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Introduction

T HE gravity turn landing scheme was originally developed for
the 1966–1968 Lunar Surveyor landing mission [1]. Since then

it has been applied in many landing missions such as the Viking
Lander and Mars Polar Lander [2]. The descent method has the
advantage of being near fuel optimal while guaranteeing a vertical
landing [3,4]. However, themethod requires a control system that can
apply the thrust antiparallel to the instantaneous velocity vector for
the entire descent.

This Note focuses on the dynamic aspects of the landing scheme.
The immediate problem here is to solve for the control that takes the
lander from a circular, or near-circular, initial parking orbit to the
surface of the planet with zero final relative velocity and zero flight-
path angle. In the past, this problem has been studied primarily
through various assumptions. The studies can generally be divided
into two groups corresponding to two different assumptions:
1) descent from low altitude and 2) aflat planet. In [3,5] both assump-
tions are considered and compared for the case of a constant thrust-
to-weight ratio. Using the first assumption, the authors argue for the
validity of approximating the full nonlinear gravity with a constant
gravity while maintaining, or at least an approximation of, the
Coriolis force. This way, one of the equations decouple from the
remaining two equations, which can then be solved by quadrature.
Using the second assumption (see also [4,6]), both the gravity
gradient and the Coriolis forces are neglected. This truncation can be
solved analytically. In particular, the authors in [6] obtain analytical
solutions with an inclusion of a quadratic air drag. It is shown that the
effect of the drag is to increase the effective thrust–weight ratio so that
the descent is completed with a lower thrust compared with the
vacuum case.

In this Note, the problem is considered without any assumptions
on the gravity and the Coriolis forces. The approach undertaken here
is also more geometric and includes an initial qualitative analysis.
Furthermore, a closed-form solution is derived for the case of a
controller that depends upon the flight-path angle. Finally, a
numerical analysis is provided for the full problem with constant
thrust to mass ratio. Through an appropriate choice of scaling the
numerical solution of the required control is presented through a
single planar plot, regardless of the parameters of the problem.

Model

To set up the controlled system, Kepler’s equations in the plane

�x�� �xjxj3 ; x 2 R2nf0g

in which � is the gravitational constant of the planet, are first
rewritten through the transformation x7! ~x� �x, t7!~t� �2t so that

_~x�� ~x

j ~xj3 (1)

in which _�� � d
d~t
. Henceforth, the tildes are dropped. Next, polar

coordinates ��; r� are introduced for x,V � j _xj and� is introduced as
the angle between _x and x:

x� re�; v� Ve�����

Here, e� � �cos �; sin �� is a vector on the unit circle. See also Fig. 1.
This transforms Eq. (1) into

_r��V cos� (2)

_V � 1

r2
cos� (3)

r _�� V sin� (4)

V _��
�
V2

r
� 1

r2

�
sin� (5)

Notice that Eqs. (2), (3), and (5) are independent of � and Eq. (4)
therefore decouples. For the gravity turn landing scheme the constant
thrust tomass control u� const: < 0 is applied in the direction of the
velocity and hence only enters on the right-hand side of Eq. (3):

_V � 1

r2
cos�� u (6)

The singularity in Eq. (5) is due to � not being defined for V � 0.
However, a singularity is inevitable in any coordinates since the
control u is undefined for V � 0. Particularly, the system is only
defined for V > 0. By undoing the preceding�-dependent scaling, it
may be realized that the dimensional control is given by �3u.

Attention is restricted to initial conditions that are compatiblewith

a circular orbit: r�0� � r0,V�0� � r�1=20 , and��0� � �=2. The aim is
to obtain a control u� u�r0; rf� such that limt!t1r�t� � rf > 0,
limt!t1V�t� � 0, and limt!t1��t� � 0 in which t1 is time of
descent.

There exists a nonlinear change of time t7!� such that Eqs. (2),
(5), and (6) become

r0 � �V2 cos � (7)

V 0 � V
�
1

r2
cos�� u

�
(8)

�0 �
�
V2

r
� 1

r2

�
sin� (9)
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with � �0 � d
d�
. In fact, t� t��� solves

t0 � V

Within the system of Eqs. (7–9), the singularity atV � 0 is no longer
explicit. It is implicit in the sense that the transformation is only
invertible for V ≠ 0 and in particular the system of Eqs. (2), (5), and
(6) is only equivalent with the system of Eqs. (7–9) for V ≠ 0. In the
system of Eqs. (7–9), V � 0 corresponds to zeros of the right-hand
sides of Eqs. (7) and (8). The sets M� fV � 0; �� 0g and fV �
0; �� �g are sets of equilibria parametrized by r. Attention is
restricted toM. A linearization in the normal direction (�V; �� plane)
ofM gives

�V 0 � �V
�
1

r2
� u

�
; ��0 � � 1

r2
��

Clearly, if u <� 1
r2
, thenM is stable with a three-dimensional stable

manifold:

Ws�M� � fset of trajectories that approach M asymptoticallyg

If u� 1
r2
, then M has one neutral direction (V direction) and one

stable direction (� direction). The points ofM are all singular points
of Eqs. (2), (3), and (5), but the stable manifolds are not and therefore
exists as solutions to the original equations.

