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Multivariate analysis procedures and a neural network methodology are used to predict mean particle size
resulting from rock blast fragmentation. A blast data base developed in a previous study is used in the
current study. The data base consists of blast design parameters, explosive parameters, modulus of elasticity
and in-situ block size. In the same previous study a hierarchical cluster analysis was used to separate the
blast data into two different groups of similarity based on the intact rock stiffness. In the same study the
group memberships were confirmed by the discriminant analysis. A part of this blast data was used in this
study to train a single-hidden layer back-propagation neural network model to predict mean particle size
resulting from blast fragmentation for each of the obtained similarity groups. The mean particle size was
considered to be a function of seven independent parameters. Four learning algorithms were considered to
train neural network models. Levenberg–Marquardt algorithm turned out to be the best one providing the
highest stability and maximum learning speed. An extensive analysis was performed to estimate the optimum
value for the number of units for the hidden layer for each of the obtained similarity groups. The blast data that
were not used for training are used to validate the trained neural network models. For the same two similarity
groups, multivariate regression models were also developed to predict mean particle size. Capability of the
developed neural network models as well as multivariate regression models is determined by comparing
predictions with measured mean particle size values and predictions based on one of the most applied
fragmentation prediction models appearing in the blasting literature. Prediction capability of the trained neural
network models as well as multivariate regression models was found to be strong and better than the existing
most applied fragmentation prediction model. Diversity of the blasts data used is one of the most important
aspects of the developed models. The developed neural network models and multivariate regression analysis
models are suitable for practical use at mines.
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1. Introduction

Control of the particle size distribution of a muckpile after blasting
is always an important subject for mining industry. Blasting has a
significant impact on downstream processes of mining such as
loading, crushing and grinding. Improvement of blasting results
provides increase in loader and excavator productivity due to
increased diggability capacity, and increased bucket and truck fill
factors. Suitable and uniform particle size distribution results increase
in crusher and mill throughput and decrease in energy consumption
in size reduction process. Mckenzie (1966) found, in the studies at
Quebec Cartier Mines, that the efficiency of all the subsystems of
mining is dependent on the fragmentation. Today, researchers suggest
‘mine to mill’ blasting approach that is defined as optimization of the
blast design to maximize the overall profitability rather than
individual operations (Kanchibotla et al., 1999; Grundstrom et al.,
2001). Additionally, uniform particle size distribution also eliminates
the need of the secondary blasting of the big boulders.

Several studies have been conducted on blastability and prediction
of fragmentation. The term blastability refers to the ease with which a
rock mass can be fragmented by blasting and is closely related to
fragmentation. The parameters that determine fragmentation by
blastingmay be divided into four groups: (a) Blast design parameters;
(b) explosive parameters; (c) rock mass structure parameters; and
(d) intact rock and discontinuity physical and mechanical properties.
Burden, spacing between boreholes, bench height, drill-hole diame-
ter, hole length, charge depth, stem height, subdrilling, drilling
pattern (square or staggered), hole inclination (vertical or inclined),
blasting direction and blasting sequence (instantaneous or delayed)
are all blast design parameters. All these parameters are controllable.
Fig. 1 showsmost of the blast design parameters used in a bench blast.
The diameter of the drill hole (D) is the most important parameter for
any blast design. It influences the selection of all other parameters.
Burden (B) is the distance of the blast hole from the free face. Spacing
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Fig. 1. Blast design parameter terminology.
Ash, 1963.
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(S) is the distance between two consecutive holes fired together in the
delay period. The hole is generally drilled slightly below the floor level
to obtain a clean breakage. This total length of the hole is known as
hole length (H). The extra length of the hole below the floor or the
grade level is called the subdrilling. Part of the drill hole at the top is
not filled with explosives. This length is known as stemming height
(T). Some inert material, such as drill cuttings, sand, crushed stone,
etc., are used as stemming to contain the explosive gases in the hole
for a slightly longer time to increase rock fracturing. The second group
consists of explosive parameters. Explosive type (Anfo, water gel,
emulsion or dynamite), its density (changes between 0.80 and 1.60 g/
cm3), strength, resistivity and specific charge (kg Anfo/m3) are
explosive parameters. All these parameters are also controllable.
The third group consists of rock mass structure parameters. Number
of discontinuity sets, orientation, size, spacing and intensity distribu-
tions of each discontinuity set belong to the third group. Physical and
mechanical properties of the intact rock and discontinuities belong to
the fourth group. Density, dynamic compressive strength, dynamic
tensile strength, shear strength, dynamic elastic properties, hardness,
durability, mineral composition and grain size of intact rock, and
strength, deformability, roughness and infilling material properties of
discontinuities belong to the fourth group. The parameters of the third
and fourth groups are uncontrollable.

The parameters of the aforementioned 4 groups should be
considered together to explain fragmentation process. Because a
large number of parameters influence fragmentation distribution, it is
obvious that the fragmentation process is extremely complex and
thus it is an extremely challenging task to develop models to predict
fragmentation distribution. Therefore, even though some of the
fragmentation prediction models that appear in the literature have
contributed to improving the state-of-the-art on the subject, none of
them include all the important parameters. In some of the available
prediction models crude, highly simplified or inappropriate proce-
dures have been used in estimating rock mass fracture geometry
parameters. Inappropriate distributions have been used to represent
joint orientation. Corrections for sampling biases have not been
applied in modeling joint size, joint orientation and joint intensity.
Estimation of fracture spacing has been described in a highly vague
manner. It is important to note that spacing of a fracture set changes
with the direction and the correct spacing is obtained in the direction
perpendicular to the fracture plane. In some of the blast fragmentation
papers, RQD is used as a parameter. It is important to note that RQD
changeswith the direction and thus infinitemany values exist for RQD
for the same rock mass. In-situ block size estimation has not been
done in a comprehensive manner. Therefore, it is important to use
better and accurate procedures in estimating rock mass fracture
geometry parameters in developing rock blast fragmentation data
bases in the future. Such quality data bases should then be used to
improve the existingmodels or to develop newmodels to predict rock
blast fragmentation distribution.

Because the blast fragmentation distribution depends on many
parameters, and the process is highly complex due to the heteroge-
neity and anisotropy of a discontinuous rock mass system, it is
impossible to derive an equation for fragmentation distribution
purely from theoretical and mechanistic reasoning. In such situa-
tions, empirical approaches are used incorporating case history data
along with statistical based procedures in developing prediction
equations for complex geotechnical processes. Multivariate regres-
sion analysis has been used to develop fragmentation prediction
models (Chakraborty et al., 2004; Hudaverdi et al., 2010). However,
capturing of high non-linearity incorporating many parameters is a
difficult task with multivariate regression analysis.

Neural computing (Eberhart and Dobbins, 1990) attempts to
emulate the functions of the mammalian brain, thus mimicking
thought processes. Work on artificial neural networks (ANNs),
commonly referred to as “neural networks,” has been motivated
right from its inception by the recognition that the human brain
computes in an entirely different way from the conventional digital
computer. The brain is a highly complex, nonlinear, and parallel
computer. It has the capability to perform certain computations (e.g.,
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pattern recognition, perception, and motor control) many times
faster than the fastest digital computer in existence today. In its most
general form, a neural network is amachine that is designed tomodel
the way in which the brain performs a particular task or function of
interest; the network is usually implemented by using electronic
components or is simulated in software on a digital computer. To
achieve good performance, neural networks employ a massive
interconnection of simple computing units referred to as “neurons”
or “processing units.” A neural network can be defined as amassively
parallel distributed processor made up of neurons, which has a
natural propensity for storing experimental knowledge and making
it available for use. It resembles the brain in two respects:
1. Knowledge is acquired by the network from its environment
through a learning process; and 2. Interneuron connection strengths,
known as synaptic weights, are used to store the acquired
knowledge. The procedure used to perform learning process is called
a “learning algorithm” and the function of it is to modify the synaptic
weights of the network in an orderly fashion to attain a desired
design objective. It is apparent that a neural network derives its
computing power through, first, its massively parallel distributed
structure and second, its ability to learn and therefore generalize.
Generalization refers to the neural network producing reasonable
outputs for inputs not encountered during training (learning)
process. These two information processing capabilities make it
possible for neural networks to solve complex (large scale) problems
that are currently intractable. The use of neural networks offers the
following useful properties and capabilities: 1. Nonlinearity; 2. Input–
OutputMapping: Each example consists of a unique input signal and a
corresponding desired response. The network is presented with a
randomly picked training sample from a set and the synaptic weights
of the network are modified to minimize the difference between the
desired response and the actual response of the network produced by
the input signal in accordance with an appropriate statistical
criterion. The training of the network is repeated for many examples
in the set until the network reaches a steady state where there are
no further significant changes in the synaptic weights. Such a
trained neural network model has a good generalization capability;
3. Adaptivity: Neural networks have a built-in capability to changes in
the surrounding environment. In particular, a neural network trained
to operate in a specific environment can be easily retrained to deal
with minor changes in the operating environmental conditions;
4. Contextual Information: Knowledge is represented by the very
structure and activation state of a neural network. Every neuron in
the network is potentially affected by the global activity of all other
neurons in the network. Consequently, contextual information is
dealt with naturally by a neural network; and 5. Fault Tolerance: A
neural network, implemented in hardware form, has the potential to
be inherently fault tolerant, or capable of robust computation, in the
sense that its performance degrades gracefully under adverse
operating conditions.

