that the weight
sequence will stabilize to a fixed value at which the error func-
tion attains its minimum (may be a local minimum).

A. Weak Convergence

We need to establish a series of lemmas in order for the main
theorems to be proven.

First, we derive the boundedness and the Lipschitz continuity
of from the assumptions (A1) and (A2). We have the
following.

Lemma A1: Under assumptions (A1) and (A2):
i) is bounded;

ii) satisfies the Lipschitz condition in the sense
that there exists a positive constant such that for any

,

and, furthermore

The next lemma gives a useful reformulation of the online BP
training procedure (3) based on which the convergence analysis
of the procedure will be conducted.

Lemma A2: Under assumptions (A1)–(A3), for any
and , there holds
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where obeys the estimation

for a positive scalar .
From Lemma A2, we can see that the online BP training pro-

cedure (3) can be viewed as an ordinary gradient iteration with
error [24]. The following lemma is a very useful tool in the anal-
ysis of such type of iterations with error.

Lemma A3: Let , , and be three sequences such that
is nonnegative and is bounded for all . If

and the series is convergent, then converges to a
finite value and .

We also need the following estimation on deviation of error
functions and .

Lemma A4: For any integers and , the following estimation
holds:

Lemma A5: Under assumptions (A1)–(A3), the sequence
converges as and

By virtue of Lemmas A1–A5, we can prove the following fun-
damental weak convergence theorem of the online BP training
procedure.

Theorem A: Under assumptions (A1)–(A3), the online BP
training procedure (3) is weakly convergent. More precisely, we
have

or, equivalently

for all and .

B. Strong Convergence

We will establish strong convergence results of the online BP
training procedure under some other additional assumptions:
(B1) has at most countably infinite number of sta-

tionary points;
(B2) is directionally convex in the sense that for any

, , , and , there holds

(5)

(6)

(B3) is a local injection, that is, for any ,
there is a neighborhood of such that whenever

and , there
holds .

We can immediately show that condition (B3) here actually
implies condition (B1), so (B3) is just a special case of (B1). To
be more precise, we have the following.

Lemma B1: If satisfies assumption (B3), then
contains at most countably infinite number of sta-

tionary points.
It should be noted that the directional convexity introduced in

(B2) is a much weaker condition than the convexity of .
Actually, as in [25], we easily show that is directionally
convex in the sense of (5) and (6) if and only if

and

where and denote the Hessian ma-
trices of with respect to and , respectively. Thus,
if we define

we can directly test that function is direc-
tionally convex (with respect to every direction ) if and only
if . Nevertheless, it is well known
that is convex if and only if the matrix

is nonnegative definite. This example highlights the
distinction between the directional convexity and the convexity
of a function.

Let be the stationary
point set of the error function . As the first step of jus-
tifying the strong convergence, we need to show that any limit
point of the weight sequence must be in

.
Lemma B2: Under assumptions (A1)–(A3), any limit point

of is a stationary point of
, i.e., .

With Lemmas B1 and B2, we can finally prove the following
main result on the strong convergence of the online BP training
procedure.

Theorem B: Assume that conditions (A1)–(A3) hold and
satisfies either (B1), (B2), or (B3). Then, the online

BP training procedure (3) is strongly convergent, that is, there
is a fixed value such that weight sequence

