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Abstract
The nonhorizontal-model-layer (NHML) grid system is more accurate than the horizontal-model-layer grid system to describe

groundwater flow in an unconfined sloping aquifer on the basis of MODFLOW-2000. However, the finite-difference scheme of
NHML was based on the Dupuit-Forchheimer assumption that the streamlines were horizontal, which was acceptable for slope
less than 0.10. In this study, we presented a new finite-difference scheme of NHML based on the Boussinesq assumption and
developed a new package SLOPE which was incorporated into MODFLOW-2000 to become the MODFLOW-SP model. The accuracy
of MODFLOW-SP was tested against solution of Mac Cormack (1969). The differences between the solutions of MODFLOW-2000
and MODFLOW-SP were nearly negligible when the slope was less than 0.27, and they were noticeable during the transient flow
stage and vanished in steady state when the slope increased above 0.27. We established a model considering the vertical flow
using COMSOL Multiphysics to test the robustness of constrains used in MODFLOW-SP. The results showed that streamlines quickly
became parallel with the aquifer base except in the narrow regions near the boundaries when the initial flow was not parallel to the
aquifer base. MODFLOW-SP can be used to predict the hydraulic head of an unconfined aquifer along the profile perpendicular to
the aquifer base when the slope was smaller than 0.50. The errors associated with constrains used in MODFLOW-SP were small but
noticeable when the slope increased to 0.75, and became significant for the slope of 1.0.

Introduction
Groundwater flow in hillslope aquifers has some

unique features that are not commonly seen in flow in
horizontally extended aquifers (Tsai 2011; Iverson and
Major 1986). One of such features is that the sediment
strata in the hillslope region are not always horizontal,
sometime the slope is very steep and changes dramatically
over spatial scales of interest (Broda et al. 2012; Ye and
Khaleel 2008). An aquifer with a nonhorizontal base is
called a sloping aquifer hereinafter.

The natural groundwater movement is controlled by a
variety of stratigraphic and structural units in sedimentary
environments (Toth 2009). The mechanism of ground-
water flow in a sloping aquifer was found to be different
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from that in a horizontal aquifer more than one hundred
years ago (Dupuit 1863; Boussinesq 1877). The first
approach to handle this kind of problems was proposed by
Dupuit (1863), named as the Dupuit-Forchheimer method
which assumed that the streamlines of groundwater flow
can be taken as horizontal, and the hydraulic gradient was
equal to the slope of the free surface and did not vary
with depth, that is, dH /dz = 0, where H and z were the
hydraulic head and the vertical coordinate, respectively.
A careful check of the Dupuit-Forchheimer method
showed that this method did not preclude vertical flow in
the aquifer (or model-layer), but merely implied that the
resistance to vertical flow was ignored instead of vertical
flow itself, as demonstrated in details by Kirkham (1967)
and Strack (1984). Nevertheless, the implication that
dH /dz = 0 always held, regardless of the interpretation of
the Dupuit-Forchheimer method. The Dupuit-Forchheimer
method was demonstrated to be a good approximation
for an unconfined aquifer whose base slope was less
than 0.10 or sloping angle was less than 5.7◦ (Bear
1972). However, errors associated with this approach
increased quite significantly with increasing base slopes
(Schmid and Luthin 1964; Wooding 1966; Wooding and
Chapman 1966; Childs 1971; Chapman 1980). To tackle
the problems with greater base slopes (more than 0.1),
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Boussinesq (1877) extended the Dupuit-Forchheimer
method by assuming that the streamlines were nearly
parallel with the sloping base. This assumption usually
involved two different kinds of coordinate systems: one
had the x -axis parallel to the horizontal direction and
the other had the x -axis parallel to the sloping base
(called the s-axis hereinafter). Since the variables in the
approach of Boussinesq (1877) involved two different
coordinate systems, it was sometimes difficult to obtain
the solutions directly. Childs (1971) and Wooding and
Chapman (1966) derived two corresponding formulas
in the x-z and the s-z coordinate systems, respectively.
The x-z coordinate system was an orthogonal Cartesian
coordinate system with the x -axis horizontal and the
z -axis vertical. The s-z coordinate system was a skewed
Cartesian coordinate system with the s-axis along the
sloping base and the z -axis vertical. Up to present, these
two formulas became the basis to solve problems related
to the unconfined groundwater flow in sloping aquifers.

Early works on the subject mainly focused on
the steady seepage between ditches or rivers in a
sloping unconfined aquifer with recharge (Schmid and
Luthin 1964; Wooding and Chapman 1966; Childs 1971;
Chapman 1980). Subsequently, many hydrogeologists
devoted significant efforts to develop analytical solutions
of transient flow in sloping aquifers (Chauhan et al.
1968; Beven 1981; Brutsaert 1994; Verhoest and Troch
2000; Upadhyaya and Chauhan 2001; Zissis et al.
2001; Verhoest et al 2002; Stagnitti et al. 2004; Bansal
and Das 2011; Asadi-Aghbolaghi et al. 2012; Bansal
2012). Among these analytical solutions, Upadhyaya and
Chauhan (2001) and Asadi-Aghbolaghi et al. (2012)
adopted the Dupuit-Forchheimer assumptions. Beven
(1981), Brutsaert (1994), Verhoest and Troch (2000),
Stagnitti et al. (2004) and Verhoest et al. (2002) derived
solutions in the s-z coordinate system based on the
Boussinesq assumption. Zissis et al. (2001), Bansal and
Das (2011), and Bansal (2012) presented solutions in
the x-z coordinate system, also based on the Boussinesq
assumption. Regardless of the skewed or orthogonal
coordinate system used, a linearization method was
inevitably adopted in above analytical solutions to deal
with the nonlinear governing equations of flow.

