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Upper Bounds on the Weight Distribution Function
for Some Classes of Linear Codes

Torleiv Kløve, Fellow, IEEE, and Jinquan Luo

Abstract—Upper bounds on the weight distribution function for
codes of minimum distance at least 2 are given. Codes, where the
bound is met with equality, are characterized. An improved upper
bound on the weight distribution function for codes of minimum
distance at least 3 is given. As an application, a sharp upper bound
on the probability of undetected error for linear codes with full
support is characterized.

Index Terms—Full support, linear code, upper bound, weight
distribution.

I. INTRODUCTION

L ET denote the field of elements and the set of
non-zero elements of . Let . An

code is a linear code of length and dimension over . If the
minimum distance of the code is , it is also called an
code.
For an code , let be the number

of codewords of Hamming weight . The sequence
is known as the weight distribution

of , and

the weight distribution function of .
The weight distribution function has several applications in

coding theory. Important examples are bounding the error prob-
ability for maximum likelihood (ML) decoding when the code
is used for error correction and expressing the probability of un-
detected error when the code is used for error detection.
The -ary symmetric channel with error probability param-

eter is a discrete memoryless channel, that is, a symbol
is modified into independently of what happens to other
symbols in the transmission. The probability that is modified
into is .
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The word error decoding probability for ML decoding is
upper bounded by

(1)

where

see, e.g., [1, Problem 7.10 and Th. 7.5]. The bound (1) is true
also for many other channels, where the definition of depends
on the channel; see, e.g., [2, Sec. IV].
For an code , the probability of undetected error

is the probability that a codeword is changed to
another codeword when transmitted over the -ary symmetric
channel.
It is known and easy to see (cf., [3, Th. 2.1]) that

(2)

The goal of this paper is to study upper bounds on (for
) under some conditions on the code . If

(3)

then

(4)

for . We can also reverse the implication. We
observe that

runs through when runs through . Hence,
(2) implies that if for all ,
then

(5)

An upper bound on for an code was given by
Levy [4]. The bound is also given in [3, Th. 1.22] in a slightly
different formulation. For completeness, we quote Levy’s
bound, essentially using his formulations. Let be
the number of vectors of length and weight within dis-
tance of a fixed vector of weight . An expression
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for was first given by MacWilliams [5]. Levy [4]
gave essentially the following formulation of the expression:

where the summation is over all and all such that
. Levy’s upper

bound for the weights of an code is as follows.

Theorem 1: If is a code over of length and minimum
distance , then

We note that the bound does not depend on the dimension of the
code.
Other early results [6]–[8] are upper bounds on the average

probability of undetected error for all codes.
Two simple general bounds were given in [9] for the binary

case, and generalized to the -ary case in [3, Ths. 2.49 and 2.51].
We include the bounds (in terms of the weight distribution) and
the proofs since a modified version will be used later to prove
an improved bound.

Theorem 2: If is an code and , then

for all .

Proof: For , we have for . Since
for all non-zero codewords, we get and

so

For , we have the following improvement. Let

Theorem 3: If is an code and where
, then for all .

Proof: Equivalent codes have the same weight distribu-
tion. There exists an equivalent code generated by a matrix

, where is the identify matrix and is some
matrix, that is, We have
and so, for , we have

Hence

Since any code hasminimum distance at least 1, putting
in Theorem 3, we get the following trivial bound valid for all

codes.

Corollary 1: If is an code, then

We note that the bounds in Theorems 2 and 3 depend on , but
not on . For an code , the dual code is defined
by

Here, denotes the inner product, that is

The MacWilliams Theorem [5] states that if is an
code, then

(6)

This implies that if for all , then

for all . For example, Theorem 3 implies the following
corollary.

Corollary 2: If is an code with minimum distance
, then

for all .
It is not simple to compare the bound on in Theorem

3 and the bound obtained from Levy’s bound in Theorem 1. As
noted previously, the bound in Theorem 3 depends on , but not
on . On the other hand, Levy’s bounds depend on , but not on
. Some numerical examples indicate that Theorem 3 is better
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for small values of whereas Levy’s bound is better for larger
. In particular, for and we get for

and . Hence, Theorem 1 gives the trivial
bounds .
The main goal of this paper is to give improvements of

Theorem 3 under some conditions. In Section II, we give
such bounds when and in Section III, when .
In Section V, we give bound for codes of full support and in
Section VI, for codes of full support and minimum distance at
least 2. Finally, we give some examples and a summary.

II. UPPER BOUND ON FOR LINEAR CODES OF

MINIMUM DISTANCE AT LEAST 2

We now give an improvement of Theorem 3 when , that
is, . We first give some lemmas that will be needed in the
proof of the improved bound.
The first lemma is essentially the same as [3, Corollary 2.1].

