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Low thrust propulsion and gravity assist (GA) are among the most promising techniques for deep space explorations. In this 
paper the two techniques are combined and treated comprehensively, both on modeling and numerical techniques. Fuel optimal 
orbit rendezvous via multiple GA is first formulated as optimal guidance with multiple interior constraints and then the optimal 
necessary conditions, various transversality conditions and stationary conditions are derived by Pontryagin’s Maximum Princi-
ple (PMP). Finally the initial orbit rendezvous problem is transformed into a multiple point boundary value problem (MPBVP). 
Homotopic technique combined with random searching globally and Particle Swarm Optimization (PSO), is adopted to handle 
the numerical difficulty in solving the above MPBVP by single shooting method. Two scenarios in the end show the merits of 
the present approach. 

low thrust, fuel optimal trajectory, maximum principle, homotopic technique, gravity assist 

PACS: 95.55.Pe, 95.40.+s 
 
 

 
 
1  Introduction 

The past decade has witnessed the low thrust technique, like 
electrical and ion propulsion, gaining more and more sup-
port in aerospace, especially deep space explorations, for 
example mission Deep Space 1 [1] and HAYABUSA [2]. It 
is definitely the high specific impulse of low thrust that 
makes it so attractive, for this will render itself more effi-
cient than traditional propulsion, i.e., chemical propulsion 
with high thrust magnitude. Most of low thrust trajectory 
optimization problems are resolved by the direct method 
[3–5], which formulates the optimal guidance problem as a 
parameter optimization problem by discretizing the whole 
continuous trajectory into many phases and finally resorts to 
nonlinear programming, like GALLOP [3], one widely used 
program based on parameter optimization for finding 
fuel-optimal low-thrust trajectory. The essence of the direct 

method in optimization is actually searching globally from a 
very broad admissible trajectory category and rendering the 
trajectories satisfying corresponding various constraints. 
This is really demanding in the respect of computation costs, 
considering the number of optimization parameters in most 
mission design is very large. And what’s worse, without an 
account of the physics underlying the optimal guidance 
problem, it’s not reasonable to expect too much from the 
direct method with regard to the global optimality of its 
results, as GALLOP claims, i.e., gravity-assisted low-thrust 
local optimization program. Indirect method [6–10] in tra-
jectory optimization, on the other hand, taking into account 
more intrinsic optimal structures, unveiled by the optimal 
control theory [11–13], especially PMP, is believed likely to 
provide one with more reliable global optimal results at 
much fewer computation costs. However, difficulties from 
the indirect method seem formidable when the fuel optimal 
low thrust trajectory is treated. These difficulties lie in two 
respects, i.e., severe sensibility to initial interaction value, 
maybe leading to local optimal results, and small, even  
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irregular convergence domain, maybe leading to divergence 
of the single shooting method. 

Recently, homotopic technique, one numerical continua-
tion method, was introduced to handle the difficulties in 
fuel-optimal low thrust trajectory optimization [14–17]. The 
basic idea of the homotopic technique is to obtain the de-
sired results by staring from the solution of a related, while 
easy-handling problem [14–18]. In the present context, this 
idea will become clear if one notes that the fuel optimal 
problem is less smooth, hence more difficult than the energy 
optimal problem, which can be solved first to provide an 
initial solution ‘continued’ then by the homotopic technique 
to the desired one. 

The fight time is sometimes too long to make a mission 
feasible, however, if only the low thrust technique is em-
ployed [3]. Planetary gravity assist (GA), is believed to be 
one of the most promising techniques for outer planet ex-
plorations, which can be utilized to save fuel and shorten 
the flight time, especially for deep space missions to Jupiter, 
Uranus or further [3]. Actually some missions like Mariner 
10 and Voyager 1 have utilized intermediate GA and vari-
ous problems associated with GA are treated in refs. 
[19–22]. However, most of the researchers formulate the 
problem as a parameter optimization problem or consider 
only the impulsive case. Based upon the work in the afore-
mentioned references, PMP and homotopic technique are 
employed in the present paper to treat this problem, i.e., 
fuel-optimal low-thrust rendezvous with an outer planet via 
GA, comprehensively in two respects, modeling and nu-
merical technique. 

The present paper extends the work in ref. [14] to multi-
ple GA case and thus finishes the comprehensive treatment 
of the problem, i.e., fuel optimal low thrust rendezvous via 
GA. Based on Pontryagin’s Maximum Principle (PMP), 
fuel-optimal low-thrust rendezvous via multiple GA is for-
mulated as an optimal guidance problem with various inte-
rior point constraints. Then the optimal thrust is derived and 
various constraints, i.e., stationary conditions and trans-                  
versality conditions, especially the ones introduced by each 
GA, are presented in detail. It is then straightforward to ob-
tain a MPBVP, which is solved by the single shooting 
method, though daunted by severe sensibility to the initial 
interaction guess. This intrinsic difficulty due to local char-
acteristics of gradient algorithms, say Newton’s method or 
Powell’s method [14–17], was even aggravated by the re-
duction of smoothness of shooting function caused by the 
less smooth performance index such as fuel optimal per-
formance index. Thus the homotopic technique is employed 
to cope with this tough situation, by starting from one 
smoother optimization problem, say, energy optimal prob-
lem and then varying the so-called homotopic parameter to 
finally obtain the desired results of the fuel optimal problem. 
Actually the meaning of ‘varying the homotopic parameter’ 
here to solve a series of optimal guidance problems defined 

by the homotopic mapping, constructed here to relate the 
initial smooth optimization problem with the discontinuous 
one. With initialization difficulty in the energy optimal 
problem, i.e., sensibility to initial guess, being handled by 
the global searching algorithm PSO [14,23,24] or random 
searching globally [14,15], the fuel optimal rendezvous 
problem is finally solved. At the end of the paper, two sce-
narios, i.e., Earth- Earth-Jupiter and Earth-Earth-Jupiter- 
Uranus, are presented to illustrate the ideas and techniques 
in the paper. 

