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Based on Position-Specific Scoring Matrix (PSSM), average mutation probability from one particular
amino acid to 20 types residues and average mutation rate of 20 types of amino acids within query
sequences during evolution are extracted, the new method which combines these evolutionary
information is proposed for apoptosis protein subcellular location prediction. Principal component
analysis was employed to extract useful features. The proposed method is tested by the support
vector machine classifier, the prediction accuracy in dataset ZD98 and CL317 are reaches 92.9%
and 90.5%, respectively. The experiment results obtained by jackknife test can almost reach the
highest level through comparison with other methods. In addition, it’s worth to pointing out that the
proposed method is better at small set predicting than others methods. All of the results confirm
that the proposed novel sequence information obtained from Position-Specific Scoring Matrix are
remarkable, it’s heralds that the proposed method might serve as an efficient prediction model for
apoptosis protein subcellular location prediction.

Keywords: Apoptosis Proteins, Subcellular Location, PSI-BLAST, Support Vector Machine,
Position-Specific Scoring Matrix.

1. INTRODUCTION
Apoptosis is a form of cell death which plays a central
role in normal tissue homeostasis by regulating a balance
between cell proliferation and death.1–4 Cells undergo-
ing apoptosis usually exhibit a characteristic morphology,
including fragmentation of the cell into membrane-bound
apoptotic bodies, nuclear and cytoplasm condensation
and hemolytic cleavage of the DNA into small oligo-
nucleosomal fragments.5�6 Unregulated excessive apop-
tosis may cause various degenerative and autoimmune
diseases. Conversely, an inappropriately low rate of apop-
tosis may promote survival and accumulation of abnormal
cells that can give rise to tumor formation and prolonged
autoimmune stimulation such as in cancers and Graves’
disease.7 The study on apoptosis proteins can help us to
understand the mechanism of apoptosis and provide many
targets for therapeutic intervention.8–10

Zhou and Doctor11 firstly investigated the prediction of
subcellular location of apoptosis proteins. They explored
amino acid composition and the covariant discrimination
function to predict the four kinds of subcellular loca-
tions for 98 apoptosis proteins dataset. Through more than
ten years of efforts, the prediction accuracy is improved,
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researchers have proposed many methods. Though the
overall predictive accuracy have been improved for apop-
tosis proteins using existed methods, the representation
of protein sequence was mainly by using the amino acid
composition, or dipeptide composition. These representa-
tions will lead to ignore the sequence-order information of
protein.
In recent research, evolution-based methods use the

query sequence to search protein databases for extract evo-
lutionary information and further predict the subcellular
location of the query sequence. Given a query sequence, it
is searched against a database of proteins using position-
specific iterated BLAST (PSI-BLAST), where PSI-BLAST
is a search tool hanging the double sequence alignment
and the multiple sequence alignment together. Evolutionary
information of protein sequence like Position Specific Scor-
ing Matrix (PSSM) can be extracted from PSI-BLAST pro-
file. The idea of adopting PSSM extracted from sequence
profiles generated by PSI-BLAST as input information was
first proposed by Jones.12 This method has earlier been used
for protein subcellular localization by Xie.13

With help of PSI-BLAST, we proposed a novel method
to combination two aspects of evolution information for
apoptosis protein subcellular location prediction which is
extracted from Position Specific Scoring Matrix. Proposed
novel method is tested with two benchmark datasets and
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compared with the other prediction methods, the exper-
iment results confirm that the proposed novel sequence
information based on PSI-BLAST is promising.30–33

2. MATERIAL AND METHODS
2.1. Describe of Two Banchmark Datasets
Two benchmark datasets were adopted in this work; pro-
teins in those datasets were extracted from SWISS-PROT
(version 49.5). The ZD98 dataset consists of 98 apoptosis
protein sequences, which include 43 cytoplasmic proteins,
30 plasma membrane-bound proteins, 13 mitochondrial
proteins and 12 other proteins.11 The dataset CL317 con-
sists of 317 apoptosis protein sequences constructed by
Chen and Li, which include 112 cytoplasmic proteins, 55
membrane proteins, 34 mitochondrial proteins, 17 secreted
proteins, 52 nuclear proteins and 47 endoplasmic reticu-
lum proteins.14