Due to its excellent ability of non-linear pattern recognition,
generalization, self-organization and self-learning, the Artificial
Neural Network Approach (ANNA) has been proved to be of
widespread utility in engineering and is steadily advancing into
diverse areas as material sciences (Li et al., 2006), voice recognition,
loan-risk assessment, stock market analysis, box office revenue
forecasting (Zhang et al., 2009) and military target discrimination.
In geosciences and geo-engineering, neural networks have been
applied in rock mechanics and rock engineering (Zhang et al., 1991;
Ghaboussi, 1992; Lee and Sterling, 1992), soil engineering (Kung et al.,
2007), well-log and well-test interpretation (Rogers et al., 1992; Al-
Kaabl and Lee, 1993), seismic and satellite image processing (de
Groot, 1993; Penn et al., 1993), groundwater characterization and
remediation (Rizzo and Doughery, 1994; Rogers and Dowla, 1994),
earthquake intensity prediction (Tung et al., 1994), oil reservoir
prediction (Yu et al., 2008) and conductive fracture identification
(Thomas and La Pointe, 1995). Neural network approach (NNA) is
highly suitable for systems with highly non-linear complex relations
between input and output parameters that are difficult to develop
through physical reasoning and mathematical modeling. Linking
between the rock blast mean fragment size and the blast design
parameters, explosive parameters, rock mass structure parameters,
and intact rock and discontinuity physical and mechanical properties
is a very complex, non-linear process. Therefore, NNA will be highly
suitable to relate the mean fragment size to the aforementioned blast
related parameters belonging to the four groups. Application of NNA
to predict rock blast mean fragmentation size is described in this
paper.
2. Literature review

The importance of in-situ joints and fractures on the degree of
fragmentation has been explained by Ghosh et al. (1990) and
Mojtabai et al. (1990). Twelve production blasts in a quarry in Java
have shown a large influence of tightly spaced porous bands, which
were weaker than the host rock, on the fragmentation distribution
(Ouchterlony et al., 1990). Chakraborty et al. (1994) have reported
that the joint orientations can considerably influence the average
fragment size and shape. Through three case studies, Pal Roy (1995)
has shown that the new cracking directions in rock masses due to
blasting depend on the existing discontinuity orientation directions.

Hagan (1995) has concluded that the results of rock blasting are
affected more by rock properties than by any other variables. He also
has stated that as the mean spacing between the joints, fissures or the
cracks decreases, the importance of rock material strength decreases
while that of the rock mass strength increases. In addition he states
that in a rock mass with widely spaced joints, the blasts are required
to create many new cracks. In a closely fissured rock mass, on the
other hand, generation of new cracks is not needed and the
fragmentation is achieved by the explosion gas pressure which
opens the joints to transform a large rock mass into several loose
blocks. According to him, the generation of new cracks is influenced
by both dynamic compressive and dynamic tensile strength of rock
mass. He also has commented that the blasting efficiency is affected to
a lesser degree by the internal friction, grain size and porosity
compared to rock strength.

Aler et al. (1996) have evaluated blasting efficiency through a
comparison between block size of the rock mass resulting from
existing fractures and the fragmentation size distribution resulting
from blasting. Image analysis techniques have been applied to
randomly taken photos to derive the blast fragmentation distribution.
The procedures have been illustrated by applying to several case
histories. Through three case studies, Ozcelik (1998) has shown
influence of rock mass structure parameters on blast fragmentation
distribution. Jhanwar et al. (2000) using a case study have shown the
influence of in-situ block size on fragmentation distribution. In-situ
block size has been estimated using a simple method known as
volumetric joint count.

Castro et al. (1998) created a blasting index for exploitation of
aggregates. They estimated strength parameters and structural
parameters of the rock mass. A blasting index was developed using
linear discriminant analysis. This index provided a single value that
contains all structural and strength properties to evaluate blasting of
the rock mass.

Latham and Lu (1999) have considered intact rock properties and
the discontinuity structure of a rock mass as the most important
variables influencing blasting results. This influence has been
considered to be a composite intrinsic property of a rock mass and
is referred to as the blastability of a rock mass. A blastability index has
been developed using intact rock properties and discontinuity
structure parameters based on a rock engineering systems approach.
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A case study has been given to illustrate the application of the
developed procedure.

Chakraborty et al. (2004) haveperformeddetailed investigations on
overburden blasting and fragmentation in three large opencast coal
mines. RQD has been used to represent all the rock mass structure
parameters. Based on RQD, investigated rock masses have been
separated into jointed and massive categories. Stepwise multiple linear
regression analysis have been carried out separately for jointed and
massive formations keeping the observed mean fragment size as the
dependent variable and various rock mass properties, explosive
properties, blast design parameters, drilling error and the firing
sequence as independent variables. The degree of dominance of various
influencing parameters has been determined as a result. Based on the
results, suggestions have been put forward as remedial measures to
improve fragmentation in massive and jointed formations. However,
some influencing parameters have not been considered either due to
non-availability of data or non-availability of sufficient number of blasts.

Hamdi and Du Mouza (2005) have applied a cluster analysis
procedure to classify rock masses using several discontinuity
geometry and rock matrix properties. Several parameters assessing
the density (specific surface), the interconnectivity (interconnectivity
index) and the anisotropy (anisotropy index and anisotropy vector) of
the discontinuity network as well as the 3D fractal dimension of the
rock mass have been introduced and evaluated for three sites. The
rock matrix microstructure has been characterized by the means of
the experimental determination of several mechanical and physical
parameters. Laboratory measurements performed on cores coming
from the blasted blocks have been used for fine characterization of the
microstructure status.

Several methods have been being used in the literature to measure
the fragmentation distribution. Digital image processing technique
using sophisticated software and hardware is the latest fragmentation
analysis tool (Hall and Brunton, 2002; Latham et al., 2003; Sanchidrian
et al., 2007; Gheibie et al., 2009) and has replaced in many cases the
conventional methods like visual analysis, photographic, photogram-
metry, boulder count or sieve analysis techniques which have
inherent problems. Because muck piles are large, use of conventional
methods is tedious and time consuming and thus not practicable for
measurement of blast fragmentation distribution of muck piles. The
digital image processing method includes image capturing of muck
pile, scaling the image, filtering the image, segmentation of image,
binary image manipulation, measurement and stereometric interpre-
tation. The method is quick. However, many problems exist with this
technique too. The individual rock fragments in the image must be
delineated. Problems with non-uniform lighting, shadows and the
large range of fragment sizes make delineation very difficult using
standard edge detection routines. Other problem is correct extraction
of three dimensional information from the two-dimensional images
for which assumption and site specific calibration for the third
dimension are to be made from the two-dimensional images. Further,
a correction is to be made for overlapping of fragments or estimating
the fines which may not be detected individually. Ouchterlony et al.
(1990) have observed major discrepancies between sieving and
digital image analysis results. Digital image analysis results have
produced more fines. The computer treats all un-digitized voids
between the fragments as fines. This may be another source of error of
digital image analysis method. Finally, the wide variations in size may
require different scales for calibration. Rustan (1998) and Chakraborty
et al. (2004) have summarized the capabilities of various image
analysis software developed world-wide for blast fragmentation
assessment.

Kuznetsov (1973) has suggested the following empirical equa-
tion to predict the mean fragmentation size resulting from rock
blasting:

X50 = A V =Qð Þ0:8Q0:167 ð1Þ
In Eq. (1): X50 is mean fragment size (cm); ‘A’ is a rock factor (7 for
medium rock, 10 for hard highly fissured rock, and 13 for hard weakly
fissured rocks); V is rock volume (m3); Q is mass of explosive per blast
hole (kg). Kuznetsov also has suggested to use Rosin–Rammler
equation (Rosin and Rammler, 1933) given below to estimate the
complete fragmentation distribution resulting from rock blasting:

Y = exp X=Xcð Þr ð2Þ

In Eq. (2), Y = Proportion of the material larger than X, Xc =
characteristic size = X50 and r=uniformity exponent. Even though
Schumann Distribution (Schuhmann, 1959) and Swebrec equation
(Nie and Rustan, 1987) are also suggested in the literature to predict
the complete fragmentation distribution, Rosin–Rammler equation
seems to be the most popular one.