For the descent of the lander, the aim is therefore to choose initial
conditions on the stable manifoldWs�M� with base point r� rf, in
which rf is the surface radius of the planet, so that �r; V; ���t� ! M
with r! rf for t! t1.

The existence of a stablemanifoldM does notmean that regardless
of the control u < 0 all trajectories initially on a circular orbit
approach M. In other words, not all of these trajectories live on
Ws�M�. For example, if juj is not large enough then trajectories may
“bounce” near the surface of the planet. This will, however, only
occur if u >� 1

rf
. Such a bounce may be constructed by assuming

that the solution initially starts from a circular orbit with radius r0 and
that the control is sufficiently close to � 1

r2
0

while satisfying u <� 1
r2
0

.

Then, _V vanishes at some time t� t0 with ��t0�> 0 and V�t0�> 0.
In particular, from Eq. (6),

�V�t0� �
�3c�t0�2 � 1�V�t0�

r�t0�3
� 1 � c�t0�2
V�t0�r�t0�4

in which c�t� � cos��t�. Certainly, if c�t0� 2 �1=3; 1� then �V�t0�>
0 and V starts to increase. When V increases, then � will eventually
also increase [Eq. (9)].

Analytical Approach

In this section, an analytical expression for the required control is
derived when the control has the particular form u� ~u cos�, ~u < 0
constant. The preceding analysis ofM is still applicable. On the other
hand,with this controller the system has another familyN of unstable
equilibria:

N � fV � r�1=2; �� �=2g

parametrized by r, which correspond to the initial circular orbits.
Geometrically, our boundary value problem can therefore be stated
as follows: obtain solutions connecting the two one-dimensional
manifoldsM and N in the three-dimensional space �r; V; ��. These
connections are due to the intersections of the unstablemanifold ofN
and the stable manifold ofM.

When u� ~u cos�, ~u < 0, then Eqs. (7–9) read

r0 � �V2 cos � (10)

V 0 � V
�
1

r2
� ~u

�
cos� (11)

�0 �
�
V2

r
� 1

r2

�
sin� (12)

This controller is henceforth referred to as the angle-dependent
controller. Here, � can be eliminated from the first two equations by,
basically, dividing Eqs. (10) and (11):

dr

dV
�� V

r�2 � ~u

This equation, in terms of r� r�V� with r�V � r�1=20 � � r0, solves
to

r�V� � 1

2

�
r0 �

1

2 ~ur0

�
� V

2

4 ~u

�

������������������������������������������������������������������������������������������������������������
V2

4 ~u

�
2

�
�
V2

4 ~u

��
r0 �

1

2 ~ur0

�
� 1

4

�
r0 �

1

2 ~ur0

�
2

� 1

~u

s

when ~u <�r�20 . Particularly, for V � 0,

r�0� � 1

2

�
r0 �

1

2 ~ur0

�
�

������������������������������������������
1

4

�
r0 �

1

2 ~ur0

�
2

� 1

~u

s

Setting r�0� � rf the aim is to solve for ~u. This can be done for

� � r0
rf
2 �1; 1� 1=

���
2
p
� giving

~u��
2r0 � rf

2rfr0�r0 � rf�
� � 1

2r2f

2� � 1

��� � 1�

The upper bound for � � �� � 1� 1=
���
2
p
� 1:70 corresponds to

~u�� 1
r2
f

for which the time of descent t1 becomes infinite. Indeed, it

follows that _V�� �� ! 0�. At the other extreme, j ~uj ! 1 for ��
r0
rf
! 1. The control has to be of infinitemagnitude to instantaneously

change the magnitude of the velocity and its direction.
The acceleration [Eq. (6)] at the time of descent is

_V�t1��
1

r2f
� ~u� 1

r2f

�
1� 2� � 1

2���� 1�

�
< 0; for 1<� < �� (13)

is important in the design of the controller. In particular, it is expected
that the higher value of this acceleration the shorter is the landing

rf

r

ν

φ

,V = |υ|uυ

Fig. 1 A schematic definition of the variables used in the analysis: �r; ��
are polar coordinates of the satellite position x 2 R2,V is the norm of the

velocity, and � is the angle between _x and x.
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time. Later on, it shall be shown that this is indeed the case (Fig. 2e).
On the other hand, a large change in the velocity is not desired near
the surface due to the possibility of uncertainties in the surface radius.
A lower acceleration is, however, associatedwith longer landing time

and more control. From Eq. (13), it is realized that _V�t1� is mono-

tonically increasing as a function of �: @
@�

_V�t1�> 0, with _V�t1� !
�1 and _V�t1� ! 0 for � ! 1� and ��, respectively, from below.