2.2. Derived Features from Position-Specific
Scoring Matrix

Position-Specific Scoring Matrix (PSSM) from position-
specific profiles generated by PSI-BLAST. PSSM is a
commonly used representation of motifs in biological
sequences.15 This method has been used for predicting
protein subcellular localization,13 subnuclear localization16

and predicting protein structural class.17�18 For a protein
sequence S with L amino acid residues, PSSM is obtained
according to the following equation:

PSSMS

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1→A P1→R · · · P1→j · · · P1→V

P2→A P2→R · · · P2→j · · · P2→V

���
���

���
���

���
���

Pi→A Pi→R · · · Pi→j · · · Pi→V

���
���

���
���

���
���

PL→A PL→R · · · PL→j · · · PL→V

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

Where i→ j describes i-th amino acid residue of the pro-
tein sequence S being mutated to amino acid type j in the
biology evolution process, Pi→j is the score of this muta-
tion, L is the length of the sequence S. To get the L× 20
scores of the PSSMS we used three iterations with E-value
is 0.001 of PSI-BLAST to search a protein database for
multiple sequence alignment against the protein S. Pi→j

in PSSMS represents the ‘normalized probability’ that i-th
amino acid residue of the protein sequence S being mutated
to amino acid type j in the biology evolution process.
In this work we proposed a new method to derived

features from the position-specific scoring matrix, which
combines evolutionary information from both aspects, first
is calculate average probabilities of mutation from one
particular amino acid to 20 types residues within query
sequences during the evolution process, here representa-
tion to MAP; second is calculate the average mutation rate

of 20 types of amino acid in query sequences during the
evolution process, here representation to AMP.
To extract the features MAP as follows Eqs. (2) and (3):

MAPSi =
∑L

j=1 Pi→j

L
� i = 1�2� � � � �20 (2)

MAPS = �MAPSA�MAPSR� � � � �MAPSV � (3)

On the basis of Eq. (2), obviously, MAPSi is the mean
value of the elements in the i-th column of PSSMS ,
here MAPS are the 20-D features vector representing the
average probability of amino acid residue of the protein
sequence S being mutated to 20 types of amino acid in
the biology evolution process. Here we used the numerical
codes 1�2�3� � � � �20 to represent the single character of
ordered 20 native amino acid types in Eq. (2).
To calculate the features AMP has to extract the subma-

trix for 20 kinds of amino acids from PSSMS , for example
to extract the submatrix of type of residue A in PSSMS as
follows Eq. (4):

PSSMSA

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1A→A P1A→R · · · P1A→j · · · P1A→V

P2A→A P2A→R · · · P2A→j · · · P2A→V

���
���

���
���

���
���

PiA→A PiA→R · · · PiA→j · · · PiA→V

���
���

���
���

���
���

PlA→A PlA→R · · · PlA→j · · · PlA→V

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

Here l is the number of residue A in the sequence S.
To calculated the feature AMP in the submatrix as follows
Eqs. (5) and (6):

AMPSi =
∑20

t=1

∑l
j=1 Pi→t

l×20+L
� i = 1�2� � � � �20 (5)

AMPS = �AMPSA�AMPSR� � � � �AMPSV � (6)

On the basis of Eq. (5), hereMAPSi is the weighted aver-
age value of the elements in the submatrix from PSSMS ,
MAPS are the 20-D features vectors representing the aver-
age mutation probability of 20 kinds of amino acids
residues of the protein sequence S in the biology evolution
process. Here we used the numerical codes 1�2�3� � � � �20
to represent the single character of ordered 20 native amino
acid types in Eq. (5).
Through the above two-step process, finally, we get

a 40-D features vector that was combination from two
aspects of evolution information MAP and AMP; here rep-
resentation to PE with Eq. (7).