To check the accuracy of the linearization method
used in above analytical solutions, carefully designed
numerical solutions were needed. Chapuis (2011)
employed a finite-element solution by Seep/W (Geo-
Slope 2003) to assess the robustness of the steady-state
analytical solutions. Mac Cormack (1969) (reprint Mac
Cormack [2003]) developed a robust finite-difference
computational scheme for transient compressible
Navier–Stokes equations, which was conditionally stable
and convergent. The numerical scheme of Mac Cormack
(1969) was subsequently applied for unconfined flow
in sloping aquifers (Zissis et al. 2001; Bansal 2012).
The commonly used MODFLOW model (McDonald
and Harbaugh 1988) can be employed to deal with
unconfined flow in a sloping aquifer if one used a suffi-
ciently large number of layers for vertical discretization

to describe the sloping base. Unfortunately, this may
be numerically infeasible because of a few limitations
of graphically-aided commercial MODFLOW packages
such as Visual MODFLOW. Firstly, the maximum
number of layers used in MODFLOW-2000 (McDonald
and Harbaugh 1988) was limited (usually less than 200
in Visual MODFLOW). Secondly, even one was able to
use a large number of layers; the resulting small layer
thickness could make it very time consuming to assign
the inactive cells above the initial water table which
may not be located in the first layer. Although both
limitations may be resolved by modifying the original
program of MODFLOW, another problem related to
convergence cannot be handled easily. For example, we
tried to use MODFLOW-2000 to simulate unconfined
groundwater flow employing parameters in Figures 4
and 5. In doing so, we used more than 100 layers and
considered inactive cells above the initial water table.
As a result, we found that the simulation was either
divergent or ended in physically unrealistic results. To
overcome such difficulty, one alternative approach was to
use either layers with variable thickness or the so-called
nonhorizontal-model-layer (NHML) as specifically dis-
cussed by Harte (1994). By doing so, one can use very
few or even one layer for the vertical discretization, thus
substantially reduced the computational cost and avoided
the convergence problem as commonly seen in above
discretization with horizontal layers. However, such an
approach only provided a good approximation to the
flow problem when the sloping angle was very gentle
(usually less than 5.7◦) and the errors were expected to
increase substantially when the sloping angle increased
above 5.7◦.

This study has three purposes. The first is to ana-
lyze the possible problems in existing analytical and
numerical solutions of groundwater flow in an uncon-
fined sloping aquifer, including the problem associated
with MODFLOW-2000. The second is to propose a new
numerical scheme that specifically tackles the character-
istics of a sloping base and to develop a new package
SLOPE for MODFLOW-2000 based on NHML. The
third is to verify the Boussinesq assumption (which
assumes that the streamlines are parallel with the slop-
ing base) through a high-resolution numerical simulation
considering the vertical flow on the basis of COMSOL
Multiphysics. Our new numerical scheme improves the
MODFLOW-2000 model for dealing with sloping angles
that are less than 45◦. This new scheme is incorpo-
rated into MODFLOW-2000 to become MODFLOW-SP.
Another benefit of the new numerical scheme is that it per-
mits the spatial variation of the sloping angles, which is
particularly useful for dealing with curved aquifer bases.

Problems in Existing Solutions of Unconfined
Flow in Sloping Aquifers

The study on groundwater flow in an unconfined
sloping aquifer has become an active research area
since the 1860 s (Dupuit 1863; Boussinesq 1877). Many
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Figure 1. Schematic diagram of groundwater flow in an
unconfined sloping aquifer.

approximate analytical and numerical solutions have been
developed based on various types of assumptions which
are inevitable for a few reasons. Firstly, the governing
equations of groundwater flow for such problems are
nonlinear, and linearization has to be performed to derive
the analytical solutions. The second issue is related to
the water table which is a free moving surface that is
sometime difficult to deal with. The third is how to
accurately approximate the effect of the sloping base on
groundwater movement. In the following, we attempt to
analyze the problems associated with existing solutions of
unconfined flow in sloping aquifers.

A schematic diagram of groundwater flow in an
unconfined sloping aquifer is depicted in Figure 1. The
x-z coordinate system is an orthogonal Cartesian coor-
dinate system with the x -axis horizontal and the z -axis
vertical. The s-z coordinate system is a skewed Cartesian
coordinate system with the s-axis along the aquifer base
and the z -axis vertical. H is the hydraulic head (L) in
the x-z coordinate system. h is the vertical length from
the aquifer base to the water table (L). h ′ is the distance
(L) between the aquifer base and water table along the
direction perpendicular to the s-axis. On the basis of
the Dupuit-Forchheimer assumption (the streamlines are
assumed to be horizontal), the discharge per unit width,
q (L2/T), can be expressed as (Dupuit 1863)

q = −Kh
∂H

∂x
= −Kh

[
∂h

∂x
+ tan (θ)

]
, where

H = h + x tan (θ) , (1)

where K is hydraulic conductivity (L/T) and θ is the
aquifer base angle (dimensionless) which is counter
clockwise from the x -axis. Some other investigators
approximate q as (Bear 1972; Dupuit 1863):

q = −Kh
∂H

∂s
or q = K sec (θ) (∂H/∂x)[

1 + tan (θ) (∂H/∂x)
] . (2)

The main difference between Equations 1 and 2 is the
calculation of the hydraulic gradient. On the basis of the
Boussinesq assumption that the streamlines are parallel to

the sloping base, one has

q = −Kh
′ ∂H

∂s
. (3)