We give the lemma and its proof.

Lemma 1: Let be an code. If ,
are integers such that

for any , then, for all , we have

Moreover, we have equality for any if and only if
for all , .

Proof: Let and

Then

since by assumption, and . Moreover, if
for any , then .

Let be the code generated by

where is the all zero vector of length , is its
transpose, is a vector of full support (that is, without
zero in any position), and is the
matrix of all zeros.

Lemma 2: The weight distribution of is

Proof: The codewords in are all vectors of the form
, where and . We have

if
if .

Hence

Let . This code is generated by the matrix
.

Using (6), we see that

(7)

Lemma 3: Let be a vector of full support. Then
a)

b)

(8)

Proof: We see that a) follows immediately from (7). From
a), we get
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Let

Then

Hence

Hence, b) follows.

Let

Theorem 4: If is an code and , then

(9)

for all , with equality if and only if and is
equivalent to for some vector of full support.

Proof: Without loss of generality, we may assume that
is generated by where the rows of are

(and where for since the
minimum distance is at least 2). As noted in the proof of
Theorem 3, for any , the codeword has
weight . Hence

(10)

where

and

To evaluate , we first choose positions out of , the number
of choices is . Without loss of generality we can assume that

, where are non-zero and
. Then, we have

(11)

Let be the rank of the matrix with rows .
If , then for , for some
. Denote by the number of solutions of (11). For arbitrary

nonzero elements :
1) if , then

contributes 1 to .
2) if , then

and contributes 1 to .
Therefore, we have . This recurrence
relation and the first term imply that

(12)

If , then we may assume that the vectors

are linearly independent. For , for any fixed non-zero
elements , the equation

has at most one solution. Therefore, the number of solutions of
(11) is at most which is less than the expression for
given in (12), except when , , and is odd, and

In this exceptional case, and at
least one of has Hamming weight at least 2 (since an odd
number of binary vectors of weight 1 can not have sum ). We
may assume . Choose . Then,

and

Hence

Therefore, in the exceptional case
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In total, by (10), we obtain

(13)

for by (8).
By Lemma 1, we get that takes the maximal value for

any if and only if is (equivalent to) .

III. UPPER BOUND ON FOR LINEAR CODES OF

MINIMUM DISTANCE AT LEAST 3

For , we get an improvement of Theorem 4. Let

(14)

Theorem 5: If is an code with , then
for all .

Proof: We use the notations and results in the proof of The-
orem 4. Note that any collection of rows of are linearly
independent. Indeed, if there exists linearly dependent
rows, say, w.l.o.g, , then there exists a non-zero
vector such that

and then which is a contradiction.
Now, consider some vector .
1) If , then .
2) If , then we may assume that
are non-zero and . Then, the
rank of is at least . Therefore, (11) has
at most solutions. For the remaining nonzero

which is not a solution of (11), we get
and .

Hence, we obtain

For , it appears to be quite complicated to get sharp
upper bounds on .
For , Theorem 5 gives the upper bound

(15)

If generates an code , then the rows of
must have weight at least 2 and be non-proportional, that is,
and can not both be rows of . Hence, the size of the

support of must satisfy

In particular, is possible only if . Consider this
case. The dual code is equivalent to the code generated by

, where has only two non-zero rows, an
all-one row and where the are distinct and
non-zero. The weight distribution of is easily seen to be

Using the MacWilliams theorem, we can get the weight distri-
bution of

and so

Example 1: For , the upper bound is

and

Hence, the upper bound is never sharp for .
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IV. COMPARING THE VARIOUS BOUNDS

If we now have three bounds on for
an code, (see Theorem 3), (see
Theorem 4), and (see Theorem 5).
We will now give a comparison of the various bounds.

Theorem 6: For and , we have

In particular, for all .

Proof:

Theorem 7: For and , we have

for all .

Proof:

Theorem 8: For and , we have

In particular, for all , and
for all otherwise.

Proof:

In particular, if , then for all
. If , if is odd. Hence,

, except when .

Theorem 9: For and , we have

In particular, for all and
for all when .

Proof:

In particular, if , then for all
. If , then for all .

For small values of , which are the most important for ap-
plications, Theorems 6–9 show that for , we have
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For larger values of , we may have .
As noted previously, if for all , then

for all . However, we note that if is an upper
bound on for close to 1, then is an upper bound
on for small . It is, therefore, of interest to compare
the bounds for close to 1. We see that if and

, then for close to 1. We will use
this observation to prove a couple of theorems.

Theorem 10: If and

(16)

or and , where is determined by

(17)

then for close to 1.