It was experienced by many that the rock mass categories defined
by Kuznetsov (1973) are very wide and need more precision.
Cunningham (1983, 1987) modified the Kuznetsov's equation to
estimate the mean fragment size and used the Rosin–Rammler
distribution to describe the entire size distribution. The uniformity
exponent of Rosin–Rammler distribution was estimated as a function
of blast design parameters. Rock factor “A” in Kuznetsov's equation
was estimated incorporating the blasting index, BI of Lilly (1986). The
final equation suggested by Cunningham, known as Kuz–Ram model,
can be given as follows:

X50 = A × V =Qð Þ0:8 × Q0:167 × E=115ð Þ−0:633 ð3Þ

where,

A = 0:06 × BI ð4Þ

and

BI = 0:5 × RMD + JPS + JPO + RDI + Sð Þ ð5Þ

In Eq. (3), E is relative weight strength of explosive (Anfo=100)
and V=BSH where B=burden (m), S=blast hole spacing (m) and
H=bench height (m). In Eq. (5): RMD is rock mass description
(powdery or friable=10, blocky=20 and massive=50); JPS is joint
plane spacing (closeb0.1 m=10, 0.1–1.0=20, N1.0=50); JPO is
joint plane orientation (horizontal=10, dip out face=20, strike
normal to face=30, dip into face=40) and RDI is rock density
influence equal to 25d−50, where d is density and S is rock strength,
equal to 0.05 UCS, where UCS is uniaxial compressive strength. Even
though a few other equations such as SveDefo's fragmentation model
(Hjelmberg, 1983) and the model of Kou and Rustan (1993) are also
available in the literature to estimate mean fragmentation size, Kuz–
Ram model seems to be the most popular one.

Research at the JKMRC, Australia and elsewhere has demonstrated
that the Kuz–Ram model underestimates the contribution of fines in
the fragment size distribution. Hall and Brunton (2002) claim that the
JKMRC model provides better prediction than Kuz–Rammodel due to
improved estimation of the fines to intermediate size (b100 mm) of
the fragmentation distribution. The JKMRC model calculates the
coarse and fines distributions independently. JKMRC uses Kuz–Ram
model to calculate the course fraction.

In a previous study conducted by the third, first and fourth authors
of this paper (Hudaverdi et al., 2010), many blasts performed in
different parts of the world and reported in the literature were
carefully analyzed and put together to create a blast data base to
develop fragmentation prediction models. In the data base, the
burden, spacing between holes, stemming, bench height and hole
diameter are used to represent blast design parameters. Specific
charge is used as the explosive parameter that represents explosive
distribution in rock. All blasts in the database were performed using
Anfo. Therefore, there was no need to use any parameter related to



Table 2
Blast data belonging to Group 2.

S/B H/B B/D T/B Pf (kg/m3) XB (m) E (GPa) X50 (m)

Mr1 1.20 6.00 32.89 0.80 0.49 1.67 32.00 0.17
Mr2 1.20 6.00 32.89 0.80 0.51 1.67 32.00 0.17
Mr3 1.20 6.00 32.89 0.80 0.49 1.67 32.00 0.13
Mr4 1.20 6.00 32.89 0.80 0.52 1.67 32.00 0.17
Mr5 1.20 6.00 32.89 0.80 0.42 1.67 32.00 0.13
Mr6 1.40 6.00 32.89 0.80 0.36 1.67 32.00 0.15
Mr7 1.20 6.00 32.89 0.60 0.56 1.03 32.00 0.18
Mr8 1.40 6.00 32.89 0.60 0.30 1.03 32.00 0.19
Mr9 1.40 6.00 32.89 0.60 0.35 1.03 32.00 0.16
Mr10 1.16 5.00 39.47 0.50 0.39 1.03 32.00 0.17
Mr11 1.16 5.00 39.47 0.50 0.32 1.03 32.00 0.21
Db1 1.25 3.50 20.00 1.75 0.73 1.00 9.57 0.44
Db2 1.25 5.10 20.00 1.75 0.70 1.00 9.57 0.76
Db3 1.38 3.00 20.00 1.75 0.62 1.00 9.57 0.35
Db4 1.50 5.50 20.00 1.75 0.56 1.00 9.57 0.55
Db5 1.75 4.75 20.00 1.75 0.39 1.00 9.57 0.35
Db6 1.25 4.75 20.00 1.75 0.33 1.00 9.57 0.23
Db7 1.25 5.00 20.00 1.75 0.44 1.00 9.57 0.40
Db8 1.20 2.40 25.00 1.40 0.28 0.50 9.57 0.35
Db9 1.40 3.20 25.00 1.40 0.31 0.50 9.57 0.29
Sm1 1.25 2.50 28.57 0.83 0.42 0.50 13.25 0.15
Sm2 1.25 2.50 28.57 0.83 0.42 0.50 13.25 0.19
Sm3 1.25 2.50 28.57 0.83 0.42 0.50 13.25 0.23
Sm4 1.25 2.50 28.57 0.83 0.42 1.50 13.25 0.22
Sm5 1.25 2.50 28.57 0.83 0.42 1.50 13.25 0.24
Sm6 1.25 2.50 28.57 0.83 0.42 1.50 13.25 0.26
Sm7 1.25 2.50 28.57 0.83 0.42 1.50 13.25 0.28
Ad1 1.20 4.40 28.09 1.20 0.58 0.77 16.90 0.15
Ad2 1.20 4.80 28.09 1.20 0.66 0.56 16.90 0.17
Ad3 1.20 4.80 28.09 1.20 0.72 0.29 16.90 0.14
Ad4 1.20 4.00 28.09 1.60 0.49 0.81 16.90 0.16
Ad5 1.14 6.82 24.72 1.36 0.84 1.43 16.90 0.21
Ad6 1.14 6.36 24.72 1.36 0.82 1.77 16.90 0.21
Ad7 1.25 3.50 22.47 1.25 0.75 1.03 16.90 0.15
Ad8 1.25 3.25 22.47 1.25 0.71 0.83 16.90 0.19
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explosive type. Because the data base was large and diverse, it turned
out to be a difficult assignment to find common intact rock and rock
mass parameters for all the selected blast data to use in developing
fragmentation distribution models. On the other hand, it was possible
to find in-situ block size for all the blasts in the data base. Therefore,
in-situ block sizewhich is accepted as one of the key parameters of the
fragmentation process was used to represent rock mass structure in
the data base. With respect to intact rock, the modulus of elasticity
turned out to be the most common parameter available for all the
blasts and was used to represent intact rock properties in the data
base. The cluster analysis was performed on this data to separate the
blast data into two different similarity groups. The main difference
between the two groups was found to be the modulus of elasticity
value. The data belonging to the two groups are given in Tables 1 and
2, respectively. The mean elastic modulus values are 51.14 and 17.99
for Groups 1 and 2, respectively. Group memberships were then
analyzed and confirmed by the discriminant analysis. In this paper, a
part of the blast data is used to train neural network models for each
of the obtained similarity groups. The blast data that are not used for
training are used to validate the trained neural network models.

3. Used blast database

This section covers the blast data base developed by Hudaverdi
et al. (2010). The data compiled from previous blasts conducted in
various parts of the world were combined with blast data collected
from the quarries near Istanbul city to create the blast data base. A
total of 91 blasts shown in Tables 1 and 2 were evaluated to form a
blast database. The blasts shown by symbols ‘Rc,’ ‘En’ and ‘Ru’ in
Table 1 were collected from Aler et al. (1996) and Hamdi et al. (2001)
research conducted at the Enusa and Reocin mines which are located
in Spain. The Enusa Mine is an open-pit uranium mine in a schistose
Table 1
Blast data belonging to Group 1.

S/B H/B B/D T/B Pf (kg/m3) XB (m) E (GPa) X50 (m)