2  Background: low thrust trajectory optimiza-
tion by the indirect method 

2.1  System dynamical model 

The dynamics of spacecraft subject to Sun’s gravity and 
electrical propulsion only, can be written as follows: 

 max
3

0

, ,
T u

mmr


    r v     v r   (1) 

 max

0 0sp

T u
m

I g m
  , (2) 

where ,r v  are respectively the spacecraft’s position and 

velocity vectors in the heliocentric ecliptic reference frame 
(HERF). The dimensionless mass of fuel m can be obtained 
by making 0( ) 1m t  , and here 0m  is the initial total mass. 

Denoting the maximal thrust magnitude, dimensionless 
thrust magnitude and direction of thrust by max , ,T u   re-

spectively, the thrust vector can now be denoted by 

 max ,T uT   here 0 1,  1.u    Other constants like 

0, ,spI g  are Sun’s gravitational constants, engine’s spe-

cific impulse and acceleration of gravity at see level respec-
tively. With the fuel mass m combined together with space-
craft’s mechanical state variables ,r v , the state variables of 

the mass-varying spacecraft system can be denoted by 

 , ,mx r v . And the system dynamical equation can now 

be written in a compact form 

 ( , , )ux f x  . (3) 

2.2  Fuel optimal low thrust rendezvous  

Fuel optimal low thrust rendezvous can be formulated as an 
optimal control problem and the associated optimal thrust 
program can be derived by PMP [14,15]. This will be pre-
sented briefly in the following.  

The performance index of fuel optimal rendezvous is 

 ( ).fJ m t   (4) 
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The optimal thrust program should make the above index as 
small as possible. In other words, the final fuel ( )fm t  

should be as much as possible.  

Note that multiplying the performance index J  by any 
plus constant has no influence on the optimal control and 
the optimal trajectory. The following equivalent and easy- 
handling performance index J  will be adopted here 

 
0

max
0

0 0

d ,
ft

t
sp

T
J u t

I g m
   (5) 

where 0 0   is a factor. And the equivalence will be clear 

after the mass differential equation (2) is integrated. 
For optimal control, Hamiltonian H is denoted by 

 

max
3

0

max max
0

0 0 0 0

,

r v

m
sp sp

T u
H

mmr

T u T
u

I g m I g m



 

       
 

    
 

v r  

 
(6)

 

where  t  is the costate, associated with the state equa-

tion constraint ( , ) 0.u  f x x  

According to PMP, the optimal control can be derived 

  
 1, 0 1

, arg min .
u

u H
 




  (7) 

For 0u  , the optimal   can be obtained directly 

 .v

v

 





 (8) 

The above optimal thrust direction is the well-known 
prime vector, introduced by Lawden [25], which indicates 
that the optimal thrust should always be in the opposite di-
rection of costate associated with velocity, say v , and this 

conclusion is independent of the thrust magnitude u. 
It is more involved to get the optimal u, however. The 

Hamiltonian H should be first transformed into a cleaner 
form utilizing optimal thrust direction (8) 

 

0max
0

0 0

3
 .

v sp
m

sp

r v

I gT
H u

I g m m

r

 



 
    

 

   v r



 

 
(9)

 

Note that state differential equations (1) (2) and Hamil-
tonian (9) are all linear with respect to the magnitude of 
thrust u, whose admissible domain is closed, i.e., u∈[0,1]. 
Thus the optimal thrust magnitude u is derived as bang- 
bang control in the following. With the auxiliary so-called 
switching function S denoted by 

 0
0 ,v sp

m

I g
S

m
   


 (10) 

the optimal control can now be derived as 

 

1 0,

0 0,

indefinite 0.

S

u S

S


 
 

 (11) 

If 0S   in a certain continuous domain, the situation 
becomes singular and subtle. However, one will be assured 
by numerical results in the end, displaying that the switch-
ing function S reaches zero only at some finite points. Note 
that the above bang-bang control (11) is discontinuous and 
some troublesome problems will be expected in numerical 
computation. Actually this is one of the elements that ren-
ders the fuel-optimal problem less smooth, hence more dif-
ficult than the energy optimal problem. 

The costate equation can then be derived by   
H x  

 
3 5

max

2
0

3 ( )
, ,

,     

v
r v v r

v
m

r r
T u

m m






   

 

 



r
r    


   

  (12) 

where  r v m    are the costate variables associ-

ated with the state variables of the spacecraft system. 
It becomes clear that state differential equation (3) and 

costate differential equations (12) are really coupled to-
gether via the optimal control u and   through some in-
spection of eqs. (8) (10) (11). Thus state equations (3) and 
costate equations (12), together with various boundary con-
ditions (initial or terminal conditions) completely define the 
fuel optimal rendezvous problem. 

Explicitly, in guidance problem (3) (12) initial conditions 
are only partially imposed 

 0 0 0 0 0( ) ( ) , ( ) 1.t t m t  r r ,v v  (13) 

And part of the terminal conditions are 

 ( ) , ( ) .f f f ft t r r v v  (14) 

The remaining boundary conditions are supplied by the 
so-called transversallity conditions 

   0.m ft   (15) 

Thus the optimal rendezvous problem leads to a typical 
two point boundary value problem (TPBVP) (3) (12)–(15), 
totally different from common ordinary differential equa-
tions. Solving the above TPBVP efficiently is definitely 
nontrivial, and at most time one has to rely on the single 
shooting method, based on some local algorithms like 
Newton’s or Powell’s method.  
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3  Fuel optimal low thrust rendezvous via grav-
ity assist 

3.1  Impulsive planetary gravity assist model 

Some digestion of planetary gravity assist (GA) is needed 
before treating optimal rendezvous via GA. In the present 
paper, impulsive planetary gravity assist model is adopted, 
that is the time spent in the sphere of influence of a planet is 
neglected. With the superscripts  and + denoting the time 
just before and just after GA respectively, we can summa-
rize the fundamental properties of planetary gravity assist 
model [26] as follows. 