Proof: We have for all , ,
, . We will show that under condition

(16), respectively (17). We have

and so . Further

We note that for
when . Hence

Therefore, for , we have

when (16) is satisfied. For , we have

It is well known that if (see, e.g., [10, pp. 82–83]), then

(18)

For , the right-hand side of (18) is less than
or equal to by the choice of given in (17). Hence,

.

The bound is not a special case of given
by (14). It turns out that sometimes is better than

. For close to 1, we have the following situation.

Theorem 11: We have then for close
to 1 when . For and ,
for close to 1.

Proof: As shows in the proof of the previous theorem,
. Some calculations show that

Hence

For , all the terms are positive. For , we have
. Hence, we see that

for sufficiently large. Computation shows that
for .

V. UPPER BOUNDS ON FOR LINEAR CODES
OF FULL SUPPORT

For a code of length , the support is the set of po-
sitions such that for some codeword
. The code has full support if , that is, for any po-

sition there is a codeword that is nonzero in this position. For
example, the code generated by has support of
size .
In practical applications, one usually uses codes with full sup-

port. We expect to find a sharper upper bound on for
codes of full support. In this section we find the best possible
upper bound on for linear codes of full support. This
is given in Theorem 12. First, we need a lemma.

Lemma 4: An code has full support if and only if
has minimum distance at least 2.

Proof: The result follows from the observation that if is
not in the support, then the unit vector is contained in and
vice versa.

The weight distribution of was given by Lemma 2.
Let
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From Lemma 4 and Theorem 9, we immediately get the fol-
lowing theorem.

Theorem 12: If is an code of full support, then
for all , with equality if and only

if is equivalent to for some vector of full support.
This bound is tighter than the bound in Corollary

1. The improvement of Theorem 12 over Corollary 1, for
, is

VI. ON CODES OF FULL SUPPORT AND
MINIMUM DISTANCE TWO

As shown previously in Theorem 12, a worst case
code of full support is equivalent to a code with generator matrix

, where has full support. Also, a worst case
code is equivalent to a code with generator matrix , where
has full support.
A natural question is then: what is a worst case

code of full support. The answer seems to be the code generated
by the matrix

where is a vector of length and full support, and is
the generator matrix for a worst case code. If
is the code generated by and is the code generated by ,
we get, by Theorem 4,

We conjecture that for all
codes of full support, but we do not have a general proof.
A proof for goes as follows. Consider a generator ma-
trix for an code of full support. Since equivalent
codes have the same weight distribution, we may assume that
the first non-zero element in each column is 1. Then the pos-
sible columns are and , . If appears
times and appears times, then

(19)

Moreover

(20)

The weight distribution of is

Because of the symmetry of this expression, we may assume
that

(21)

Finally, since the minimum distance of the code is 2, we have

(22)

Proposition 1: For , a worst case code of full
support is obtained for and , for which we get

Proof: Let be a worst case code with column count and
, satisfying (19)–(22). If , we get a new code
by decreasing the number of columns by and

increasing the number of columns by the same amount
(that is and ). Then

for all since . Hence, is not a worst
case code, a contradiction. Hence, . Similarly, we show
that for all and . Hence, a generator
matrix is

VII. EXAMPLES

Example 2: As a very simple example, we consider the case
. For each code we give the weight distribution and a pair

such that

is a generator matrix for the code.
1) For all codes

where

2) For all codes

where

We note that .
3) For all codes of full support
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where

4) For all codes of full support

where

Clearly

and

for all . It is easy to see that for
values of close to 0 and for values of
close to 1. A little calculus actually shows that there exists a

such that for and
for .

Proposition 2: We have , when ,
where

Proof: We sketch that proof. By definition

and so

(23)

Let . Since , we get

Hence, (23) implies that

(24)

For , we get . For , the equation

has two roots:

Since and , we must have .
We note that this gives the correct value, 1/3, also for .
We can conclude that . Let . Substituting

this in (23) and simplifying, we get

and so

Hence

VIII. SUMMARY

We have first given an upper bound on the weight distribution
function for codes of minimum distance at least 2. We have
shown that the bound is best possible for codes of minimum
distance equal to 2, and we characterized the codes meeting the
bound.
Next, we have given an improved bound for codes of min-

imum distance at least 3.
Next, we noted that a code has full support if and only if the

dual code has minimum distance 2, and we used this fact to
determine a best possible upper bound on theweight distribution
function for linear codes of full support. We also characterized
the codes meeting this bound.
We discussed the weight distribution function for linear codes

that both have full support and minimum distance 2. We have
shown a best possible upper bound for such codes of dimension

and we conjecture a bound for general .
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