En1 1.24 1.33 27.27 0.78 0.48 0.58 60.00 0.37
En2 1.24 1.33 27.27 0.78 0.48 0.58 60.00 0.37
En3 1.24 1.33 27.27 0.78 0.48 1.08 60.00 0.33
En4 1.24 1.33 27.27 0.78 0.48 1.11 60.00 0.42
En5 1.24 1.33 27.27 0.78 0.48 1.08 60.00 0.46
En6 1.24 1.33 27.27 1.17 0.27 1.08 60.00 0.37
En7 1.24 1.33 27.27 1.06 0.33 1.08 60.00 0.64
En8 1.24 1.33 27.27 0.91 0.41 1.11 60.00 0.42
En9 1.24 1.33 27.27 0.91 0.41 1.11 60.00 0.26
En10 1.24 1.33 27.27 0.99 0.36 1.08 60.00 0.42
En11 1.24 1.33 27.27 1.06 0.33 1.11 60.00 0.31
En12 1.24 1.33 27.27 1.06 0.33 1.11 60.00 0.38
Rc2 1.17 1.50 26.20 1.12 0.30 0.68 45.00 0.48
Rc3 1.17 1.58 26.20 1.22 0.28 0.68 45.00 0.48
Rc4 1,17 1,96 26,20 1,30 0,34 1,56 45,00 0,75
Rc5 1.17 1.75 26.20 1.31 0.29 1.56 45.00 0.96
Rc6 1.17 1.75 26.20 1.16 0.36 1.56 45.00 0.76
Rc7 1.17 1.67 26.20 1.22 0.31 1.80 45.00 0.53
Rc8 1.17 1.83 26.20 1.34 0.30 1.80 45.00 0.56
Rc9 1.17 1.83 26.20 1.29 0.32 1.80 45.00 0.74
Rc10 1.17 1.83 26.20 1.23 0.35 1.80 45.00 0.44
Mg1 1.00 2.67 27.27 0.89 0.75 0.83 50.00 0.23
Mg2 1.00 2.67 27.27 0.89 0.75 0.78 50.00 0.25
Mg3 1.00 2.40 30.30 0.80 0.61 1.02 50.00 0.27
Mg4 1.00 2.40 30.30 0.80 0.61 0.75 50.00 0.30
Mg5 1.10 2.40 30.30 0.80 0.55 1.18 50.00 0.38
Mg6 1.10 2.40 30.30 0.80 0.55 1.24 50.00 0.37
Mg7 1.10 2.40 30.30 0.80 0.55 1.33 50.00 0.38
Ru1 1.13 5.00 39.47 1.93 0.31 2.00 45.00 0.64
Ru2 1.20 6.00 32.89 3.67 0.30 2.00 45.00 0.54
Ru3 1.20 6.00 32.89 3.70 0.30 2.00 45.00 0.51
Ru4 1.20 6.00 32.89 4.67 0.22 2.00 45.00 0.64
Ru5 1.20 6.00 32.89 3.11 0.35 2.00 45.00 0.54
Ru6 1.20 6.00 32.89 3.22 0.34 2.00 45.00 0.69

Ad9 1.25 3.50 22.47 1.25 0.76 1.68 16.90 0.18
Ad10 1.25 3.50 22.47 1.25 0.76 1.24 16.90 0.15
Ad11 1.14 3.18 24.72 1.14 0.69 0.67 16.90 0.14
Ad12 1.14 3.18 24.72 1.14 0.69 2.01 16.90 0.20
Ad13 1.12 2.80 28.09 1.00 0.54 0.96 16.90 0.15
Ad14 1.00 2.40 28.09 1.00 0.56 0.83 16.90 0.14
Ad15 1.10 3.75 21.74 1.00 1.02 1.64 16.90 0.15
Ad16 1.10 3.50 22.47 1.25 0.86 2.35 16.90 0.15
Ad17 1.25 3.75 17.98 1.56 1.24 1.53 16.90 0.19
Ad18 1.00 4.00 18.42 1.71 1.26 0.73 16.90 0.15
Ad19 1.00 4.00 18.42 1.71 1.26 1.47 16.90 0.17
Ad20 1.14 4.00 18.42 1.71 1.10 1.19 16.90 0.19
Ad21 1.11 4.44 18.95 1.67 1.25 1.71 16.90 0.22
Ad22 1.28 3.61 18.95 1.67 0.89 0.56 16.90 0.20
Oz1 1.00 2.83 33.71 1.00 0.48 0.45 15.00 0.27
Oz2 1.20 2.40 28.09 1.00 0.53 0.86 15.00 0.14
Oz3 1.20 2.40 28.09 1.00 0.53 0.44 15.00 0.14
Oz4 1.25 4.50 22.47 1.50 0.76 0.66 15.00 0.20
Oz5 1.11 3.33 30.34 1.11 0.47 0.47 15.00 0.17
Oz6 1.20 3.20 28.09 1.20 0.48 1.11 15.00 0.30
Oz7 1.20 2.40 28.09 1.00 0.70 0.88 15.00 0.12
and is a moderately to heavily folded formation. The Reocinmine is an
open-pit and underground zinc mine. The Reocin underground mine
also applies bench blasting technique. The bench height in the Enusa
mine was 6 m. The bench height in the Reocin mine was between 9
and 11 m. the bench height in the Reocin underground mine was
18 m. Hole diameters for the Enusa and Reocin mines were 165 mm
and 229 mm, respectively.

The blasts shown by symbol ‘Mg’ in Table 1 were performed in the
Murgul Copper Mine (Hudaverdi, 2004). The Murgul Copper Mine is a
large open-pit mine located in the northeastern Turkey. The drill-hole
diameter applied was 165 mm. The bench height was 12 m. The
burden distance varied between 4.5 and 5 m. The spacing between
holes was 4.5–5.5 m. The rock formation was mainly dacite and
altered dacite.



Table 3
Descriptive statistics of the input parameters used to develop fragmentation prediction
models.

Minimum Maximum Mean Std. deviation

S/B 1.00 1.75 1.20 0.109
H/B 1.33 6.82 3.44 1.64
B/D 17.98 39.47 27.21 4.77
T/B 0.50 4.67 1.27 0.688
Pf (kg/m3) 0.22 1.26 0.53 0.238
XB (m) 0.02 2.35 1.17 0.479
E (GPa) 9.57 60.00 30.74 17.72

S = Spacing; B = Burden; H = Hole depth; D = drill-hole diameter; T = Stemming
height; Pf = Powder factor; XB = Mean block size; E = Elastic modulus.
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The blasts shown by symbol ‘Mr’was obtained from the research of
Ouchterlony et al. (1990) performed in the Mrica Quarry in Indonesia.
The research was a part of SveDeFo (Swedish Detonic Research
Foundation) investigations on fragmentation prediction models. The
rock was mainly andesite. The hole diameter was 76 mm and bench
height was 10–15 m. They investigated the effect of rock mass
properties and blast design parameters on blasting results. Ouchterl-
ony compared his results with the results of the SveDeFo and Kuz–
Ram prediction models.

The blasts indicatedwith symbol ‘Sm’ in Table 2were performed in
an open-pit coal mine in Soma Basin which is located in Western
Turkey. Ozcelik (1998) investigated 8 blasts to explain the effect of the
joint systems on fragmentation. The diameter of the blast holes was
21 cm. The burden was 5 m and spacing was 7.5 m. The bench height
was 15 m. The holes were drilled in two rows. Ozcelik determined
particle size distribution by image analysis software.

The blasts indicated with ‘Db’ symbol were performed in the
Dongri–Buzurg open-pit manganese mine situated in Central India.
Generally, the rock was micaceous schist and muscovite schist. The
hole diameterwas 100 mmand bench heightwas 6–11 m. The burden
was between 2 and 2.5 m and spacing was between 1.8 and 3.5 m. The
in-situ block size used to define the rock mass was determined by the
volumetric joint count (Jhanwar et al., 2000).

The blasts shown by symbols ‘Ad’ and ‘Oz’ were performed at the
Akdaglar and Ozmert Quarries of Cendere basin located in the
northern Istanbul. The blasts are investigated by the third and fourth
authors of this paper as a part of ongoing Istanbul Technical University
Research Project entitled “the investigation of environmentally
friendly blast designs for improvement of fragmentation in Istanbul
region quarries.” The aim of the project is to develop a fragmentation
model for improvement of the productivity in Istanbul region
quarries. Istanbul is a rapidly growing city. Most of the construction
projects in Turkey are concentrated in Istanbul. The quarries work
intensively to provide aggregate for concrete plants. Additionally, the
growing city approaches the quarries. Operation of the quarries near
residential areas is getting difficult day by day because of the
environmental pressures. Therefore, working with high efficiency
and getting desired particle size distribution resulting from blasts are
a necessity. The Akdaglar quarry produces aggregate for concrete and
asphalt plants. Daily capacity of the quarry is 5000 tons. The rock of
the quarry is sandstone. The density of the rock is 2.70 g/cm3. The
average compressive strength is 81 MPa. The Young modulus is
16.9 GPa. Anfowas used as the column charge. The drill-hole diameter
was 89 mm. The average burden applied was 2.17 m with a standard
deviation of 0.35. The average spacing distance was 2.5 m. The rock of
the Ozmert quarry was also sandstone. The hole diameter was 89 mm.
In the Ozmert Quarry, the burden applied was 2.5 m and spacing
between holes was 3 m. The particle size distribution of the blasts
performed in the Cendere Basin quarries was estimated by the
Wipfrag image analysis software. After each blast, multiple images
were captured from different locations of the muckpile. The images
were analyzed separately and the results were combined. The
discontinuity properties of the rock and the apparent in-situ block
size of the benches were analyzed by the Wipjoint joint analysis
software. Wipjoint is also a product of the creators of the Wipfrag.
Wipjoint allows users to quantify bench characteristics such as the
joint orientation, spacing and block size. The images of the bench face
were captured before each blast was performed at the Cendere region
quarries and an average in-situ block size was determined.