Subsequently, there are two different approaches to
approximate Equation 3. Wooding and Chapman (1966)
proposed the following approximation using h ′ ≈ h cos(θ )

q ≈ −Kh
′
[

cos (θ)
∂h

′

∂s
+ sin (θ)

]
. (4)

The essence of this approximation is to regard h ′ as the
projection of h along the direction perpendicular to the
aquifer base. A careful check of Figure 1 reveals that
this approximation works the best when the water table is
parallel to the aquifer base, and it works poorly when
the water table slope is very different from the slope
of the aquifer base. Childs (1971) proposed an alternate
approximation for Equation 3 as:

q ≈ − Kh (∂H/∂x)[
1 + tan (θ) (∂H/∂x)

]
= − K cos2 (θ) h (∂H/∂x)[

1 + 0.5 sin (2θ) (∂H/∂x)
] . (5)

Since the denominator on the right side of Equation 5
contains a partial differential term, ∂H /∂x or ∂h/∂x ,
Equation 5 is intrinsically nonlinear. Chapman (1980)
assumed that when 0.5 sin(2θ )∂h/∂x was much less than
1, which was true when ∂h/∂x was very small and/or
the slope angle was very gentle, then Equation 5 can be
simplified to:

q ≈ −K cos2 (θ) h

[
∂h

∂x
+ tan (θ)

]
= −K cos2 (θ) h

∂H

∂x
.

(6)

The above different ways of calculating q , when combined
with the mass balance principle, will lead to various forms
of governing equations:

∂q

∂x
+ S

∂H

∂t
= Q, (7)

where Q (L/T) is the net rate of the vertical accre-
tion to the free surface, S is the storage coefficient
(dimensionless). Substituting Equations 1, 4, and 5 into
Equation 7 results in the following three types of govern-
ing equations:

∂

∂x

(
h

∂h

∂x

)
+ tan (θ)

∂h

∂x
+ Q

K
= S

K

∂h

∂t
, (8)

∂

∂s

(
h

′ ∂h
′

∂s

)
+ tan (θ)

∂h
′

∂s
+ Q

K

[
1 − tan (θ)

∂h
′

∂s

]

= S

K cos (θ)

∂h
′

∂t
, (9)
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∂

∂x

(
h

∂h

∂x

)
+ tan (θ)

∂h

∂x
+ Q

K cos2 (θ)
= S

K cos2 (θ)

∂h

∂t
.

(10)

These three governing equations become the basis for
solving groundwater flow in an unconfined sloping
aquifer. For example, Upadhyaya and Chauhan (2001)
and Asadi-Aghbolaghi et al. (2012) obtained approximate
analytical solutions based on Equation 8; Beven (1981),
Brutsaert (1994), Verhoest and Troch (2000), Stagnitti
et al. (2004), and Verhoest et al. (2002) derived approxi-
mate analytical solutions of Equation . Zissis et al. (2001),
Bansal and Das (2011), and Bansal (2012) presented
approximate analytical solutions of Equation 10.

There are two features associated with above three
governing equations that deserve some discussion. The
first is the nonlinearity, reflected in the first terms on the
left sides of Equations 8 through 10. The nonlinearity
imposes difficulty from an analytical perspective and
some linearization methods have to be used. The second
is the advective terms, which are the terms involv-
ing the first spatial derivative on the left sides of
Equations 8 through 10, making such equations similar
to the advection–diffusion equations (ADEs) commonly
employed for studying solute transport (Bear 1972). The
ADEs are fundamentally different from the conventional
groundwater flow equations in horizontal aquifers, which
are diffusion equations (Bear 1972). Such features will
bring in potential errors in the analytical and numerical
approaches.

For the analytical approaches, potential errors come
from two sources. Firstly, linearization of the nonlinear
governing equation will inevitably bring in some errors.
For instance, one linearization method is to approximate
∂(h∂h/∂x )/∂x by h

(
∂2h/∂x2

)
, where h is the average

saturated thickness of the aquifer (L). Secondly, the three
forms of governing equations described above also
involve various types of assumptions such as the Dupuit-
Forchheimer assumption (Dupuit 1863) or the Boussinesq
assumption (Boussinesq 1877) which will introduce errors
also. In addition, Equations 9 and 10 assume that
h ′ ≈ h cos(θ ) and 0.5 sin(2θ )∂h/∂x << 1, respectively.

For the numerical approaches, in addition to problems
discussed above for the analytical approaches, there is
one more challenge related to the introduction of the
advection terms in the governing equations which become
ADEs, which might introduce numerical dispersion and
artificial oscillation as commonly reported in solute
transport literature (Zheng and Wang 1999; Bear 1972).
Since the sloping angle has been incorporated explicitly
into above governing equations, one can still use the
horizontal-model-layer (HML) with a set of rectangular
faces as usually done for studying groundwater flow
in horizontal aquifers before. The benefit of doing so
is to avoid the problems of designing a skewed grid
system. Zissis et al. (2001) and Bansal (2012) employed
a finite-difference scheme of Mac Cormack (1969) to
solve Equation 10. This finite-difference scheme was a