Noting the time spent in the process of gravity assist is 
neglected and assuming the position of spacecraft just be-
fore and after gravity assist is equal to the position of planet, 
one can obtain 

 ,a a at t t    (16) 

       ,
a a p at t t  r r r  (17) 

where at  is the time for GA and the velocities of space-

craft just before and after gravity assist in HERF are de-

noted by  at
v ,  at

v  respectively. Thus the so-called 

incoming and outgoing hyperbolic excess velocity with re-

spect to the planet can be introduced as  at
 
 v v  

     ,p a a p at t t 
  v v v v , where  p atv  is the velocity 

of the planet at GA time at . Then, the most important for-

mulas with regard to GA can be written as 

 ,v 
   v v  (18) 

 2 cos ,v 


 
  v v  (19) 

 
 2

periapsis

1
sin ,

2 1 pv r






   
 

 (20) 

where  denotes the so-called turn angle between the hy-
perbolic excess velocity before and after gravity assist, and 

periapsis ,  pr   stand for the periapsis radius of the GA hyper-

bolic orbit and gravitational constants of planet respectively. 
The trade-off between the turn angle  and the magnitude of 
hyperbolic excess velocity v , and the periapsis radius 

periapsis ,r  is clear in eq. (20), that is the decrease of v , 

periapsisr  is always accompanied by the increase of turn angle 

. However, with the hyperbolic excess velocity v  speci-

fied, the maximum turn angle is always limited by the 
minimum periapsis radius minr  of the GA hyperbolic orbit, 

if the surface or the extent of the atmosphere of the planet 

are considered. So one more inequality constraint, in design 
rather than physics, should be introduced here 

 periapsis min .r r  (21) 

3.2  Optimal rendezvous via multiple gravity assist 

All that stated in sect. 2.2 are standard optimal control and 
the associated TPBVP encountered in low thrust trajectory 
optimization by the indirect method. Now, various interior 
point constraints, i.e., multiple GA, will be introduced and 
the situation becomes a little tough. Keep in mind that vari-
ous constraints at some specific time or state, like the ter-
minal point or time, or some intermediate time etc, affect 
only the associated stationary or transversality conditions at 
that time or state, with no effect on costate equations or first 
order optimal necessary conditions. This means all that 
above about the TPBVP is still right in the present case and 
the new elements here are the associated stationary and 
transversality conditions introduced by various interior 
point constraints at that time. 

Let various equality and inequality constraints introduced 
by GA at successive time points, i.e., , 1it i N  , be de-

noted by 

 
      
      

,  ,  , 0,

,  ,  , 0,

i i

i i

i d d c i i

i d d c i i

t t t t

t t t t

 

 





x x x

x x x


 (22) 

where i  and i  in the present case can be expressed 

explicitly , i.e., for each GA 

 
   

min periapsis

, ,

0.

i i p i

i

t t

r r

 
 

     
  

0r r v v
 (23) 

And here    ,
i id dt t x x  denote the discontinuous part of 

state variables just before and after the interior constraint 
respectively, and  c itx the continuous ones. In other 

words, here we have adopted such a notation convention 

 , .d cx x x  One should be warned that this partition of 

state variables is indispensable, though absent in ref. [21], 
and actually this is one of the characteristics of interior con-
straints introduced by GA, i.e., part of the state variables are 
discontinuous while the remaining are not. The above nota-
tion conventions will be used in the following. The super-
scripts  and + denote the quantities just before and after the 
interior constraints respectively and state variables are parti-
tioned into two distinct parts in the sense of continuity. 

With terminal constraints denoted by    0ft x  and 

constant Lagrange multipliers associated with each equality 
constraint i  and inequality constraint i  denoted by 

i and i  respectively, one can obtain the augmented per-
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formance index as follows: 

 

      
      
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
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

 

x x x

x x x

x x

x x

 



  

 

 

(24)

 

Actually here Kuhn-Tucker condition is used. In other 
words multiplier i  should satisfy 

       0,  , , , 0.
i ii i i d d c i it t t t      x x x  (25) 

Let d ,mt  ( ),d it x  ( ),d it x  ( ),c it x  ,u  ( )t x  de-

note the first variation of ,it  ( ),d it
x  ( ),d it

x  ( ),c itx  u, 

( )tx  respectively. The first variation of performance index 

J  can now be derived as follows: 
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where i i i i i       . 

Note here for continuous state variables cx  the follow-

ing rules have been utilized [11,13] 

 
( ) ( )d ,

d ( )
( ) ( )d .

c i c i i
c i

c i c i i

t t t
t

t t t




 

 

  





x x
x

x x
 (27) 

And for discontinuous parts, as pointed out in ref. [11], 
d ( ) d ( )c i c it t x x , which should be both treated as inde-

pendent variations. 
With the costates   classified into two distinct catego-

ries: one associated with continuous state variables, say c , 

and the other with discontinuous ones, say d , the above 

seemingly formidable expression can be written in a more 
compact form after some simplifications 

 
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N
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 x x

x
  
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For variations u  and  x  in the integrand to be free, 
costates   in the above should be chosen to make coeffi-

cients of the other variations vanish at each GA ,it  

1 .i N   And then the so-called transversality and sta-
tionary conditions introduced by each GA, can be obtained 
like 

   0,
( )

i
d i

d i

t
t





  

x
  (29) 

   0,
( )

i
d i

d i

t
t





 
x

  (30) 

     0
( )

i
c i c i

c i

t t
t

  
   

x
  , (31) 

     0i
i i

i

H t H t
t

  
  


, (32) 

where the first three are transversal conditions at interior 

points  p itr  and the last one is stationary conditions as-

sociated with each interior constraint time .it  Setting 

0,J   then the terminal transversality conditions  ft  

  ( ),ft   x   costate equations ,H   x  and 

the first order necessary condition for optimality, i.e., 
0H u   , can all be obtained. 