Five main blast design parameters are used in the developed
neural network models. They are the burden (B, m), spacing (S, m),
bench height (H, m), stemming (T, m) and hole diameter (D, m).
Several blasting researchers have considered blast design parameters
as ratios. In this study, the blast design parameters of all the blast data
are also used as ratios. The ratio of bench height to drilled burden (H/
B), ratio of spacing to burden (S/B), ratio of burden to hole diameter
(B/D) and ratio of stemming to burden (T/B) are the blast design
parameters used. The Powder factor (Pf) has been considered as an
explosive parameter. The ratio of spacing to burden is determined
based on energy coverage of the bench. For square pattern, S/B ratio is
1. The mean S/B ratio of the used blast data is 1.20. Generally, the ratio
of stemming to burden applied is around 1. For the used data, the
mean T/B ratio is 1.27 with a standard deviation of 0.69. Low T/B ratio
may cause premature release of explosive gases and result in flyrock
and inefficient fragmentation. Conversely, excessive stemming length
means low specific charge and may cause large boulders. Most of the
blast design calculations start with burden determination. If the
burden is too small, detonation gases escape to the atmosphere.
Escape of the detonation gases cause noise and airblast. That means
less energy is used for fragmentation. If the burden is too large,
confined gases may cause ground vibrations and backbreak. The
particle size of themuckpile may be coarser than expected under such
a situation. The ratio of burden to hole diameter (B/D) is one of the
most important parameters. Ash (1963) suggested the ratio of burden
to hole diameter (B/D) as 30 for average conditions. The B/D ratio is
equal to 25 for low density explosives such as Anfo. For the used data,
the mean B/D ratio is 27.21 with a standard deviation of 4.77. In this
study, the ratio of the bench height to burden (H/B) is used instead of
the ratio of hole length to burden (L/B) used by Ash. The ratio of bench
height to burden indicates the stiffness of the rock beam under blast
induced stress (2004). Hustrulid (1999) indicated that the H/B ratio is
1.6 or more for most of the open-pit operations. The mean H/B ratio of
the data used is 3.44 with a standard deviation of 1.64. Thus 7
parameters were used to establish fragmentation prediction models
based on NNA incorporating the blast design parameters, modulus of
elasticity (E, GPa) and in-situ block size (XB, m). Table 3 shows the
descriptive statistics of the parameters that were used to develop
neural network based fragmentation prediction models.

4. Application of Artificial Neural Network Approach (ANNA)

4.1. Setting up and training of ANNA

The back-propagation (BP) network, a multilayer feed-forward
ANNA, is perhaps the most popular network architecture today as it
contains the highlights of the neural network theory, simple in
structure and clear in mathematical meaning. It has been proved that
any continuous function can be uniformly approximated by BP
network model with only one hidden layer (Cybenko, 1989). So a
single-hidden layer BP network is used in this paper to predict the
mean particle size of rock fragmentation resulting from blasting. As
stated previously, the mean particle size X50 is considered to be a
function of seven independent parameters. Consequently, the para-
meters S/B, H/B, B/D, T/B, Pf, XB and E are used as inputs and X50 as the
output in the BP network model. In the literature different opinions
are expressed with respect to designing the neural network structure
with respect to the number of nodes and the weights to obtain
accurate performance from a trained network for a given number of
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training samples. This aspect is discussed in Section 4.2. Research
conducted in the past has shown that the number of hidden units has
a great impact on the ANNA prediction results (Khaw et al., 1995;
Maier and Dandy, 1997). Fig. 2 shows the BP network configuration
used in this study assuming the optimum number of hidden units as
N. Section 4.3 deals with estimation of N in great detail.

Assume the input vector of the network given in Fig. 2 as P given
below in Eq. (6).

P = ða1; a2; a3; a4; a5; a6; a7Þ ð6Þ

The expressions for input (Sj) and the output (bj) of the jth neuron
in the hidden layer are respectively given by Eqs. (7) and (8) (Ge and
Sun, 2007).

sj = ∑
7

i=1
wijai−θj j = 1;2;3;…;N ð7Þ

bj = f1 sj
� �

j = 1;2;3; ⋯;N ð8Þ

f1 xð Þ = 2
1 + e−2x −1 ð9Þ

In Eq. (7), wij and θj are the weights and thresholds respectively,
between the input layer and the hidden layer. The transfer function of
the hidden layer is given by Eq. (9). The input can be mapped into the
output interval between −1 and 1.

The expressions for input (Lt) and the output (Ct) of the tth neuron
in the output layer are respectively given by Eqs. (10) and (11) (Ge
and Sun, 2007).

Lt = ∑
N

i=1
vjtbj−γt t = 1 ð10Þ

Ct = f2 Ltð Þ t = 1 ð11Þ

f2 xð Þ = 1
1 + e−x ð12Þ

In Eq. (10), vjt and γt are the weights and thresholds respectively,
between the hidden layer and the output layer. The transfer function
of the output layer [Eq. (12)] is of log-sigmoid type. The input can be
mapped into the output interval between 0 and 1.
Fig. 2. The structure of a 7-N-1 BP neural network.
According to the aforementioned training rule, the information
flows through the network from the input layer to the output layer via
the hidden layer. The objective of the training is to adjust the
aforementioned weights and thresholds to develop and estimate a
complicated non-linear function between the output and input
variables. The objective function given in Eq. (13) is used to obtain
an optimized trained network.

MSE =
1
T
∑
T

t=1
yt−Ctð Þ2 ð13Þ

In Eq. (13), yt is the expected output; T is the number of data sets
used in the training sample. The weights and thresholds are adjusted
using the gradient decreased learning method to minimize the
objective function value given by Eq. (13) and thus to arrive at an
optimized trained network. The adjusting functions for the weights
and thresholds between the hidden layer and the output layer are
given by Eqs. (14) and (15), respectively.

vjt m + 1ð Þ = vjt mð Þ + α yt−Ctð ÞCt 1−Ctð Þbj ð14Þ

γt m + 1ð Þ = γt mð Þ + α yt−Ctð ÞCt 1−Ctð Þ ð15Þ

In Eqs. (14) and (15), α is the learning rate between the hidden
layer and the output layer (0bαb1) and m stands for the mth
adjustment. The adjusting functions for the weights and thresholds
between the input layer and the hidden layer are given by Eqs. (16)
and (17), respectively.

wij m + 1ð Þ = wij mð Þ + β ∑
1

t=1
yt−Ctð ÞCt 1−Ctð Þvjt

" #
bj 1−bj
� �

ai ð16Þ

θj m + 1ð Þ = θj mð Þ + β ∑
1

t=1
yt−Ctð ÞCt 1−Ctð Þvjt

" #
bj 1−bj
� �

ð17Þ

In Eqs. (16) and (17), β is the learning rate between the input layer
and the hidden layer (0bβb1). The initial values of the weights (wij,
vjt), thresholds (θj, γt) and the learning rates (α,β) are input
automatically when “newff” function is used to create a BP network
in the neural network toolbox of the Matlab software. The training of
the network is stopped after it has been trained for many cycles to
reach a stable MSE value.

As stated before, the blasting data have been divided into two
groups by the value of elastic modulus. To increase the prediction
precision, BP neural network was applied separately to each group.
For group1, thirty-four sets of data given in Table 1 were used to train
the network and the five sets of data given in Table 4 were used to
predict and validate the network. For Group 2, fifty-six sets of data
given in Table 2 were used to train the network and the seven sets of
data given in Table 5 were used to predict and validate the network.

As their orders of magnitude are different, before running the
neural networks, the original data were normalized using Eq. (18)
given below:

yi =
xi−xmin

xmax−xmin
ð18Þ

In Eq. (18), x is the vector before normalization; y is the vector
after normalization; xi and yi are respectively the element of vector x
and vector y; xmax and xmin are respectively, the maximum and
minimum element of vector x.

Several algorithms are available in the literature to train a neural
network. Each of them has its advantages and disadvantages. For a
given problem, it is difficult to say which one works best. It depends
on several factors, such as the complexity of the problem, the number
of training samples, the structure of the network, error target and so



Table 4
Prediction results of the 8 simulations for Group 1 (for N=9).

Blast
no.

X50

(m)
X50R

(m)
X50K

(m)
X50N (BP neural network) (m)

1 2 3 4 5 6 7 8 μ δ

En13 0.47 0.39 0.44 0.39 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.0255
RU7 0.64 0.51 0.65 0.96 0.96 0.38 0.23 0.38 0.96 0.96 0.24 0.63 0.5571
Mg8 0.44 0.40 0.39 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.0000
Mg9 0.25 0.24 0.30 0.26 0.27 0.27 0.27 0.30 0.28 0.28 0.28 0.28 0.0430
Rc1 0.46 0.52 0.72 0.48 0.31 0.41 0.47 0.48 0.36 0.47 0.49 0.43 0.1544

X50: Measured mean particle size (m), X50K: Mean particle size based on Kuznetsov's equation (m), X50N: Predicted mean particle size based on neural network model (m), X50R:
Mean particle size based on developed regression model (m).