converges to as .
Remark 3: Note that assumptions (B1)–(B3) assumed here

are all given in terms of the error function , which may not be
tested beforehand in application. However, we argue that most
of the widely used error functions can actually satisfy at least
one of the conditions listed. In fact, it is known that any ana-
lytic function defined on an open set, if not constant, must con-
tain at most countably infinite number of stationary points. So
whenever the error function is analytic and nonconstant on an
open region, it has at most countably infinite stationary points.
Through partitioning, we can divide the domain of the error
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function into at most countable open subregions (the parti-
tioning then consists of all the open subregions and their bound-
aries). The subregions consist of two types: one is the “constant
region” on which takes fixed constant value, and the other is
“nonconstant region” which contains no “constant region.” It is
clear that whenever the iterate of the online BP training reaches
a “constant region,” the procedure is naturally terminated and
arrives at a local minimizer. While the iterate of the online BP
training reaches a “nonconstant region,” it must stay in that re-
gion (at least for sufficiently large , as it will be proven in
Theorem B). So the online BP training procedure must also con-
verge to a local minimizer because has at most countably infi-
nite number of stationary points on the “nonconstant region.” As
a result, we can conclude that as long as the activation function
is analytic, the online BP training procedure must be convergent
to a local minimizer. It turns out that the use of any analytic sig-
moid activation function, like , as the usual
application case, can always assure the strong convergence of
the online BP training procedure. However, Theorem B might
not imply the strong convergence of the online BP training when
the activation function is not analytic, say

.

IV. PROOFS OF RESULTS

The proofs of the lemmas and theorems presented in Section
III are given in this section.

Proof of Lemma A1: By formula (2), for any
and , we have

and

Then, by the boundedness of , , and from the assumptions
(A1) and (A2), we can easily derive that and

are all bounded for every
and . Therefore, by (2) and (4)

and

we know that , , and
are all bounded for every .

This directly implies the boundedness of
.

Furthermore, since satisfies the Lipschitz con-
dition and is also
Lipschitz continuous by the boundedness of on the trajectory

, we deduce that

(7)

where , , , , , and are appropriate positive
constants.

Similarly, we get for any

so we have

(8)

where , , , , , , and are all positive
constants.
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Combining (7) with (8), it thus follows that

Let and then ii) of Lemma A1 fol-
lows.

Proof of Lemma A2: By definition (3), we can write

and

So we can express

Note that the equation shown at the bottom of the page holds.
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So from the boundedness of , we can get

where is a positive constant, and from Lemma A1, we have

and

So, denoting by the quantity

or

we then conclude that there is a positive constant such that

By the assumption that , we can
similarly verify that for any , the following
expression holds:

and

where for a positive constant .
This implies Lemma A2.

Proof of Lemma A3: It follows directly from [24].
Proof of Lemma A4: Denote

Then, we have

This arrives at Lemma 4.
Proof of Lemma A5: According to Lemma A-4, we have

From Lemmas A1 and A2, it is direct to conclude that there
exists a positive constant such that

(9)

So, by using Lemma A-3, we conclude that

and converges as . This implies
Lemma A5.

Proof of Theorem A: To show that the limit
, we assume the contrary, namely, that
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. Then, there is a posi-
tive constant such that

Note that Lemma A5 shows
, and hence, for any with

, for infinitely
many and also for infinitely
many . Consequently, there is an infinite subset of integers

such that for
each , there exists an integer such that

and for any

Thus, we deduce that for all

Since converges by Assumption (A3), it then fol-
lows that

(10)

On the other hand, from Lemmas A1 and A2, we have

which implies that for all , as long as they are sufficiently
large so that and , we have

According to (9), we thus have

for any .
By the convergence of already shown in

Lemma A5 and by the assumption , this then
implies

This contradicts to (10). The contradiction shows that

and, in particular

and

The proof of Theorem A is thus completed.
Proof of Lemma B1: Denote where

, and let be the set of stationary points of
(that is, every element in satisfies ).

For any integer , let be the ball centered at zero with radius
(i.e., ) and . Then, it is

clear that and each is a compact set. Since,
by assumption, is locally injective, for each , there
is a neighborhood such that is injective when restricted
to . The family of the neighborhoods



XU et al.: WHEN DOES ONLINE BP TRAINING CONVERGE? 1537

clearly constitutes a compact cover of the set . The compact-
ness of then implies that there is a finite number of neigh-
borhoods, say, , such that they still
cover the set . Therefore, and, further-
more, we can express

In each , clearly has at most one solution
since, otherwise, two solutions with exist, which
could lead to an obvious contradiction:

. In light of the countable decomposition of above,
thus contains at most countably infinite number of elements.
That is, contains at most countably infinite number of
stationary points, justifying Lemma B1.