Although the above derivations apply to the classical 
case only, i.e., without constraints on control variables or 
mathematically, the admissible control domain U is an open 
set, the results or conclusions presented here are right in 
both cases, i.e., with or without constraints on control vari-
ables. And even more, in the latter case, the present local 
conclusions, say the first order necessary condition of ex-
tremum 0H u   , can be strengthened to a global one, 

say strong minimum in the whole admissible domain, that is 
u= arg min ,

u U
H


 which has been utilized before in the paper. 

The strengthened version of the optimality condition shows 
the power of PMP and anyone interested in the whole story 
behind this amazing result is referred to the classic [12]. 

(26) 

(28) 
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3.3  Constraints introduced by multiple GA 

Various constraints introduced by multiple GA, both on 
state variables  tx  and costate variables   ,t  will be 

treated completely in this section. Following Jiang’s work 
in the one GA case [14], one can derive constraints in the 
present case. The interesting point here is that some sym-
metric properties are utilized and the derivations are simpli-
fied.  

The first part, i.e., constraints imposed on the state vari-

ables are evident, that is    i p it tr r  and .v 
   v v  

Note that here the constraints are all on mechanical quanti-
ties, for one can assume that the mass variable m is con-

tinuous, that is     ,i im t m t   considering the time dur-

ing GA the planet is so short in comparison with the total 
flight time 0fTOF t t  . The last one is associated with 

the design instead of physics, i.e., periapsis min .r r  

Anyway, the aforementioned constraints are all relatively 
intuitive and easy to grasp or write down. The other part, 
i.e., constraints on the costates, however, are not so evident, 
the derivation of which is actually much more involved. 
This will be finished in the following based on the results in 
the last section. 

In accordance with the terminology used in the last sec-
tion, here position vector r  and mass m  are continuous 

state variables, i.e.,  ,c mx r , while the remaining veloc-

ity vector v  the discontinuous ones, i.e., d x v . Ac-

cordingly, one has [ , ]c r m   and d v  . The con-

straint terms for each GA, i.e., ,i i i i i        can be 

presented explicitly like 

 
    

   
1

2 min periapsis ,

i i i p i

i i

t t

r r  
 

   

     

r r

v v


 (33) 

where  

    ,i i p it t  
 

      0r r v v  

and min periapsis 0i r r     are the equality and inequality 

constraints associated with each GA respectively. Note here 

 1 2,i i i   and 0.i   

Now with some care one can deduce the corresponding 
transversality and stationary conditions introduced by each 
GA. From inspection of eqs. (29)–(32), one can know all 
that needed are the follows: 
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And actually all the following derivations are straight-
forward 
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



v

x vv

v

x vv

x

vv v

v v

r

 (34) 

Note that differentiation with respect to GA time it  in 

the above should only apply to the target’s states , or speci-
fied reference quantities or signals, if borrowing terminol-
ogy from control theory, like the position and velocity of 

planet in the present case, i.e.,  p itr  and  p itv , while 

not to the state variables of spacecraft. This remark becomes 
clear if close inspection is given to the derivation of first 

variation of augmented performance index J  in eqs. (24) 
(26). 

The key point now is the differentiation of periapsis ra-
dius of the GA hyperbolic orbit periapsisr  with respect to GA 

time it , incoming and outgoing velocities ( ),it
v  ( ).it

v  

Rearrange expression (20)  

 
 periapsis 2

1
1 ,

sin 2
pr

v






 
   

 
 (35) 

where turn angle  satisfies 2cos v


 
  v v  and v  

. 
  v v  Warnings should be given that the auxiliary 

term 2v


 in the above expression is actually misleading, as 

one can be really tempted to replace 2v


 with 
2

v , or 

2
v , or  

 v v  while differentiating partially with 

respect to ( )it
v  and ( ).it

v  Simple computation trials 

show that the above three are far from equivalent in the 
sense of partial differentiation, however. This paradox, 
originating in deviations of impulsive GA model from ac-
tual physics, can be removed by replacing the misleading 

terms 2v


 in (35) with , 
 v v  consisting of funda-

mental variables ( ), ( )i it t v v  in a symmetric form, which 

is actually a suggestion based on the symmetry of GA hy-
perbolic orbit in physics.  

Now the more physics-involving periapsis radius periapsisr  

can be written as 
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 periapsis

1
1 ,

sin 2
pr


 

 

 
     v v

 (36) 

where  cos .    
     v v v v  The symmetric relation 

between 
v  and 

v  in the above expression is really 

clear, hence  ( )i p it t 
 v v v  and  ( ) .i p it t 

 v v v  

This means ( )it
 v and ( )it

 v  will have totally the 

same form, if we exchange ( )it
v  with ( )it

v . 

With regard to  p itv , one notes that 
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.
( ) ( )p i i it t t 

  
  

  v v v
 (37) 

Furthermore, keeping in mind the aforementioned note or 
warning about partial differentiation with respect to con-
straint time mt , and recalling 

 
 

 periapsis periapsis ,p i

i p i i

r r t

t t t

  
 

  

v

v
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one will arrive at the conclusion that all that is needed now 

is either one of the two: periapsis ,
( )i

r

t


v
 periapsis .