Table 5
Prediction results of the 8 simulations for Group2 (for N=7).

Blast
no.

X50

(m)
X50R

(m)
X50K

(m)
X50N (BP neural network) (m)

1 2 3 4 5 6 7 8 μ δ

Mr12 0.20 0.16 0.24 0.12 0.32 0.12 0.17 0.22 0.12 0.22 0.12 0.18 0.4093
Db10 0.35 0.16 0.08 0.17 0.28 0.16 0.17 0.20 0.74 0.20 0.74 0.33 0.7621
Sm8 0.18 0.19 0.35 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.0000
Oz8 0.23 0.17 0.20 0.18 0.14 0.14 0.12 0.13 0.15 0.13 0.15 0.14 0.1268
Oz9 0.17 0.16 0.23 0.19 0.19 0.18 0.22 0.19 0.17 0.19 0.17 0.19 0.0853
Ad23 0.21 0.18 0.11 0.22 0.19 0.23 0.17 0.22 0.22 0.22 0.22 0.21 0.0919
Ad24 0.20 0.14 0.13 0.19 0.21 0.19 0.17 0.25 0.23 0.25 0.23 0.22 0.1332

X50: Measured mean particle size (m), X50K: Mean particle size based on Kuznetsov's equation (m), X50N: Predicted mean particle size based on neural network model (m), X50K:
Mean particle size based on developed regression model (m).
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on. In this paper, the best training method was decided by trying
different methods and observing the performance of each method on
a plot betweenmean square error (MSE) value and number of training
cycles. Four training methods: Levenberg–Marquardt (LM) algorithm,
BFGS Quasi-Newton (BFGSQN) algorithm, Gradient Descent (GD)
algorithm, and Gradient Descent Momentum (GDM) algorithm (Ge
and Sun, 2007) were used to train the same selected network. The
obtained results are shown in Fig. 3. It shows that the BFGS QN
algorithm can provide results that are not stable and also it is subject
to inaccuracies resulting from possible local minimum problems. In
addition, the figure shows that the training speed of the BFGSQN
algorithm is lower than that of the LM algorithm. The same figure
shows that the training speed of the GD and GDM algorithms is much
lower and their MSE values are much higher than that of the LM
algorithm. That means the network performance of the GD and GDM
algorithms is lower than that of the LM algorithm. It is also important
to state that even though the plot of LM algorithm more or less
Fig. 3. Mean square error versus number of training cycles plot for the used training
algorithms (Group 1 and N=9).
remained the same with respect to different simulations, the plots of
the remaining three algorithms changed significantly from one
simulation to another. It indicates that the LM algorithm has the
highest stability among the four training algorithms. Note that the LM
algorithm has reached the global minimum after a few training cycles.
The LM algorithm has been proposed by Hagan and Menhaj (He et al.,
2005). The LM algorithm is an improved algorithm based on
numerical optimization. Not only the first derivative information
but also the second derivative information of the target function is
used in the LM algorithm. It can dynamically adjust the convergence
direction of iteration according to the iteration result, so its
convergence speed is very fast (Wang et al., 2008). Fig. 3 shows that
the LM algorithm is providing stable, very low MSE values at a low
number of training cycles. This indicates that a network trained by the
LM algorithm has good generalization ability and has the capability of
providing good predictions compared to that of measured data.
Therefore, from now onwards, the training of the neural networks
that are discussed in the paper is performed using only the LM
algorithm.

4.2. Influence of training sample size, number of weights and number of
nodes on the accuracy of a trained network

For one hidden layer neural networks, Widrow (1987) and Baum
and Haussler (1989) have suggested the equation P=W /(1−a) as a
necessary condition to relate P, the training sample size to a, the
expected accuracy of the trained network and W, the number of
weights to be trained. According to this equation, to obtain accuracies
of 80% and 90% it is necessary to have a training sample of size=5W
and 10W, respectively. In addition, Baum and Haussler (1989) have
suggested the equation P=(W / (1−a)) (log nd / (1−a)) as a
sufficient condition to obtain an accuracy a, where nd is the number
of nodes in the network. The latter condition increases the training
sample size requirement further. On the other hand, Rogers and
Dowla (1994) and Masters (1993) suggest the ratio between the
number of training samples and the number of connection weights to
be only 1and 2, respectively to obtain accurate trained networks. Due
to the existence of such wide range opinion in the literature, Maier
and Dandy (1998) performed an extensive investigation to study the
effect of network geometry parameters on the network performance



Table 6
MSE values obtained for Group 1 at 500 learning cycles.

N
value

Simulation no.

1 2 3 4 5 6 7 8

N=6 0.00140 0.00131 0.00131 0.00132 0.00535 0.00132 0.00132 0.00144
N=7 0.00131 0.00131 0.00132 0.00132 0.00133 0.00131 0.00132 0.00131
N=8 0.00131 0.00131 0.00131 0.00240 0.00131 0.00133 0.00132 0.00131
N=9 0.00131 0.00131 0.00134 0.00133 0.00131 0.00131 0.00132 0.00132
N=10 0.00133 0.00133 0.00132 0.00131 0.00131 0.00133 0.00132 0.00131
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through a case study. Accuracy of the trained network was evaluated
using the MSE value. They have obtained accurate results for neural
networks having P/W in the range 0.36 to 2.14. They have also stated
that the generalization ability of the trained network was not affected
by using larger networks, despite the fact that limited training data
were available. However, they have found network geometry to have
an influence on training speed because the time taken to update the
connection weights is a function of the number of weights. The above
discussion indicates that no accepted rule is available to relate P to W
and nd in forming network geometry for neural network analysis. The
authors feel that one of the best practical ways to evaluate the
accuracy of the trained networks is through calculation ofMSE. That is
the approach used in this paper.

Tables 6 and 7 show the MSE values obtained during training for
Groups 1 and 2 data, respectively at 500 learning cycles using the LM
algorithm for different number of hidden layers N and for different
simulations. Note that the optimum N obtained for Groups 1 and 2 are
9 and 7, respectively (see Section 4.3). MSE values appearing in
Tables 6 and 7 indicate high accuracy of trained networks. Note that
the trained networks obtained for different N and different simula-
tions are used to make predictions and to evaluate the accuracy of
predictions in Section 4.3. For Groups 1 and 2, MSE ranges of 1.31–
1.34×10−3 and 2.6–2.7×10−4, respectively have been obtained for
optimum N. For Group 1, in the training sample, En3 and En5, En8 and
En9, En11 and En12 had the same values of S/B, H/B, B/D, T/B, Pf, XB

and E. However, their values of X50 were not the same (see Table 1).
Mg5 and Mg7 had the same values of S/B, H/B, B/D, T/B, Pf, E and X50.
However, their value of XB was not the same (see Table 1). Due to the
above reasons, the training precision of Group1 was slightly lower
than that for Group 2.

4.3. Procedure to estimate number of units for the hidden layer

Choosing an appropriate number for the units in the hidden layer
is not a straightforward task (Maier and Dandy, 1997). The number of
input parameters, number of output parameters, number of data sets
available and the characteristics of the functional relation between the
output and the input parameters may affect the optimum number for
the units in the hidden layer. At present, the authors are not aware of
any accepted procedure or formula available to determine the
aforesaid optimum number. This optimum number may even change
with different run (simulation) numbers for the same problem. Two
empirical formulae available in the literature are used in this paper to
estimate the optimum number for the hidden layer units.

Based on Kolmogorov's theorem, Hecht-Nelson (1987) has
suggested that 2n+1 (where n is the number of input parameters)
Table 7
MSE values obtained for Group 2 at 500 learning cycles.

N
value

Simulation no.

1 2 3 4 5 6 7 8

N=6 0.00031 0.00027 0.00026 0.00026 0.00026 0.00026 0.00026 0.00026
N=7 0.00026 0.00026 0.00026 0.00026 0.00026 0.00026 0.00027 0.00027
N=8 0.00026 0.00026 0.00026 0.00026 0.00026 0.00054 0.00027 0.00026
should be used as the upper bound for the number of hidden units for
a one-hidden-layer back-propagation network. Because in our study
n=7, the number of hidden units for both Groups1 and 2 should be
≤15 according to Hecht-Nelson's suggestion. According to the second
empirical formula (Ge and Sun, 2007), the number of hidden units, N,
should satisfy the following inequality:

∑
n

i=0
Ci
N N k ð19aÞ

where

Ci
N =

N!
i! N−ið Þ! ð19bÞ

In inequality (19a), n is the number of input parameters and k is
the number of data sets used. Note that If iNN, CNi =0. Application of
inequality (19a) to Group 1 (n=7, k=34) and Group 2 (n=7,
k=56) results in N≥6 for both groups. Therefore, use of the
aforementioned two empirical criteria results in 6≤N≤15 for both
Groups 1 and 2.