Proof of Lemma B2: Without loss of generality, we as-
sume that converges to for a sub-
sequence of . Then, by continuity of
and Theorem A, we have

which shows that is a stationary point of .
Proof of Theorem B: According to Lemma B1, we can

prove the theorem under either assumption (B1) or (B2).
Let us first assume that (B1) holds. Denoting by the limit

set of sequence , then assumption (A2) and Lemma
B2 show that is nonempty and all elements of are sta-
tionary points of . Assume that there are two elements, say

and in such that ,
, and for two sub-

sequences and in . Write

This then particularly implies that

as for all and . For any
fixed real number , let . Since
we clearly have as ,

must be a limit point of also, thus there is subse-
quence that satisfies as .
Let us consider the sequence . It is bounded clearly
and hence, has a convergent subsequence, say,

. Thus, we can define . Sim-
ilarly, through considering the sequence , we can

find a convergent subsequence and
define . Continuing this procedure up
to steps, then we can get a decreasing subsequences

with for all
. Similarly, in doing so, we can also find a decreasing

subsequences so that
is well defined. Let

. This then shows that
, for any , is a limit point of ,

that is, . Thus, contains uncountably infi-
nite number of elements because does. However,
by the assumption, this is impossible. So must contain only
one element (say, ). Because of the boundedness of

, must be the unique limit of the trajectory
(i.e., as ). This veri-

fies the strong convergence of .
Next, let us assume (B2) holds. In this case, for any stationary

point of , according to Lemma A2, we have

for a positive constant . Also, by Assumption (B2),
. So we de-

duce that

According to Assumption (A2) and Lemma A3, we have that
for any , the limit
exists, so does the limit , that is, the
limit

(11)

exists.
On the other hand, since is bounded,

there is a limit point such that

(12)

where is a subsequence of
and, by Lemma B2, is

also a stationary state of . Thus, we can use
in place of in (11) to deduce the existence

of limit .
Combined with (12), we then conclude that

, that is,
the sequence converges to .

The proof of Theorem B is then completed.

V. CONCLUSION

In this paper, we have analyzed the deterministic conver-
gence of the online BP training procedure for one-hidden-layer



1538 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 10, OCTOBER 2009

backpropagation neural networks. Two general theorems have
been proven, with one claiming the convergence of the gradient
sequence of the error function (the
weak convergence), and the other concluding the convergence
of weight sequence (the strong conver-
gence) under mild conditions. While the strong convergence
result is new, the weak convergence theorem sharpens and
generalizes those existing analyses (particularly, the results ob-
tained recently by Wu et al. [20] and Li et al. [21]) in the sense
that it is validated not only for much general types of neural
networks [say, relaxed assumption (W1) to assumption (A1)],
but also for a very general family of learning rates. Different
from those proven in [20] and [21], our analysis dismissed the
posterior condition (W3) on the step size and relaxed condi-
tion (W4) into the more general and weaker condition (A3). On
the one hand, our convergence results have nothing to do with
the initial value, and, on the other hand, we have provided wider
selections of the step size , which may be very helpful in
application. The obtained results settle down the long-standing
problem on convergence of the online BP training procedure for
the BP neural networks with hidden layers. It is concluded that
with any analytic sigmoid activation function, the online BP
training procedure is always convergent, which then underlies
successful application of the BP neural networks.

Open problems remaining for further research include: un-
covering the necessary and sufficient (or the weakest) condi-
tion for strong convergence of the online BP training procedure;
proving strong convergence of the procedure under some other
mild conditions; studying convergence of the online BP training
procedure in other step-size setting; and comparing the conver-
gence speed of using different step-size rules.
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