two-step explicit approach named predictor-corrector by
Mac Cormack (1969), and was conditionally stable and
convergent. One such condition was to use a sufficiently
small time interval to ensure accuracy and convergence.
To deal with groundwater flow in an unconfined sloping
aquifer, the commonly used three-dimensional finite-
difference model MODFLOW (McDonald and Harbaugh
1988) can be a powerful tool if one can adequately handle
the characteristics of the sloping base. Two advantages
of MODFLOW are particularly notable. The first is
its capability to handle the free water table using the
rewetting package (Niswonger et al. 2011). The second
is its use of NHML to properly approximate the sloping
base (Harte 1994). In fact, NHML is capable of dealing
with variable sloping angles, making it very useful for
studying realistic sloping aquifers over a large spatial
scale which may see variable sloping angles at different
locations. Notwithstanding above mentioned advantages,
one may still face a few problems when using NHML
of MODFLOW for sloping aquifers. One problem is that
MODFLOW treats the streamlines between adjacent cells
within one layer as horizontal, which may not be true.
Some investigators such as Zheng (1994) realized that
the assumption of horizontal flow lines in a distorted
grid along the vertical dimension was problematic within
the MODFLOW framework, where the distorted grid
system may be employed to accommodate a slopping
base. Zheng (1994) provided a methodology to correct this
error. However, Zheng (1994) only concerned the particle
tracking (or MODPATH) analysis and did not discuss the
correction to the hydraulic head, which will be addressed
in this study. The essence of NHML treatment is
the Dupuit-Forchheimer assumption for unconfined flow,
which is found to work satisfactorily only for gentle slopes
(less than 0.10). Some studies such as Hoaglund and
Pollard (2003) have adopted the Boussinesq assumption
to improve MODFLOW in the skewed s-z coordinate
system. However, such studies lead to a few additional
challenges. Firstly, field data such as the observed
hydraulic heads, recharge and discharge, pumping and
observation well screens are often documented in the x-z
coordinate system, and must be converted to the new s-z
coordinate system before use. Secondly, the sloping angle
of the base has to be constant across the entire spatial
domain, which may not be the case for the actual field site.

This study attempts to overcome two challenges
within the framework of MODFLOW, using the Boussi-
nesq assumption instead of the Dupuit-Forchheimer
assumption. This is because many previous investiga-
tions have shown that the Boussinesq assumption is a
much better approximation than the Dupuit-Forchheimer
assumption when the base slope is greater than 0.1
(Schmid and Luthin 1964; Wooding 1966; Wooding and
Chapman 1966; Childs 1971; Chapman 1980). We will
employ a x-z coordinate system instead of the s-z coor-
dinate system of Hoaglund and Pollard (2003), and we
will use NHML to handle spatially variable sloping angles
of the aquifer base. In this study, we assume that the
principal directions of horizontal anisotropy of hydraulic
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Figure 2. (A) Schematic diagram of HML grid system with
rectangular face cells. (B) Schematic diagram of NHML
grid system with deformed cells. (C) Schematic diagram of
rearrangement NHML grid system in MODFLOW-2000.

conductivity are the same as the model-grid row and col-
umn directions. If this is not the case, one probably has
to adopt the methodology proposed by Anderman et al.
(2002) for further modification, which is out of scope of
this study. The detailed procedures are described in the
following sections.

Modeling Groundwater Flow in an Unconfined
Sloping Aquifer Using MODFLOW-2000

Before introducing our new approach for studying
groundwater flow in an unconfined sloping aquifer based

on the framework of MODFLOW-2000, it is necessary
to briefly explain the MODFLOW-2000 approach for
such a problem. The orthogonal coordinate system in
MODFLOW is usually defined in a way that the x
and y axes are horizontal and along the column and
row directions, and the z -axis is vertical. Based on the
mass balance requirement, the continuity equation of the
groundwater flow is

∑
Qi = Ss

�H

�t
�V , (11)

where Qi is water flux (L3T−1) into the cell of concern (i ,
j , k ) including the discharge through the face between
this cell and its neighboring cells and the source or
sink inside this cell, where i , j , k are indexes of row,
column, and layer of the cell, respectively; Ss is the
specific storage (L−1); �V is the volume of the cell (L3);
�H is the head change (L) over a time interval �t(T).
According to Darcy’s law, the volumetric discharge
between cells (i , j+1, k ) and (i , j , k ) as shown in
Figure 2A is:

qi,j+1/2,k = CRi,j+1/2,k

(
Hi,j,k − Hi,j+1,k

)
, (12)

where CRi ,j + 1/2,k = KRi ,j + 1/2,k �ci �vk /�r j + 1/2, and the
suffix of parameter including 1/2 represents the equivalent
value between the adjacent cells; KRi ,j + 1/2,k is the
equivalent hydraulic conductivity along the row between
cells (i , j+1, k ) and (i , j , k ); �rj, �ci and �vk

are the dimensions of cell along the j , i , and k
directions at cell (i , j , k ), respectively, where �vk = EF
in Figure 2A; �r j + 1/2 is the dimension along the j
direction between cells (i , j+1, k ) and (i , j , k ). For
three-dimensional flow, there are six adjacent aquifer cells
around cell (i , j , k ), denoted as (i−1, j , k ), (i , j−1,
k ), (i , j , k−1), (i+1, j , k ), (i , j+1, k ), (i , j , k+1).
The other expressions of volumetric discharge between
cell (i , j , k ) and the adjacent cells can be derived
similarly, and the details can be seen in MODFLOW
user’s menu (McDonald and Harbaugh 1988). Substituting
the volumetric discharge terms into Equation 11, the
finite-difference scheme of the governing equation is
developed as

CVi,j,k−1/2H
m
i,j,k−1 + CCi−1/2,j,kH

m
i−1,j,k

+ CRi,j−1/2,kH
m
i,j−1,k + (−CVi,j,k−1/2

− CCi−1/2,j,k − CRi,j−1/2,k − CRi,j+1/2,k

− CCi+1/2,j,k − CVi,j,k+1/2 + HCOFi,j,k

)
Hm

i,j,k

+ CVi,j,k+1/2H
m
i,j,k+1 + CCi+1/2,j,kH

m
i+1,j,k

+ CRi,j+1/2,kH
m
i,j+1,k = RHSi,j,k, (13)