Accuracy of the network was considered to determine the
optimum value for N. To evaluate the accuracy of the network for
each N, two parameters were used. The Root Mean Square Error,
RMSE, was used as the first parameter and it was defined by the
following equation:

RMSEi =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
J

j=1
error 2ij

J

vuuuut ð20aÞ

where

errorij = jeij−rijj ð20bÞ

In Eq. (20b), eij denotes the prediction result of the ith network
under a certain N for the jth blast number, rij denotes the
corresponding actual value for the same blast number. In Eq. (20a),
J is the number of blast data used for prediction for a certain group.
The correlation coefficient between the predicted value and the
measured value for the aforementioned J blast data was used as the
second parameter to evaluate the accuracy of each ith network under
a certain N value. In evaluating the accuracy, several random
simulations were performed for each ith network under a certain N
value.

4.4. Results, prediction and validation

For Group 1, five blasts were used for the prediction and validation.
Note that under each N value, 8 simulations were made. As an
example, the prediction obtained for each blast under N=9 for each
of the simulations made is shown in Table 4. En13 blast has the same
values of S/B, H/B, B/D, T/B, Pf, XB and E as for En4 blast. Therefore, the
prediction result of X50 for En13 blast is almost the same as the value
for En4 blast. For RU7 and RU1, all the blasting parameter values are
the same apart from the value for T/B. That has led to a large variation
of the predicted value with respect to the simulation number. Table 4
also provides the predicted mean, μ, and coefficient of variation, δ,
obtained for each blast from the 8 simulations.

The RMSE values and the coefficient of variations obtained for
Group 1 for different N values are given in Table 8. High correlation
coefficient values indicate predictions close to the measured values.
The consistency of the correlation coefficient values shows high
homogeneity of the Group 1 samples. N=9 has resulted in the lowest
RMSE and the highest correlation coefficient. That means for Group 1,
N=9 is the optimum value. Table 4 shows a comparison between



Table 8
Prediction results of mean particle size from ANNA for Group1 (for N=6–15).

Blast no. En13 RU7 Mg8 Mg9 Rc1 Correlation
coefficient
(with X50)

RMSE

X50 (m) 0.47 0.64 0.44 0.25 0.46 1.00
N=6 μ 0.42 0.86 0.37 0.27 0.40 0.90 0.1093

δ 0.0169 0.1595 0.0079 0.0479 0.3480
N=7 μ 0.42 0.56 0.37 0.27 0.54 0.88 0.0642

δ 0.0275 0.5837 0.0127 0.0410 0.4018
N=8 μ 0.42 0.74 0.37 0.28 0.51 0.93 0.0645

δ 0.0000 0.4460 0.0056 0.0698 0.3098
N=9 μ 0.42 0.63 0.37 0.28 0.43 0.96 0.0429

δ 0.0284 0.5553 0.0071 0.0275 0.1549
N=10 μ 0.42 0.64 0.37 0.27 0.58 0.87 0.0666

δ 0.0003 0.5480 0.0031 0.0249 0.2648
N=11 μ 0.42 0.78 0.37 0.28 0.60 0.89 0.0974

δ 0.0146 0.4193 0.0036 0.0272 0.1477
N=12 μ 0.42 0.61 0.37 0.28 0.39 0.94 0.0531

δ 0.0000 0.5691 0.0069 0.0584 0.2199
N=13 μ 0.42 0.67 0.37 0.28 0.46 0.95 0.0431

δ 0.0000 0.5472 0.0065 0.0488 0.3262
N=14 μ 0.42 0.60 0.37 0.27 0.55 0.77 0.0592

δ 0.0000 0.5611 0.0019 0.0420 0.1954
N=15 μ 0.42 0.74 0.37 0.26 0.54 0.93 0.0691

δ 0.0000 0.4175 0.0000 0.0602 0.2556

X50: Measured mean particle size (m).

Fig. 4. Predicted mean particle size (m) versus measured mean particle size (m): (a)
Based on neural network models; (b) based on Kuznetsov's equation; and (c) based on
developed regression models.
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neural network predictions, measured values and predictions based
on the Kuznetsov's equation. All the blast data were examined
carefully and the rock factor ‘A’ was estimated for each blast to apply
the Kuznetsov's equation. For all 5 blasts, neural network predictions
are close to the measured values. This can be also seen from the
regression analysis results given in Fig. 4a. For 4 out of the 5 blasts,
predictions based on Kuznetsov's equation are close to the measured
values. This can be also seen from the regression analysis results given
in Fig. 4b. Note that Group 1 blast data come from hard rocks that have
high elastic modulus values.

For Group 2, seven blasts were used for the prediction and
validation. Note that under each N value, 8 simulations were made. As
an example, the prediction obtained for each blast under N=7 for
each of the simulations made is shown in Table 5. The same table also
provides the predicted mean, μ, and coefficient of variation, δ,
obtained for each blast from the 8 simulations. The RMSE values and
the coefficient of variations obtained for Group 2 for different N values
are given in Table 9. The results show high fluctuation of correlation
coefficient values for Group 2 data. This shows that the homogeneity
of Group 2 is weaker than that of Group 1. N=7 has resulted in the
lowest RMSE value and the highest correlation coefficient. That means
for Group 2, N=7 is the optimum value. Table 5 shows a comparison
between neural network predictions, measured values and predic-
tions based on the Kuznetsov's equation. For all 7 blasts, neural
network predictions are close to the measured values. This can be also
seen from the regression analysis results given in Fig. 4a. Only for
about 50% of the blasts, predictions based on Kuznetsov's equation are
close to the measured values. This can be also seen from the
regression analysis results given in Fig. 4b. Note that Group 2 blast
data come from rocks that have relatively low elastic modulus values.

Fig. 4a shows the linear regression analysis performed between
the predictions obtained from the neural network models developed
for Groups 1 and 2 and the measuredmean particle size. Fig. 4b shows
the linear regression analysis performed between the predictions
based on Kuznetsov's equation for Groups 1 and 2 and the measured
mean particle size. In Fig. 4a, the prediction line has an intercept close
to zero and a slope close to 1.0 with a R2 value of 0.9407 (which
indicates a strong regression fit). These results indicate that the
matching between the neural network predictions and the measured
values is very strong. In Fig. 4b, even though the prediction line has an
intercept close to zero and a slope close to 1.0, the R2 value is only
0.5697 (which indicates only a moderate level regression fit). In
addition, the 95% confidence band in Fig. 4a is much narrower than that
in Fig. 4b. These results clearly showthat the neural network predictions
are better than the predictions based on Kuznetsov's equation.



Table 9
Prediction results of mean particle size from ANNA for Group2 (for N=6–15).

Blast no. Mr12 Db10 Sm8 Oz8 Oz9 Ad23 Ad24 Correlation coefficient (with X50) RMSE

X50 (m) 0.20 0.35 0.18 0.23 0.17 0.21 0.20 1.00
N=6 μ 0.19 0.19 0.18 0.14 0.17 0.20 0.19 0.11 0.0834

δ 0.5159 0.5700 0.1365 0.1059 0.1287 0.2082 0.1551
N=7 μ 0.18 0.33 0.19 0.14 0.19 0.21 0.22 0.81 0.0425

δ 0.4093 0.7621 0.0000 0.1268 0.0853 0.0919 0.1332
N=8 μ 0.28 0.30 0.19 0.14 0.21 0.25 0.20 0.49 0.0640

δ 0.8467 0.8615 0.0005 0.0322 0.3374 0.3733 0.0956
N=9 μ 0.41 0.43 0.19 0.14 0.20 0.29 0.20 0.59 0.1136

δ 0.6653 0.6185 0.0000 0.0495 0.0832 0.6729 0.0409
N=10 μ 0.33 0.33 0.19 0.14 0.19 0.26 0.20 0.52 0.0767

δ 0.7884 0.7237 0.0000 0.0089 0.3196 0.3535 0.1177
N=11 μ 0.31 0.35 0.17 0.13 0.16 0.19 0.19 0.68 0.0671

δ 0.7188 0.7518 0.1878 0.0681 0.1654 0.2405 0.2480
N=12 μ 0.31 0.45 0.19 0.14 0.18 0.29 0.22 0.78 0.0865

δ 0.7063 0.6182 0.0000 0.0060 0.1346 0.4057 0.1344
N=13 μ 0.39 0.36 0.19 0.14 0.17 0.23 0.20 0.49 0.0951

δ 0.7322 0.6801 0.0000 0.0050 0.1009 0.1552 0.0909
N=14 μ 0.39 0.38 0.18 0.14 0.16 0.21 0.19 0.57 0.0955

δ 0.6019 0.7096 0.1361 0.0714 0.1654 0.2076 0.1746
N=15 μ 0.21 0.30 0.18 0.14 0.17 0.20 0.19 0.79 0.0484

δ 0.6902 0.6597 0.1365 0.0545 0.1518 0.1937 0.1562

X50: Measured mean particle size (m).
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5. Prediction of mean particle size based on multivariate regression analysis

The multiple regression analysis (Draper and Smith, 1981) was applied to develop a prediction equation for each group. The dependent
variable of the multiple regression analysis is the mean particle size (x50R) and the independent variables are the all blast design parameters,
elastic modulus and in-situ block size.