PES = �MAPS�AMPS� (7)

2.3. Principal Component Analysis
Feature selection is the process of identifying and remov-
ing as much irrelevant and redundant information as pos-
sible. This reduces the dimensionality of the data and may
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allow learning algorithms to operate faster and more effec-
tively. In this work we apply the dimension reduction tech-
niques principal component analysis (PCA) to selection
feature. Principal component analysis is a mathematical
procedure that uses an orthogonal transformation to con-
vert a set of observations of possibly correlated variables
into a set of values of linearly uncorrelated variables called
principal components. The number of principal compo-
nents is equal to the number of original variables. This
transformation is defined in such a way that the first princi-
pal component has the largest possible variance, and each
succeeding component in turn has the highest variance
possible under the constraint that it be orthogonal to the
preceding components. Principal components are guaran-
teed to be independent only if the data set is jointly nor-
mally distributed. PCA is sensitive to the relative scaling of
the original variables. Principal component analysis (PCA)
was invented by Pearson in 1901.19

In this work, through PCA processing the original
dataset transform a new dataset that according to the
contribution rate arrangement from high to low, the new
dataset equal dimension with original dataset and new
dataset each dimension is uncorrelated. We select the fea-
ture using a simple grid search strategy based on the jack-
knife test for two datasets.

2.4. Classifier and Evaluation
This work adopts Vapnik’s support vector machine20 to
predict the subcellular location of apoptosis proteins.
Prediction of protein subcellular location is a multi-
classification problem. Therefore, we adopt the multi-class
prediction method. Support vector machine using “one-
against-others” strategy, given a test protein of unknown
category, SVM first map the input vectors into one fea-
ture space. Then SVM finds an optimized linear division
to solve two-class or multi-class problem in feature space.
Finally, a prediction label is assigned to the test sample.
In our study, the LIBSVM package is used to implement
the SVM classifier. The radial basis function (RBF) is cho-
sen as the kernel function. The regularization parameter
c and the kernel width parameter g are optimized on the
training set using a grid search strategy in the LIBSVM.
In this work, jackknife test is employed to evaluate the

prediction performance of our method. Here, we used it
to evaluate the performance of the proposed method. We
also considered standard performance measures over class,
including the accuracy for class Ci here record CA and
overall accuracy here record OA, which was defined as
the fraction of class Ci or all the proteins tested that are
classified correctly.

CAi =
TPi

�Ci�
(8)

OA=
∑

i TPi∑
i �Ci�

(9)

Where TPi is the number of true positives, �Ci� is the
number of proteins in each class Ci.

3. RESULTS AND DISCUSSION
This section should contain the discussion of the selected
feature and experiment results on two benchmark datasets.
First we used the MAP and AMP to create novel sequence
information PE of apoptosis proteins. Then principal
component analysis was employed to extract useful fea-
tures. Finally, the selected features of the novel com-
bined sequence information were fed into support vector
machine to make subcellular location prediction of apop-
tosis proteins.

3.1. Prediction Results on Two Benchmark Datasets
Two benchmark datasets were used in this work. Dataset
ZD98 consists of 98 apoptosis protein sequences, dataset
CL317 consists of 317 apoptosis protein sequences. The
results obtained by the proposed method were shown in
Table I. In the ZD98 experiment, the overall accuracy
obtained by the proposed method is 92.9%, with 95.3%,
93.3%, 84.6%, 91.7% for Cyto, Memb, Mito and Other
class, respectively. In the CL317 experiment, the overall
accuracy obtained by the proposed method is 90.5%, with
92.0%, 92.7%, 82.4%, 76.5%, 90.4% and 93.6% for Cyto,
Memb, Mito, Secr, Nucl, Endo, respectively.

3.2. Effect of Source Database for PSI-BLAST Search
In many study are adopted NR database for PSI-BLAST
search, but in this work, every protein sequence in dataset
was searched against its SWISS-PROT database because
we found that use SWISS-PROT database to be source
database for PSI-BLAST search make the highly contri-
butions to subcellular location prediction of apoptosis pro-
teins. We used three iterations of PSI-BLAST with E-value
0.001 to search a database for multiple sequence alignment
against the protein S to get the PSSM. Here, every protein
sequence in dataset was searched against with SWISS-
PROT database. SWISS-PROT database is published: May
20 2013; its number of sequences is 540052. For a bet-
ter understanding of the influence of the source database
for PSI-BLAST search, we also searched every protein
sequence in dataset against the NR database and got

Table I. Prediction results on two datasets evaluated with Jackknife
test.