HCOFi,j,k = Pi,j,k − SSi,j,k�rj�ci�vk

tm − tm−1
, (14)
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RHSi,j,k = −Qi,j,k − SSi,j,k�rj�ci�vkh
m−1
i,j,k

tm − tm−1
, (15)

where Hm
i,j,k is the hydraulic head (L) at cell (i , j , k ) at

time step m; CC , CR, and CV are branch conductances
(L3T−1) between cell (i , j , k ) and a neighboring cell
oriented along columns, rows, and layers, respectively;
Pi ,j ,k is the sum of coefficients of head in source and
sink terms (L2T−1); Qi ,j ,k is the sum of constants from
source and sink terms (L3T−1); SS i ,j ,k is the specific
storage at cell (i , j , k ) (L−1); and tm is the time
(T) at the step m . The HCOF and RHS coefficients
are composed of external source terms and storage
terms, and their detailed expressions can be seen from
the MODFLOW user’s menu (McDonald and Harbaugh
1988).

It is apparent from the above formulation of MOD-
FLOW that the streamlines between cells along the
columns and rows are taken as horizontal, and it is
accurate only for the HML grid systems and maybe
acceptable for NHML grid systems when the slope of
the layer is small (less than 0.1). Above formulation
of MODFLOW (Equation 13) becomes increas-
ingly less accurate when slope of the layer increases
above 0.1.

In the following section, we will develop a new finite-
difference scheme considering the slope of the aquifer
base and a new package (SLOPE) for MODFLOW-2000
to reduce the errors associated with the formulation of
Equation 13.

New Finite-Difference Scheme
for Groundwater Flow in Unconfined Sloping
Aquifers

For an unconfined sloping aquifer, the grid system
of NHML is not horizontal like Figure 2A, while the
lower and upper boundaries of each cell are sloping
with the base like Figure 2B. In Figure 2B, cells
ADEF and EFBC represent the discretization of the
real aquifer, and the upper boundary of the cell (AF
or FC in Figure 2B) represents the water table when
the hydraulic head is less than the elevation of the
top cell face. The corresponding red dash-line cells
represent the discretization of the real aquifer in NHML of
MODFLOW-2000. When the dimension of the horizontal
spatial step approaches 0, the discretization of NHML
can accurately represent the real aquifer. However, when
the centers of two adjacent horizontal cells are not at
the same level, as shown in Figure 2B, MODFLOW-
2000 changes the actual arrangement of cells of G and J
into a “modified” arrangement which realigns the centers
of G and J into the same horizontal level, as shown
in Figure 2C. All the subsequent calculation of flux in
MODFLOW-2000 is based on the realigned grid system
of Figure 2C. Such a realignment of cells shown in
Figure 2C could bring in nonnegligible numerical errors,

particularly when the vertical discrepancy between the
centers of G and J increases (or the slope of the aquifer
becomes greater). In this study, we assume that the
groundwater flow direction is along the actual stream line
GJ, and robustness of this assumption will be verified
later. On the basis of Equation 4, the expression of
the discharge per unit width (q) in the aquifer can be
written as

q ≈ −K·E ′
F

′
[

cos (θ)
∂h

∂s
+ sin (θ)

]
, (16)

where E ′F ′ is the distance between the water table and
the aquifer base along the direction perpendicular to the
aquifer base (see Figure 2B). The point of V is in the
middle of EF or E ′F ′, where EF is the distance between
the water table and the aquifer base along the z -axis in
Figure 2B. In the x-z coordinate system, Equation 16
becomes

q ≈ −K· EF · cos2 (θ)

[
∂h

∂x
+ tan (θ)

]
. (17)

Rewriting Equation 17 using the variables defined in
MODLFOW-2000 leads to

qi,j+1/2,k ≈ −KRi,j+1/2,k�ci�vk cos2 (
θi,j+1/2,k

)
×

[
hi,j+1,k − hi,j,k

�rj+1/2
+ tan

(
θi,j+1/2,k

)]
, (18)

where θ i ,j + 1/2,k is the aquifer sloping angle between
cells (i , j , k ) and (i , j+1, k ) and it can be determined
easily using the coordinates of cells (i , j , k ) and
(i , j+1, k ):

tan
(
θi,j+1/2,k

) = zi,j+1,k − zi,j,k

yi,j+1,k − yi,j,k

, (19)

tan
(
θi+1/2,j,k

) = zi,j+1,k − zi,j,k

xi+1,j,k − xi,j,k

, (20)

where x , y , z are the coordinates of the center of the cell.
One point needs to be emphasized is that the top face of
the cell is the water table when the water table is lower
than the elevation of the top cell face. Similarly, we can
derive the volumetric discharges through cell (i , j , k ) and
other adjacent cells as:

qi,j−1/2,k = −KRi,j−1/2,k�ci�vk cos2 (
θi,j−1/2,k

)
×

[
hi,j,k − hi,j−1,k

�rj−1/2
+ tan

(
θi,j−1/2,k

)]
, (21)

qi−1/2,j,k = −KCi−1/2,j,k�rj�vk cos2 (
θi−1/2,j,k

)
×

[
hi,j,k − hi−1,j,k

�ci−1/2
+ tan

(
θi−1/2,j,k

)]
, (22)

6 Q. Wang et al. Groundwater NGWA.org



qi+1/2,j,k = −KCi+1/2,j,k�rj�vk cos2 (
θi+1/2,j,k

)
×

[
hi+1,j,k − hi,j,k

�ci+1/2
+ tan

(
θi+1/2,j,k

)]
, (23)

qi,j,k−1/2 = −KVi,j,k−1/2�rj�ci

hi,j,k − hi,j,k−1

�vk−1/2
, (24)

qi,j,k+1/2 = −KVi,j,k+1/2�rj�ci

hi,j,k+1 − hi,j,k

�vk+1/2
. (25)

Redefining the equivalent conductances as:

CRi,j+1/2,k = KRi,j+1/2,k�ci�vk cos2
(
θi,j+1/2,k

)
�rj+1/2

,

(26)

CRi,j−1/2,k = KRi,j−1/2,k�ci�vk cos2
(
θi,j−1/2,k

)
�rj−1/2

,

(27)

CCi+1/2,j,k = KCi+1/2,j,k�rj�vk cos2
(
θi+1/2,j,k

)
�ci+1/2

,

(28)

CCi−1/2,j,k = KCi−1/2,j,k�rj�vk cos2
(
θi−1/2,j,k

)
�ci−1/2

.