( )i

r

t


v
 With some 

care, one can derive periapsis

( )i

r

t


v
 explicitly 
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(39)

 

Now the above just tiny observation will save one from 

tedious computations, say, one can obtain periapsis

( )i

r

t


v
 di-

rectly by just exchanging ( )it
v with ( )it

v , and ( )it
v  

with ( )it
v  in eq. (38), 
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(40)

 

And periapsis

i

r

t




is obtained using eqs. (37) and (38), 
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 (41) 

Note here 

 
 

 
 3

.p i p

p i
i p i

t
t

t t


 



v
r

r
 (42) 

Substituting the above (39)–(42) into (34), one finally 
obtains the transversality and stationary conditions intro-
duced by each GA, i.e., (29) –(32). 

3.4  Formulation of the MPBVP  

To see the whole picture, one should summarize all the 
points up to now and then formulate the optimal rendezvous 
problem with multiple GA as MPBVP. 

The initial conditions at 0t  are clear 

 0 0 0 0 0( ) , ( ) ,  ( ) 1.t t m t  r r v v  (43) 

The constraints on state variables introduced by each GA 
are 

 
   

 min periapsis

0;  0,

0,  0.

i p i

i i

t t

r r 

  
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   

r r v v
 (44) 

The constraints on costate variables introduced by each 

GA at ,it
  i.e., transversality conditions are 

   0.
( )

i
d i

d i

t
t





  

x
  (45) 

The constraint on optimal GA time it , in other words, 

stationary condition is 

     0.i
i i

i

H t H t
t

  
  


 (46) 

The constraints at terminal time ft are 

  ( ) 0,  ( ) 0,  0.f f f f m ft t t    r r v v  (47) 

State equations (3) together with costate equations (12), 
and all the conditions or constraints at initial, terminal and 
each GA time, i.e., 0t , ft , ,it  1 ,i N   finally consti-

tute the MPBVP. And the basic ideas of solving the 
MPBVP by the single shooting method is to transforming 
the former into an initial value problem of ODE (ordinary 
differential equation) by assigning or guessing enough 
so-called shooting variables, like initial conditions, corner 
conditions, if interior points exist, and maybe some other 
parameters such as GA time it , to make sure that the 

transformed initial value problem, maybe multiple stages or 
legs involved, is well-defined. 

In the present case, to start integrating forward at initial 
time 0t , one should first assign or guess the initial values of 
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costates:        0 0 0 0, ,r v mt t t t      . At 
i

t , i.e., just 

after GA, to carry up integration, velocity ( )it
v , or 

equivalently, actually more conveniently, velocity differ-
ence ( ) ( )i i it t   v v v  should be assigned, considering 

that ( ) ( )d i v it t   , ( ) ( ), ( )c i r i m it t t       , ( )it
r  and 

( )im t  can be supplied by the following relations 

        ,  ,i i i it t m t m t   r = r  (48) 

   0,
( )

i
d i

d i

t
t





 
x

  (49) 

     0
( )

i
c i c i

c i

t t
t

  
   

x
   (50) 

Here on assumes that the Lagrange multipliers ,i  i  

have been assigned already. Thus one has the following 
shooting variables now, i.e.,  0t , and ,iv  ,i  i  for 

each GA, which are not complete, however. Each GA time 

it  must also be included here to make the problem well-de-                

fined. Finally one obtains 7 9N  shooting variables if N 
GA are employed in the rendezvous process. And the cor-
responding shooting equations    0q  are the above 

listed constraints at 0t , ft , ,it  1 ,i N   i.e., (43)–(47). 

Finding roots of this high dimensional shooting equations 

   0q , which is definitely nontrivial, will be treated in 

detail in the next section. 
Note in the above, partial differentiations of i  with 

respect to ( )d it
x , ( )d it

x , ( )c itx  and it  have already 

been derived in the last part, i.e., (34) (39)–(42). 

4  Numerical techniques 

4.1  Normalization, GA time & random searching  

The sensibility to initial guess in solving the above equa-
tions    0q  by single shooting method, due to the lo-

cal characteristics of algorithm, urges one to try to under-
stand the underlying physics of the optimal rendezvous 
problem as much as possible, in light of which one can set a 
reasonable admissible domain of shooting variables, rather 
than in darkness. For example, to solve shooting equation 

   0q  initial costates are usually allowed to vary in a 

very broad domain. This admissible domain is far from rea-
sonable in our sense. Actually, the admissible domain 
should shrink to a bounded unit sphere, a much smaller, 
hence more reasonable searching domain. Note that a rea-
sonable admissible domain is of vital importance for ob-

taining reasonable initial interaction value of shooting vari-
ables by searching algorithms, even global one like PSO or 
random searching globally. In other words, to reduce the 
sensibility to interaction initial guess, one should first set a 
reasonable admissible domain for shooting variables and 
then employ the global searching algorithm. 

Jiang [14] noted the homogeneousness of state equations 
(3), costate equations (12) and various constraints or 
boundary conditions with respect to the hybrid multipliers, 

which include positive factor 0 , initial costate  0t  and 

constant Lagrange multipliers ,    associated with equal-

ity and inequality constraints introduced by GA. And then 
he proposed a normalization technique to confine the hybrid 
multipliers in the bounded unit sphere. Here, what ‘nor-
malization technique’ means is dividing a vector by its 
magnitude. The basic idea underlying normalization tech-
nique is that it is the normalized costates that really matter. 
If the performance index is multiplied by a positive fac-
tor 0 , the ratio (term by term) of the new costates to the old 

ones will be 0  automatically. However, optimal control 

and optimal trajectory will definitely remain the same. This 
insight is very important in the sense that it will simplify the 

initialization of the shooting variables  0 ,  ,  t    

through parameterization of high dimensional abstract unit 
sphere. Here this important technique is adopted and ex-
tended to multiple GA case. That is, after normalization, 
multipliers should satisfy 

  2 2
0

1

1
N

i i i
i

 


         . (51) 

where i , i  are constant Lagrange multipliers associated 

with equality and inequality constraints introduced by each 
GA. These parameters defining the above unit sphere (51) 
will be the actual shooting variables, which fall all in the 
bounded domain. The parameterization of high dimensional 
abstract sphere itself is a very interesting mathematical trick 
and the details can be found in refs. [14,27]. 