CA �%�

Cyto Memb Mito Other OA (%)

ZD98 95.3 93.3 84.6 91.7 92.9

CA �%�

Cyto Memb Mito Secr Nucl Endo OA (%)

CL317 92.0 92.7 82.4 76.5 90.4 93.6 90.5
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the evolutionary profile, where NR database is published:
November 5, 2012, its number of sequences is 21171493.
The comparison of performance of EPSW and PENR on

two datasets is illustrated in Figure 1, we can found that
the PESW significantly outperforms the PENR on datasets
ZD98 and CL317. These results demonstrate that the evo-
lutionary profile gotten by searching against the SWISS-
PROT have a better performance than by searching against
NR database. We speculate that the reason may lie in the
fact that NR database is so big and some low-homology
sequences which may add the noise for apoptosis pro-
teins subcellular location prediction. In addition, as we
know that the two benchmark datasets are extract form
SWISS-PROT database, as a matter of course that search-
ing against SWISS-PROT database can obtain more tar-
geted information for subcellular location prediction of
apoptosis proteins.
There has another important point that selected the

SWISS-PORT database to instead of NR database for PSI-
BLAST search, which was NR its number of sequences
is 21171493 it’s 39.2 times larger than SWISS-PORT’s
540052. In a normal two cores desktop computer, assume
that a query sequence have 200 amino acid residues
it’s search in NR were spend 50 minutes, but search in
SWISS-PORT only spend about 1 minutes, it’s 50 times
fast than NR. Obviously, select the SWISS-PORT database
for PSI-BLAST search has higher time efficiency then NR
database for researchers. Table II shows the comparison
the time efficiency with SWISS-PORT and NR database
for PSI-BLAST search on two datasets used the normal
two cores desktop computer.

3.3. Influence of Feature Selection Process
Principal component analysis (PCA) is employed to selects
the useful features for predicting the apoptosis proteins
subcellular location. For a better understanding of the

Fig. 1. Comparison of performance with EPSW and PENR on two datasets, here EPSW is denoted the features PE obtained by searching against with
SWISS-PROT database; PENR is denoted the features PE obtained by searching against with NR database; OA-SW is denoted the overall accuracy
obtained by searching against with SWISS-PROT database; OA-NR is denoted the overall accuracy PE obtained by searching against with NR database;
Cy-SW/NR, Me-SW/NR, Mi-SW/NR, Ot-SW/NR, En-SW/NR, Nu-SW/NR, Se-SW/NR are denoted the accuracy in class Cyto, Memb, Mito, Other,
Endo, Nucl, Secr obtained by searching against with SWISS-PORT/NR database, respectively.

Table II. Comparison the time efficiency with SWISS-PORT and NR
database for PSI-BLAST.

Spend-time (hours)

SWISS-PROT NR SW/NR speed-up (%)

ZD98 1.6 49 30.6
CL317 5.3 158.5 29.8

PCA efficiency, we used the jackknife test to examine the
performance of the proposed sequence information with-
out using PCA in predicting the subcellular location on
datasets ZD98 and CL317.
The prediction accuracy of the proposed sequence infor-

mation with and without PCA method is listed in Table III.
The experiment that the overall accuracies of the PE using
the PCA features extraction algorithm are higher than
those without using the PCA algorithm, the prediction
accuracies is improved by 0.3% in CL317. Specifically,
the dimensions of the PEP are 12 and 18 for the datasets
ZD98, and CL317, which are about 70% and 55% smaller
than that of the PE, respectively.
Before the PCA process, a protein can be represented

by a combination of two different 20-D vectors MPA and
AMP. In fusion the above two vectors into one, we got
the proposed novel sequence information denoted by PE,
which is a 40-D vector. By using the PCA algorithm, we
extracted the most important features from the 40-D vec-
tor of PE, as denoted by PEP . Figure 2 shows the rela-
tions between the dimension of the PEP and its overall
accuracy for the subcellular location prediction on datasets
ZD98 and CL317. Figure 2 show that the higher over-
all prediction accuracy is, the higher the dimension of the
PEP will be. Considering the time efficiency to extract the
most important features, we select the PEP using a simple
grid search strategy based on the jackknife test for two
datasets.
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Table III. Overall accuracy and dimension of the PE and PEP for
datasets ZD98 and CL317.