(29)

One notable point is that the hydraulic head involved
in Equations 18, 21 through 25 is “h”, which is the
vertical length from the aquifer base to the water table,
whereas the hydraulic head needed for MODFLOW-2000,
H , is in respect to the x -axis. Therefore, the following
straightforward conversion is required before the use of
MODFLOW-2000:

Hi,j+1,k − Hi,j,k

�rj+1/2
= hi,j+1,k − hi,j,k

�rj+1/2
+ tan

(
θi,j+1/2,k

)
,

Hi,j,k − Hi,j−1,k

�rj−1/2
= hi,j,k − hi,j−1,k

�rj−1/2
+ tan

(
θi,j−1/2,k

)
,

(30)

Hi,j,k − Hi−1,j,k

�ci−1/2
= hi,j,k − hi−1,j,k

�ci−1/2
+ tan

(
θi−1/2,j,k

)
,

Hi+1,j,k − Hi,j,k

�ci+1/2
= hi+1,j,k − hi,j,k

�ci+1/2
+ tan

(
θi+1/2,j,k

)
.

(31)

Substituting Equations 30 and 31 into Equation 11,
one has:

CVi,j,k−1/2H
m
i,j,k−1 + CCi−1/2,j,kH

m
i−1,j,k

+ CRi,j−1/2,kH
m
i,j−1,k + (−CVi,j,k−1/2

− CCi−1/2,j,k − CRi,j−1/2,k − CRi,j+1/2,k

− CCi+1/2,j,k − CVi,j,k+1/2 + HCOFi,j,k

)
Hm

i,j,k

+ CVi,j,k+1/2H
m
i,j,k+1 + CCi+1/2,j,kH

m
i+1,j,k

+ CRi,j+1/2,kH
m
i,j+1,k = RHSi,j,k. (32)

Despite the same apparent forms of Equations 32 and
13, the definitions of conductance terms of CR and
CC in Equation 32 (see Equations 26 through 29) are
different from their counterparts in Equation 13. In
another word, the errors between MODFLOW-2000 and
MODFLOW-SP caused by the vertical discretization are
the same, and the main errors for the sloping aquifer
come from the calculation of the horizontal conductance
terms. In addition, we can see that the errors based on the
Dupuit-Forchheimer assumption instead of the Boussinesq
assumption are related to the angle of the sloping aquifer
by comparing Equations 26 and 12. The error increases
with the increasing angle, and becomes maximum when
the angle is 90◦.

MODFLOW is designed in a modular fashion and
the modules are grouped into packages which can be
modified straightforwardly for specific needs (McDonald
and Harbaugh 1988). In this study, we incorporated above
mathematical models into MODFLOW-2000 to generate
a new package named SLOPE. This new package is
combined with MODFLOW-2000 to create MODFLOW-
SP for the following analysis.

Comparison of MODFLOW-SP with the Mac
Cormack (1969) Scheme

In this section, the newly developed MODFLOW-
SP will be tested against the numerical solution of Mac
Cormack (1969), which has been used to examine the
effectiveness and validity of the linearization technique
used in the analytical solutions of Zissis et al. (2001) and
Bansal (2012). The conceptual model and the hydraulic
parameters used are referenced from Bansal (2012). An
unconfined aquifer overlays an impermeable sloping base
with an upward sloping angle of θ . The aquifer is
bounded by two rivers with constant water levels, hL(left
river) and hR(right river), and the groundwater flow is
assumed to be one-dimensional along the aquifer base.
The initial condition of aquifer is h = 0.5 m. The aquifer
is homogeneous and isotropic, and the horizontal distance
between two rivers L is 100 m. The water levels of
two rivers are hL = 3.0 m and hR = 5.0 m. Source and
sink terms are not considered. Hydraulic conductivity
and specific yield of the aquifer are 2.5 m/day and 0.2,
respectively. To test the MODFLOW-SP model, three sets
of bed slope values are used, such as 0, 0.27, and 0.75.
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The conceptual model described above is a typi-
cal one-dimensional groundwater flow in an unconfined
aquifer. Bansal (2012) presented an analytical solution
considering the time-dependent water level of the river.
For the purpose of comparison, we define the follow-
ing dimensionless variables: hD = h/L, xD = x /L, and
tD = tK /(SL). One can see that K and S are com-
bined into the dimensionless time term. Figure 3A
represents the dimensionless hydraulic heads vs. the
dimensionless times, where Mac Cormack, MODLFOW,
and MODFLOW-SP represent the solutions of Mac Cor-
mack (1969), MODLFOW-2000 and MODFLOW with
the SLOPE package, respectively. Some observations can
be made. Firstly, the solutions by Mac Cormack and
MODFLOW-SP are almost the same, regardless of the
aquifer slopes used. We have further compared the results
of MODFLOW-SP with those of Mac Cormack for slop-
ing angles up to 45◦, and find that the MODFLOW-SP
solutions agree with those of Mac Cormack remarkably
well. This implies that MODFLOW-SP is robust and free
from numerical errors at least for sloping angles up to 45◦,
as the Mac Cormack solution has been regarded as the
benchmark by many previous studies (Zissis et al. 2001;
Bansal 2012). Secondly, the difference between MOD-
FLOW and MODFLOW-SP is nearly negligible when the
slope is less than 0.27 (or sloping angle less than 15.0◦)
during the transient flow stage, while it is noticeable
when the slope increases above 0.27 to 0.75 (or sloping
angle increases above 15.0◦ to 36.9◦). Such a difference
disappears eventually when flow reaches steady state.
Thirdly, the hydraulic head of MODFLOW-SP is smaller
than that of MODFLOW-2000 in the transient stage, and
the groundwater flow simulated by MODFLOW-2000
approaches steady state earlier. Fourthly, the curves of
MODFLOW-2000 and MODFLOW-SP are the same for
SLOPE of 0.