The shooting variables iv , velocity increment owing to 

each GA, will be assigned within unit ball 

 
min

1i

p r



v

, (52) 

where minp r  is the possible maximum magnitude of 

velocity increment iv  for all the admissible GA altitudes 

satisfying periapsis minr r  [26]. It is the convenience of 

parameterizing the above unit ball, that iv  rather than 

( )it
v , is finally chosen as shooting variables in the present 

paper. One has to admit, however, that the above admissible 
domain is larger than the actual one by noting that various 
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main is larger than the actual one by noting that various 
constraints on velocity before and after GA, i.e., eqs. 
(18)–(20) are relaxed at this moment. It is one of the advan-
tages of indirect method in trajectory optimization, i.e., the 
formulation of shooting equations, i.e.,   , 0q  guaran-

tees the optimality of the original problem and the satisfac-
tion of various constraints at the same time, that one can 
assume here that the relaxation of some constraints when 
setting admissible domain will not affect the optimality, but 
bring much convenience. The situation will be definitely not 
the same when it comes to parameter optimization problems, 
like direct methods in trajectory optimizations, where re-
laxation of constraints totally changes the original optimiza-
tion problem, i.e., in respect of both optimality and con-
straints. 

To get a preliminary, while reasonable, estimate of the 
admissible domain of GA time it , however, is more in-

volved. At most time, one has to rely on experience and 
corresponding results in an impulsive case. The basic idea 
here is to formulate the problem as a parameter optimization 
problem based on the results of classical Lambert problem.  

For outer planet GA, like Mars and Jupiter, it is straight-
forward to formulate the optimization problem. Let launch 
time, rendezvous time and successive GA time be 0 ,  ,  ft t  

,  1 ,it i N   respectively and then the positions of space-

craft at the above time are also specified. Solving a series of 
Lambert problems can yield proper velocities at corre-

sponding positions, i.e.,  0tv ,  ftv ,  it
v ,  it

v , 

1i N  . Now taking the total velocity increment as per-
formance index and each GA time ,  1it i N  as optimi-

zation parameters, one finally formulates the optimal im-
pulsive rendezvous problem as 

 
       0 0

1

min .
i

N

f f i i it
i

t t t t 



 
       

 
   v v v v v v v   

 (53) 

Note here in the above three terms, 

   
1

N

i i i
i

t t 



    v v v  is the velocity increment or ma-

neuver impulse at patching positions apart from optimal 
velocity impulse supplied by GA, i.e., iv , which can be 

determined uniquely with income velocity  it
v  and out-

going velocity  it
v  specified [14]. 

For Earth GA, i.e., spacecraft launched from Earth com-
ing back to encounter Earth again, the situation here is a 
little different, where the problem can not be formulated as 
a Lambert problem directly. The usual approach to Earth 
GA is first to launch the spacecraft into a heliocentric orbit, 
whose period is slightly larger than an integer number of 
years and perihelion is the radius of Earth’s orbit, i.e., 1 AU, 

and then to apply a retrograde velocity maneuver at aphe-
lion to lower the perihelion to intercept Earth [26]. It’s clear 
that launch velocity      0 0 0Et t t  v v v  in this case 

should never be zero, which should also be treated as an 
optimization parameter. With launch velocity specified, 
where and when to apply retrograde velocity maneuver can 
then be determined, say    ,  ,r rt tr v  0 out 2 ,rt t T   here 

outT  denoting the outgoing orbit’s period. The present 

problem can now be transformed into the same formulation 
as that of outer planet GA, if  rtr  is treated as initial po-

sition. All the followings will be parallel to those for outer 
planet GA. Warnings should be given that all the above 
about GA time are just a preliminary estimate or guess. 
Both experience and preliminary guess should be taken into 
account on setting an admissible domain. 

With the reasonable admissible domain for shooting 
variables, PSO is then adopted in the paper to search glob-
ally the preliminary initial interaction value for solving en-
ergy optimal problem, whose object function is performance 
index plus residual of shooting equations   . 0q  How-

ever, PSO is found less and less effective as dimension of 
shooting variables increases, when the multiple GA case is 
treated for example. Instead of PSO, multiple random 
searching globally is employed to treat the high dimension 
case. It is found more efficient than PSO and this will be-
come clear in the followed numerical examples. 

4.2  Homotopic technique  

The aforementioned sensibility to initial guess in solving the 
above equations    0q  by the single shooting method 

is just one of the various difficulties encountered in 
fuel-optimal low-thrust trajectory optimization, which is 
actually the intrinsic difficulty in solving high dimensional 
nonlinear equations, a typical topic in applied mathematics.  

Another difficulty, however, is more daunting, which is 
totally rooted in the different physics underlying various 
performance indexes. Recalling aforementioned fuel opti-
mal performance index 

 
0

max
0

0 0

d ,
ft

t
sp

T
J u t

I g m
   (54) 

one should note here the integrand u c T  is propor-

tional to thrust vector’s norm, the smoothness of which is 
not satisfying. And even worse, the bang-bang control (11), 
due to the linearity of state equations (3), hence Hamilton 
function H (9), with respect to the just mentioned normal-
ized magnitude of thrust vector, i.e., u, is discontinuous. 
These will be bound to reduce the smoothness of shooting 
functions    0q  and thus the convergence radius of 

associated gradient algorithm badly. 
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This difficulty, i.e., small and irregular convergence do-
main mainly due to the loss of smoothness of shooting 

function  q , can be removed to some degree, if the 

so-called homotopic technique, one kind of numerical con-
tinuation method, is explored properly [14–18]. Actually it 
is the linearity of the integrand in performance index and of 
state equations with respect to normalized thrust magnitude 
u  that lead to discontinuous bang-bang control, which fi-

nally reduces the smoothness of shooting functions  q . 