Eq. (21) given below was developed for Group 1 that has high Young's modulus values. Table 10 shows the obtained regression statistics.

X50 = 208: S=Bð Þ2:788: H=Bð Þ0:112: B=Dð Þ0:027: T =Bð Þ−0:321
: Pfð Þ−0:360

: XBð Þ0:233: Eð Þ−1:802 ð21Þ

R, the multiple correlation coefficient, is the linear correlation between the observed and model-predicted values of the dependent variable.
Its large value (close to 1) indicates a strong relation. R2, the coefficient of determination, is the squared value of the multiple correlation
coefficient. R2 is the percent of variance in the dependent variable explained collectively by all of the independent variables. R2 value close to 1
also indicates importance of regression. The regression row in Tables 10 and 11 provide information about the variation accounted by the
regression model. The residual row displays information about the variation that is not explained by the regression model (Draper and Smith,
1981; Montgomery et al., 2006). For example, the sum of squares values given in Table 10 show that over 70% of the variance in themean particle
size (x50R) is explained by the regressionmodel. The F test is applied to test the significance of the regressionmodel. If the significance value of the
F statistic is less than 0.05, it means that the variation explained by themodel is not due to chance. In other words, the null hypothesis of no linear
relationship of x50R to the 7 independent variables is rejected. Table 10 shows a significance value of very close to zero based on the F and the
degrees of freedom (df) value calculated. That indicates the importance of the developed regression equation for Group 1.

The equation given belowwas developed for Group 2 that has low elastic modulus values. Table 11 shows the regression statistics obtained for
Eq. (22). Slightly higher R2 and R values were obtained for Group 2 in comparison to Group 1. Again a significance value of very close to zero was
obtained under ANOVA results. All these values indicate that the regression is important and strong for Group 2.

X50 = 3:34: S=Bð Þ0:073: H=Bð Þ0:644: B=Dð Þ−0:150
: T =Bð Þ−0:349

: Pfð Þ−0:155
: XBð Þ0:130: Eð Þ−1:159 ð22Þ

The coefficients associated with the modulus of elasticity are negative for Eqs. (21) and (22). Increase of the elastic modulus results in
decrease of the mean particle size. The modulus of elasticity is an indicator of rock stiffness. In the developed models, if the stiffness of rock
increases the fragmentability of rock increases.
Table 10
Regression statistics obtained for Eq. (21).

Model summary

R R2 Adjusted R2 Standard error Observations

0.841 0.708 0.632 0.0916 35

Analysis of variance (ANOVA)

Sum of squares df Mean square F Significance

Regression 0.551 7 0.079 9.356 0.000
Residual 0.227 27 0.008
Total 0.778 34



Table 11
Regression statistics obtained for Eq. (22).

Model summary

R R2 Adjusted R2 Standard error Observations

0.806 0.649 0.598 0.1046 56

Analysis of variance (ANOVA)

Sum of squares df Mean square F Significance

Regression 0.972 7 0.139 12.684 0.000
Residual 0.525 48 0.011
Total 1.497 55
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Eqs. (21) and (22) were applied respectively, to the 5 blasts shown in Table 4 and the 7 blasts shown in Table 5 to predict mean particle size
based on the developed regression equations. The values obtained are shown in Tables 4 and 5, respectively. For all 5 blasts belonging to Group 1,
the regression based predictions are close to the measured values. For the 7 blasts belonging to Group 2, apart from DB10, for the rest, the
regression based predictions are close to the measured values. Fig. 4c shows the regression analysis performed between the predictions based on
the regression equation and the measured mean particle size. Even though the intercept of the prediction line is almost zero, the slope (equal to
0.86) is slightly off from 1.0. However, the R2 value of 0.82 indicates a strong regression fit and the 95% confidence band is much tighter than the
one appears in Fig. 4b. Comparison of Fig. 4b and c shows that the regression based predictions have better reliability than the predictions based
on Kuznetsov's equation. Comparison of Fig. 4a and c shows that the neural network predictions are better than the predictions based on
developed multivariate regression models.
6. Discussion

Note that even though both the multivariate regression models
and neural network models are non-linear models, the neural
network models can be considered as more advanced non-linear
models than multivariate regression models. It is important to note
that neural network results do not provide a unique answer. The
results depend on the factors such as network geometry, internal
parameters of the learning algorithm and the simulation number. The
deviation associated with the simulation number can be reduced by
computing the mean value coming out of several simulations as done
in this paper. For engineering and science problems, it is an extremely
difficult task to find large data bases. Therefore, as shown in this
paper, attempts should be made to find the optimum network
geometry and the best learning algorithm to obtain the best possible
results for problems having a limited number of data. Best learning
algorithms can be obtained as shown in the paper through numerical
experimentation to minimize the MSE between the predicted value
and the expected value and to maximize the training speed and the
stability of the calculatedMSEwith number of training cycles. There is
no universally accepted theoretical basis for choosing the network
geometry. Therefore, in practical use, it should be obtained through
numerical experimentation as shown in the paper to minimize the
RMSE obtained between the prediction and the measured value. This
will increase the workload when using the neural network approach.
The learning and memory ability of a neural network depend on the
training samples used. Therefore, if new data become available, to
obtain accurate predictions, the network has to be rebuilt again from
the very beginning.

7. Conclusions

In a previous paper by three of the authors of this paper
(Hudaverdi et al., 2010), many blasts performed in different parts of
the world and reported in the literature were put together to create a
blast data base to develop fragmentation distribution models. In the
same paper, a hierarchical cluster analysis was used to separate the
blasts data into two different groups of similarity based on the intact
rock stiffness. In the same study the group memberships obtained
from cluster analysis was confirmed by a discriminant analysis. A part
of this blast data was used in this study to train a single-hidden layer
back-propagation neural network model to predict mean particle size
resulting from blast fragmentation for each of the obtained similarity
groups. Themean particle size was considered to be a function of seven
independent parameters. It turned out to be a difficult assignment to
find common intact rock and rock mass parameters for all the selected
blast data to use in developing fragmentation distribution models. On
the other hand, it was possible to find in-situ block size for all the blasts
in the data base. Therefore, in-situ block sizewhich is accepted as one of
the key parameters of the fragmentation process was used to represent
rock mass structure in the developed models. With respect to intact
rock, the modulus of elasticity turned out to be the most common
parameter available for all the blasts and was used to represent intact
rock properties in the developed models. Consequently, two rock
parameters which are widely used in the literature related to blast
fragmentationwere included in the fragmentation predictionmodels. It
was possible to incorporate most of the important blast design
parameters in the developed models.

Four learning algorithms were considered to train neural network
models. Levenberg–Marquardt algorithm turned out to be the best one
providing the highest stability and maximum learning speed. An
extensive analysis was performed to estimate the optimum value for
the number of units for the hidden layer. The blast data that were not
used for training were used to validate the trained neural network
models. Capability of the developed neural network models was
determined by comparing neural network predictions with measured
mean particle size and the predictions based on one of themost applied
fragmentation prediction models appearing in the blasting literature.
Prediction capability of the trained neural networkmodelswas found to
be strong and better than the most applied fragmentation prediction
model. For the same two similarity groups, multivariate regression
models were also developed to predict mean particle size. The
prediction capability of the multivariate regression models was also
found to be strong and better than the most applied fragmentation
prediction model. The prediction capability of the neural network
models seems to be superior to that of multivariate regression models
for the used data. No other study reported in the literature has used a
large data base as that used in this study. Therefore, the diversity of the
blasts data base is oneof the strongest features of the developedmodels.
The variety of the blasts is also an important element that increases the
versatility and reliability of the developedmodels. The developed neural
network models as well as multivariate regression models are not
complex and are suitable for practical use at mines. As a result of this
study, two different neural network models and two different
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multivariate regressionmodelsweredeveloped topredictmeanparticle
size resulting from blasting. This provides an opportunity to use a
different prediction model in accordance with the value of modulus of
elasticity of intact rock.

Researchers use different procedures in estimating in-situ block
size. A wide variation is possible for the determination technique of
the in-situ block size. In the future, attempts should be made to
provide uniformity in estimating the in-situ block size to increase
accuracy. At present, the developed models incorporate elastic
modulus to represent the intact rock. In the future, attempts may be
made to determine additional rock parameters of the rock mass that
would be subjected to blasting. Application of the developed
prediction models to new blasts will test the reliability of them.
Attempts should be made to enlarge the blast database that will be
used to develop fragmentation prediction models presented in this
study. Neural network and multivariate statistical modeling proce-
dures used in this paper have shown the capability of developing
accurate fragmentation prediction models.
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