Above observations will be briefly elaborated as fol-
lows. In terms of the second observation, the reason
that the MODFLOW-2000 and MODFLOW-SP solu-
tions become the same under steady-state flow can be
seen from the governing equations used by MODFLOW-
2000 and MODFLOW-SP for one-dimensional problem
(see Equations 8 through 10). For example, for steady-
state flow without the sink/source term, Equation 10
becomes ∂(h∂h/∂x )/∂x + tan(θ )∂h/∂x = 0, which can
be rewritten as ∂(h∂H /∂x )/∂x = 0, if recognizing that
H = h + x tan(θ ) (see Equation 1). Therefore, the gov-
erning equation becomes identical to the one used in
MODFLOW-2000 for the problem of concern. As for the
third observation, the reason is also obvious, since the
MODFLOW-2000 uses CRi ,j+1/2,k to calculate the flux
instead of GJ, as shown in Figure 2B.

To further check the difference of the solutions
between the MODFLOW-2000 and MODFLOW-SP, we
define the following dimensionless error criterion

E = hMODFLOW − hMODFLOW-SP

hR − hL

, (33)

h D
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Figure 3. (A) Comparisons of the dimensionless hydraulic
head in the s-z coordinate system for different aquifer slope
values. (B) Dimensionless errors between MODFLOW, and
MODFLOW-SP for different aquifer slope values.

where hMODFLOW and hMODFLOW - SP represent the vertical
distances from the aquifer base to the water table
calculated by MODFLOW-2000 and MODFLOW-SP,
respectively. Figure 3B shows the E changes with the
dimensionless time for different aquifer base slope values.
We can see that the errors are smaller than 5% when the
slope is less than 0.27, and the maximum error nearly
approaches 25% when the slope is 0.75.

As commonly used in many previous studies (Zissis
et al. 2001; Bansal 2012; Chapman 1980), the following
two constrains have been incorporated in MODFLOW-SP:
the Boussinesq assumption (Boussinesq 1877) is satisfied
and the term of 0.5 sin(2θ )∂h/∂x in Equation 5 is small
enough to be ignored. However, there is no detailed
investigation on these two constrains, and it is unclear
how to precisely quantify the errors associated with them.
The objective of the following section is to test the validity
of these two constrains.

Comparison with the COMSOL Solution
The two constrains used in MODFLOW-SP are

widely employed to study groundwater flow in an
unconfined sloping aquifer, where the essence of these
constrains is to simplify the two-dimensional flow into
one-dimensional flow by ignoring resistance to vertical
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Figure 4. Part of the grid system of the aquifer domain used
in the COMSOL Multiphysics simulation.

flow and avoiding the moving boundary problem of the
water table. In this section, a two-dimensional flow model
will be introduced to check the robustness of these two
constrains by including resistance to vertical flow.

MODFLOW-2000 is a three-dimensional finite-
difference model whose grid system has to satisfy a
condition that the initial water table should be in the first
layer of the model. When the water table is not hori-
zontal like the one discussed in the above section, the
thickness of the first layer must be sufficiently large to
accommodate the spatially variable water table to avoid
numerical divergence problems. Therefore, it is difficult to
establish a numerical model with very fine layer thickness
to describe the groundwater flow in an unconfined slop-
ing aquifer if using the HML discretization scheme of
MODFLOW-2000. To resolve this issue, we will employ
COMSOL Multiphysics software to simulate groundwater
flow in an unconfined sloping aquifer for the purpose of
comparing with the MODFLOW-SP solutions under real-
istic flow conditions. COMSOL Multiphysics is a robust
finite-element software package that can handle the type of
governing equations of this study, and it has been tested in
many previous investigations in hydrogeology (You et al.
2011; You and Zhan 2012). The grid system of COM-
SOL is composed of a set of triangle elements, and it is
easy to refine the grid mesh near the slope base to pre-
cisely describe the sloping geometry. In addition, there
is a package in COMSOL named the “deformed mesh”
(ALE), which can be used conveniently to simulate the
moving water table. The conceptual model used in COM-
SOL is the same as the one discussed in the above section.
Figure 4 is an enlarged portion of the grid system for
clarification.