This observation motivates one to find smoother shooting 

function   q , from some new performance index J , in 

which the integrand is not linear with respect to u, say 

quadratic form 2u , here 

 
0

2max
0

0 0

d .
ft

t
sp

T
J u t

I g m
   (55) 

It’s easy to derive the corresponding optimal control as-
sociated with the above performance index by PMP. Quad-

ratic form 2u  in J  leads to quadratic Hamilton function 
H with respect to u and one can finally get a continuous 
optimal control, making shooting function   q  smoother 

than  q . It seems at first that the new continuous opti-

mal control, leading to smoother shooting function, has 
nothing to do with the former discontinuous one. It is 
homotopic technique that saves one from this embarrassing 
situation, suggesting that one should find some continuous 
mapping    , ,F  q q  called homotopic mapping, 

which gradually transitions from the smoother shooting 
function to the less smooth one by varying the so-called 
homotopic parameter   continuously from 0 to 1, specifi-
cally in our case here, from energy optimal problem 

  0 q  to fuel optimal one   0q . In other words, 

the homotopic mapping  ,F  q satisfies    0, ,F  q q  

 1,F q  .q   The underlying key idea of the above 

remarks is that the solution sequence  nq  of  
n

 q  

0  will converge finally to solution  1q  of   0q  

starting by the solution  0q  of energy optimal problem 

   q 0, if sequence n  converges to 1. The details will 

be neglected here and any mathematically oriented readers 
can consult ref. [15] and related references there in. 

Noting that shooting function  q  means actually all 

the listed various constraints (43)–(47), which is definitely 
not explicitly presented, nor could be in fact, one realizes 
the above mentioned homotopic mapping    ,F  q q  

is difficult to be constructed. Actually the one explicitly 
constructed here is homotopic mapping  f   between the 

two integrands 2 ,  u u  of the corresponding performance 

indexes ,  ,J J  and the desired one    ,F  q q  be-

tween shooting functions will be induced from  f  . 

More explicitly, choosing homotopic mapping  f   

  21u u    , one then obtains a series of optimal guid-

ance problems 

   
0

2max
0

0 0

1 d .
ft

t
sp

T
J u u t

I g m       (56) 

Now applying PMP to every optimal control problem 
associated with J , one can obtain the corresponding 

shooting functions   0 q , which actually define the 

desired homotopic mapping    ,F  q q . 

With homotopic technique in hand, one can expect and 
finally obtain the fuel optimal solution starting with the en-
ergy optimal problem. The difficulty in obtaining the energy 
optimal solution is handled with techniques introduced in 
sect. 4.1. 

5  Numerical results 

For comparison, two rendezvous missions, which were de-
signed by program GALLOP in ref. [3], are treated here 
with the present approach. 

5.1  Earth to Jupiter rendezvous mission via Earth GA 

To illustrate rendezvous via Earth GA, which is different 
from other outer planet GA as claimed in sect. 4.1, we pre-
sent a rendezvous mission from Earth to Jupiter via Earth 
gravity assist. The parameters are listed in Table 1. 
  The corresponding shooting variables here are q  

 0 1 1 1 1, , , ,t t  v   and shooting equations include (43)– 

(46). The admissible domain of GA time 1t  is set to be 

 1 0.72,1.72t   and this domain is actually very broad, 

also very intuitive, if close inspection is paid to sect. 4.1 
about Earth GA. With PSO searching globally, the prelimi-
nary initial interaction value is obtained. And then the  

Table 1  Parameters in the E-E-J rendezvous mission 

Parameters Value Units 

Launch date on Earth Sep. 29, 2015  
Launch v∞ on Earth 0.71 km/s 

Arrival date on Jupiter Apr. 5, 2020 
Total TOF 4.52 year 

Initial mass 19820 kg 

Earth GA rmin 6378.145+500 km 
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smooth energy-optimal problem is solved by the single 
shooting method. It takes about 0.75 hours for this process 
in the present mission example. 

The solutions to the shooting equation associated with 
the fuel-optimal problem are finally obtained through 
homotopic mapping starting with the energy-optimal results. 
This homotopic process is amazingly quick, say less than 10 
seconds in the present example. In Table 2 results here are 
compared with those of GALLOP [3]. It seems at first that 
the approach here is almost the same as GALLOP in the 
sense of optimality. However, one should note that the pre-
sent approach is much more efficient than GALLOP, which 
usually relies on parallel computations due to a huge num-
ber of optimization parameters. And the difference between 
the results here and GALLOP’s is so slight that it is proba-
bly due to numerical error, only about 1.3‰ of fuel con-
sumptions. 

Recall that bang-bang control (11) is derived assuming 
that the problem will not be a singular case. It’s clear now 
from Figure 1, that switching function S  reaches zeros 
only at some discrete points, not on the continuous domain 
and this excludes the singularity case from the present mis-
sion example, thus finally confirming the earlier assump-
tions. 

Figure 2 illustrates the optimal thrust, in the form of 
bang-bang control, with thrust in two phases, i.e., Earth to 
Earth and Earth to Jupiter depicted by solid lines and dashed 
ones respectively. And Figure 3 shows the optimal low  

Table 2  Comparison with GALLOP for the E-E-J rendezvous mission 

 Our results GALLOP 

Earth GA date Dec. 14, 2016 Dec. 13, 2016 

Earth GA altitude (km) 500 500 

Earth GA v∞ (km/s) 7.55 7.49 

Final Mass (kg) 16176 16181 

 
 

 

Figure 1  Switching function S in the E-E-J rendezvous mission. 

 
Figure 2  Optimal thrust profile in the E-E-J rendezvous mission. 