In Figs. 2a–2c the solutions r�t�, V�t� and ��t�, respectively, are
shown for 5 equidistant � values between 1.01 and 1.69. In Figs. 2d
and 2e, the consumed control kukL1 �

R t1
0 j ~u cos��t�j dt and the

time of descent t1 are shown as functions of �. It is obvious that

r! rf whileV, �! 0. The control and the time of descent increase
monotonically as � increases.

Numerical Approach

Motivated by the analytical approach just described, the case of
constant thrust u < 0 is now considered. Here, it is the aim to obtain a
relation between ur2f and � � r0

rf
numerically. The existence of such a

unique relation is due to invariance of the equations to the following

scaling. Let r 7! ~r� r
r�,V 7! ~V � Vr�1=2, �7! ~�� �, t7!~t� r��3=2t,

u 7! ~u� ur�2 for any r� ≠ 0 then

0 2 4 6 8 10 12
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

r/
r f

t/rf
3/2

t/rf
3/2

t/rf
3/2

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
r 01/

2

0 2 4 6 8 10 12
−0.1

0

0.1

0.2

0.3

0.4

0.5

φ /
π

1 1.2 1.4 1.6 1.8
1

1.5

2

2.5

3

γ

ur
2 f

L
1

1 1.2 1.4 1.6 1.8
0

2

4

6

8

10

12

γ

t ∞
/r

3/
 2

f
a) b)

c) d)

e)
Fig. 2 The solutions: a) r�t�, b)V�t�, and c)��t� for five equidistant � values between 1.01 and 1.69 for the angle-dependent controller, and d) consumed

control kukL1 and e) time of descent t1 as a function of �.
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_~r�� ~V cos ~�; _~V � 1

~r2
cos ~�� ~u; ~V

_~��
�
~V2

~r
� 1

~r2

�
sin ~�

in which _�� � d=d~t. Particularly, this means that attention may be
restricted to r�0� � 1. This way, our numerical solution of the
required control can be presented through a single planar plot
(Fig. 3d), regardless of the parameters of the problem.

In Figs. 3a–3c, the solutions r�t�, V�t� and ��t�, respectively, are
shown for � � 1:16, 1.12, 1.08, 1.04, 1.02. In Figs. 3d and 3e, the

nondimensionalized control ur2f and the time of descent r3=2f t1,
respectively, are shown as functions of � together with the corre-
sponding plots (the dotted lines) from Fig. 2. It should be noted that it
was not possible to do continuation for � values exceeding

� � �� � 1:162. Beyond this value _V vanishes before V � 0 and the
solutions bounce, as described, just before reaching the surface of the

planet. This upper bound on � is substantially less than 1� 1=
���
2
p

for
the angle-dependent control considered in the previous section. This

is to be expected as V increases much faster, in fact _V is for the
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Fig. 3 The solutions: r�t�, V�t�, ��t� for �� 1:16, 1.12, 1.08, 1.04, 1.02: d) required control ur2f and e) time of descent t1 are plotted as a function of �
together with the corresponding plots (the dotted lines) from Fig. 2. Notice that the lower values of � correspond to shorter times of descent.
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constant thrust tomass ratio controller at the beginning of the descent
well approximated by u [Eq. (8)] with �� �=2 and Fig. 3b. This is
not the case for the angle-dependent controller in which _V decreases
very slowly initially (see Fig. 2b).

FromFigs. 3d and 3e, it is concluded that for a given � the constant
thrust uses less time and less control than the angle-dependent
controller. For those reasons the angle-dependent controller is
perhaps of limited practical interest. Furthermore, an angle-
dependent controller obviously adds further complexity to the
system as, in practice, it is to be used in conjunction with a sensor
measuring the flight-path angle. However, the maximal radius of the
initial circular orbit can be chosen much larger than compared with
the constant thrust to mass ratio controller.

Conclusions

This Note considers the descent of a lander from an initial circular
orbit to the surface of a planet using gravity turn. By choosing a
controller depending upon the flight-path angle, an analytical
expression was obtained for the required control as a function of the
initial radius and the radius of the planet. With this controller, the
system was also shown to possess an interesting geometry. Indeed,
the initial circular orbits and, through a proper scaling, the final states
at the surface of the planet were shown to be equilibria of the system.
The solutions to the problem were then geometrically interpreted as
heteroclinic connections between these equilibria. The constant
thrust-to-mass controller was treated numerically, and through a
proper scaling the required control for a given initial and final radius
through one single planar plot was determined. This controller was
for a given initial altitude shown to outperform the angle-dependent
controller both in terms of the used thrust but also in terms of the time
of descent. However, for the constant thrust-to-weight controller it
was numerically concluded that the ratio between the radius of the
initial circular orbit to the radius of the planet could not exceed
�1:162. For the angle-dependent controller, this maximum

allowable ratio was larger: 1� 1=
���
2
p
� 1:70. The fact that the

constant thrust controller was only applicable for relative low
altitudes provides, in some sense, a global justification of the approx-
imation of constant gravity used throughout the literature.
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