Figure 5A and 5B shows the head contour and
velocity distribution at t = 100 h, at which flow has
already approached the steady-state condition. From these
two figures, we can see that the groundwater flow
direction is almost parallel to the aquifer base except in
a narrow region near the left or right boundary. Near the

53.7
48.5

43.3
38.1

32.9
27.7

22.5
17.3

12.1
6.9

55
A

B

30

3

0 20 40 60 80 100
0

10

20

30

40

50

Aquifer b
aseInitia

l head

Water ta
ble

x (m)

z
(m

)

55

90 92 94 96 98 100

53

51

49

47

10

-1 1 3 5 7 9

8

6

4

2

0

Water ta
ble

A quifer b
ase

Initia
l head

x (m)

z
(m

)

0 20 40 60 80 100

0

10

20

30

40

50

Figure 5. (A) Hydraulic head contour of the unconfined
aquifer domain at t=100 h. (B) Velocity distribution of the
unconfined aquifer domain at t=100 h.

right boundary, the flow direction changes quickly within
a very short distance from horizontal (or perpendicular to
the constant head right boundary) to the direction parallel
to the aquifer base. Similar finding can be seen near
the left boundary. This observation confirms the validity
of the Boussinesq assumption for majority of the flow
domain except for the narrow regions near the left and
right boundaries.

To test the contribution of the 0.5 sin (2θ )∂h/∂x term
in Equation 5, we have studied the head-time distribution
at several selected locations for three different aquifer
base slopes of 0.50, 0.75, and 1.0. Figure 6A through
6D shows the comparison of the head calculated by
MODFLOW-SP and COMSOL. For the MODFLOW-SP
simulation, we find that the difference resulted from one
or three layers of the vertical discretization is negligible.
This finding is not surprising if one carefully checks the
formulations of Equations 26 through 32 since the primary
improvement of MODFLOW-SP over MODFLOW-2000
is to correct the horizontal hydraulic conductance terms,
not the vertical hydraulic conductance terms.

In these figures, COMSOL E , V , F , E ′, F ′ represent
the heads calculated by COMSOL at locations E , V ,
F , E ′, F ′ as shown in Figure 2B, where point V is
the common middle point of EF or E′F′. E-V-F is a
vertical profile, while E ′-V-F ′ is a profile perpendicular
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to the aquifer base. One can see that the head increases
considerably along the vertical profile E-V-F , while the
head remains constant along the vertical profile E ′-V-F ′.
In addition, the initial conditions of the hydraulic head are
the same at locations E , V , and F , and the hydraulic heads
at these locations become different within a short period
of time. In contrary, the initial conditions of the hydraulic
head are different at locations E ′, V , and F ′, while the
hydraulic heads at these locations become almost the
same within a short period of time. These observations
imply that the groundwater flow directions become along
the aquifer base within a short period of time even if
the initial flow is not along the aquifer base. Figure 6A
and 6B shows the head-time distributions at different
locations of x = 50.0 m and x = 25.0 m, respectively. In
these two figures, the solution calculated by MODFLOW-
SP agrees very well with the solution by COMSOL
at points E ′, V , F ′. Therefore, when the Boussinesq
assumption is satisfied and the term of 0.5 sin (2θ )∂h/∂x
in Equation 5 can be neglected, the hydraulic head of
one-dimensional flow represents the E ′-V-F ′ profile, not
the E-V-F profile. Figure 6A, 6C, and 6D represents
the head-time distributions for different base slopes of
0.50 (26.6◦), 0.75 (36.9◦), and 1.0 (45.0◦), respectively at
x = 50.0 m. One can see that the difference between the
solution by MODLOW-SP and COMSOL at location V

is small enough to be ignored when the slope is 0.50. The
difference slightly increases when the slope is 0.75, and
it becomes quite distinctive and nonnegligible when the
slope reaches 1.0.

In summary, our observations show that the two
constrains mentioned before in MODFLOW-SP are
acceptable when the aquifer slope is smaller than 0.50;
the errors are small but noticeable for the slope of 0.75;
while the errors are quite obvious and nonnegligible when
the slope becomes 1.0. Furthermore, MODFLOW-SP pro-
vides very good prediction of hydraulic heads along the
E ′-V-F ′ profile.

Summary and Conclusions
In this study, the assumptions involved in existing

analytical and numerical solutions of groundwater flow
in an unconfined sloping aquifer are carefully analyzed.
The problems and potential numerical errors associated
with MODFLOW-2000 are also discussed in great details.
We propose a new numerical scheme based on the
NHML grid system considering the characteristics of
the sloping base using two constrains: the Boussinesq
assumption and the negligible 0.5 sin (2θ )∂h/∂x term in
Equation 5, where θ , h , and x are the aquifer sloping
angle, the distance from the aquifer base to the water
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table along the vertical direction, and horizontal distance
from the left boundary, respectively. This new numerical
scheme is specifically programed in a SLOPE package
that is integrated into the MODFLOW-2000 program to
create MODFLOW-SP which can handle the problems
related to sloping aquifers. The solutions by MODFLOW-
SP agree with a widely used numerical benchmark
solution of Mac Cormack (1969) very well. The difference
between MODFLOW-2000 and MODFLOW-SP is small
but maybe nonnegligible when the aquifer slope is 0.27 (or
the sloping angle is 15.0◦), while the difference is obvious
when the aquifer slope is 0.75 (or the sloping angle is
36.9◦). To test the robustness of above two constrains,
the results of MODFLOW-SP are compared against those
of COMSOL Multiphysics for a two-dimensional model
considering the vertical and horizontal flow with a very
fine grid mesh. Under the steady-state flow condition,
the groundwater flow direction is almost parallel to the
aquifer base except in narrow regions near the left and
right boundaries. MODFLOW-SP can be used to predict
the hydraulic head along the E′-V-F ′ profile very well
(see Figure 2B). The errors associated with above two
constrains used in MODFLOW-SP are negligible when
the slope is smaller than 0.50 (or sloping angle of 26.6◦).
Such errors are small but noticeable when the slope is 0.75
(or sloping angle of 36.9◦), and they become significant
when the slope is 1.0 (or sloping angle of 45.0◦).
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