 
Figure 3  Trajectory plot of the E-E-J rendezvous mission. 

thrust trajectory in the E-E-J rendezvous mission, where 
solid lines (red) denote burn arcs, dotted ones (black) denote 
coast arcs, and the remaining dashdotted lines are Earth’s 
and Jupiter’s orbits respectively. 

5.2  Earth to Uranus rendezvous mission via Earth GA 
& Jupiter GA 

To illustrate the present approach applied to multiple GA 
case, we present a rendezvous mission from Earth to Uranus 
via Earth GA and Jupiter GA successively. The parameters 
are listed in Table 3. 
  Like the former mission example, energy optimal results 
should be obtained first before starting homotopic programs. 
Note that here the shooting variables have increased by 9 

due to one more GA, that is to say  0 1 1 1 1, , , , ,t t q v   

2 2 2 2, , , t v , where the latter 9×2 shooting variables are  
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Table 3  Parameters in the E-E-J-U rendezvous mission 

Parameters Value Units 

Launch date on Earth Feb. 11, 2020  

Launch v∞ on Earth 0.94 km/s 

Arrival date on Uranus June 3, 2029 

Total TOF 9.31 year 

Initial mass 19682 kg 

Earth GA rmin 6378.145+500 km 

Jupiter GA rmin 71492 km 

 
 
associated with the two GA, i.e., Earth GA and Jupiter GA. 
The admissible domain of Earth GA time t1 and Jupiter GA 
time t2 is set to be t1∈[0.5, 1.5] and t2∈[2.5, 3.0], based on 
both the aforementioned preliminary estimate in the impul-
sive case and experience. Numerical computation confirms 
the earlier worry that PSO becomes less effective as the 
number of optimization parameters increases. Thus here the 
random searching globally is adopted to find the solution to 
the energy optimal problem. The situation becomes tougher 
and it takes longer time to obtain the results, nearly 1.0 hour 
in the present mission example. Once energy optimal results 
obtained, like the former mission example, the following 
homotopic process is still very fast, say less than 5.0 min-
utes. And fuel optimal results are finally obtained as listed 
in the Table 4, where results provided by GALLOP [3] are 
also listed for comparison. It’s clear from Table 4 that the 
results obtained by the present approach is better than 
GALLOP’s, with 158 kg more final fuel. This also confirms 
the usual assertion that the indirect method is better than the 
direct method in the sense of optimality, though many nu-
merical difficulties in the former one are formidable. The 
optimal rendezvous process is illustrated in the following. 

In Figure 4, switching function S is depicted to confirm 
the earlier assumption that it will only reach zeros at certain 
discrete points, not on the continuous domain. 

In Figure 5, optimal thrust in three phases, i.e., Earth to 
Earth, Earth to Jupiter and Jupiter to Uranus, are depicted 
by solid lines, dashed ones and dashdotted ones respectively. 
The optimal thrust is in bang-bang form in each phase. And 
the whole optimal rendezvous process is plotted in Figure 6,  

Table 4  Comparison with GALLOP for the E-E-J-U rendezvous mission 

 Our results GALLOP 

Earth GA date May 4, 2021 May 1, 2021 

Earth GA attitude (km) 500 500 

Earth GA v∞ (km/s) 8.65 8.25 

Jupiter GA date Nov. 22, 2022 Dec. 3, 2022 

Jupiter GA attitude(×RJ) 17.86 16.7 

Jupiter GA v∞ (km/s) 11.72 11.8 

Final mass (kg) 13187 13029 

 

Figure 4  Switching function S in the E-E-J-U rendezvous mission. 

 

Figure 5  Optimal thrust profile in the E-E-J-U rendezvous mission. 

 

Figure 6  Trajectory plot of the E-E-J-U rendezvous mission. 
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where solid lines (red) denote burn arcs, dotted ones (black) 
denote coast arcs, and the orbits of Earth, Jupiter, and Ura-
nus are all denoted by dashdotteded lines. 

The warning here is that the aforementioned time taken 
by the preliminary searching and solving energy optimal 
problem, i.e., nearly 0.75 hours in mission1 and 1.0 hours in 
mission 2, is presented here mainly for showing the feasi-
bility of the present approach. Actually a more complete, 
hence more reasonable, measure of efficiency should also 
take into account the probability distribution of obtaining 
desired results [14,15]. The statistical characteristics of the 
present approach stem from random algorithms like PSO or 
random searching directly employed in the preliminary 
searching phase. 

All the above results in both mission 1 and mission 2 are 
obtained from numerical computations based on programs 
coded by C++ and executed in Microsoft Visual C++ 6.0, 
which operates on personal computer with the hardware of 
CPU 2.0 GHz and memory 2.0 GB. 

6  Conclusions 

The present paper extends previous work [14] to multiple 
GA case and thus finishes the complete treatment of the 
problem, i.e., fuel optimal low thrust rendezvous via GA, 
both on modeling and numerical techniques. The optimal 
rendezvous via multiple GA is formulated as an optimal 
control problem with multiple interior constraints, and then 
leads to a MPBVP. To cope with various numerical diffi-
culties in solving the above MPBVP, we use the homotopic 
technique combined with random searching globally and 
PSO. Finally, the problem is resolved successfully and the 
numerical results in the end show good performance of the 
present approach, both on global optimality and computa-
tion costs in comparison with those provided by GALLOP. 
Two difficulties, however, are also found on the way. As 
one more GA adds another 9 shooting variables to the pre-
vious ones, the dimension of shooting equations increases 
fast if multiple GA is employed. Searching preliminary ini-
tial shooting variables of the high-dimensional nonlinear 
equations becomes more and more troublesome. The other 
difficulty is about estimating GA time in the multiple GA 
case. A preliminary estimate of GA time here is obtained 
from both experience and corresponding impulsive results 
while the underlying reasoning is actually not so clear. 
More links between low thrust and impulsive case are  
demanded. Further investigations into these issues are 
needed. 
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