Features PE Features PEP

OA Dimension OA Dimension

ZD98 92.9 40 92.9 12
CL317 90.2 40 90.5 18

Fig. 2. The relationship between the OA and feature dimension in PCA
process of the two datasets.

3.4. Comparison with Other Methods
In order to evaluate the efficiency of the proposed method,
we compared it with the competing prediction methods on
the ZD98 and CL317. We selected the accuracy of each
class and overall accuracy as evaluation methods. And the
experimental results are shows in Tables IV–V.
In dataset ZD98, we compared the proposed method

with the others methods that include Instab_SVM,21

Dipep_Diver,22 AAC_CCA23 and EBGW_SVM.24

Table IV shows that the proposed method reached the high-
est overall accuracy 82.9% same with Zhang’s method.22

But the class-Other accuracy of the proposed method is
91.9%, which is 8.4% higher than Zhang’s method, as
we know that class-Other’s only contain 12 proteins that
was the small set in ZD98, as is known to all that at
SVM classifier the small set is hard to predict, this result

Table IV. Prediction results with different models on ZD98 in Jackknife
test.

CA (%)

Model Cyto Memb Mito Other OA (%)

Instab_SVM21 76.8 83.3 92.5 50.0 77.6
Dipep_Diver22 88.4 90.0 92.3 50.0 84.7
AAC_CCA23 97.7 73.3 30.8 25.0 72.5
EBGW_SVM24 97.7 90.0 92.3 83.3 92.9
This work 95.3 93.3 84.6 91.7 92.9

Table V. Prediction results with different models on CL317 in Jackknife
test.

CA (%)

Model Cyto Memb Mito Secr Nucl Endo OA (%)

ID22 81.3 81.8 85.3 88.2 82.7 83.0 82.7
ID_SVM25 91.1 89.1 79.4 58.8 73.1 87.2 84.2
DF_SVM26 92.9 85.5 76.5 76.5 93.6 86.5 88.0
FKNN27 92.0 89.1 85.3 76.5 92.3 93.7 90.2
PseAAC_SVM28 93.8 90.9 85.3 76.5 90.4 95.7 91.1
SMAC_SVM29 86.4 90.7 93.8 85.7 92.1 93.8 90.0
This work 92.0 92.7 82.4 76.5 90.4 93.6 90.5

explain that the proposed method is good at the small set
predicting.
In dataset CL317, we compared the proposed

method with the others methods such as ID,22 ID_
SVM,25 DF_SVM,26 FKNN,27 PseAAC_SVM,28 and
SMAC_SVM.29 Table V indicates that the proposed
method only inferior to Lin’s method.25 As the same
to ZD98, at the small set class-Memb’s accuracy of the
proposed method is 92.7%, it’s 1.8% higher than Lin’s
method.

4. CONCLUSIONS
Apoptosis proteins play an important role in the develop-
ment and homeostasis of an organism. Obtaining informa-
tion and the accurate prediction of subcellular location for
apoptosis proteins is very helpful for understanding the
mechanism of apoptosis and their biological functions.
In this work we proposed a new method to derived

features from the Position-Specific scoring matrix, which
combines evolutionary information from both aspects, first
is calculate average probabilities of mutation from one
particular amino acid to 20 types residues within query
sequences during the evolution process, here representa-
tion to MAP; second is calculate the average mutation rate
of 20 types of amino acid in query sequences during the
evolution process, here representation to AMP. In fusion
the above information into one, we got the novel sequence
information of a protein. At last, we used principal com-
ponent analysis to reduce the feature space and then fed
them into the support vector machine classify to predict
subcellular location of apoptosis proteins.
This work made the remarkable result and have inves-

tigate the two influence factors of very meaningful its
research on this area has a certain contribution. Out of the
results, the first contribution can be seen from the selec-
tion of source database for PSI-BLAST search, we found
that the evolutionary profile gotten by searching against the
SWISS-PROT database is more useful than by searching
against NR database for subcellular location prediction of
apoptosis proteins. Second is the result show that the pro-
posed method is good at the small set predicting. Through
the above analysis we could summarize that the proposed
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method might serve as an efficient prediction model for
apoptosis protein subcellular location prediction.
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