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A simple but robust 4-node hybrid stress-function (HS-F) membrane element with drilling degrees of
freedom is developed based on the principle of minimum complementary energy. Its stress fields are
derived from the first seven fundamental analytical solutions of the Airy stress function. The assumed
displacements along element boundaries employ compatible mode of Allman for which the nodal drilling
degrees of freedom are considered. Numerical results show that the proposed new element, denoted as
HSF-Q4h-7b, exhibits much improved numerical accuracy and robust performance. In particular, the ele-
ment performs well even when the element shape degenerates into a triangle or concave quadrangle.
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1. Introduction

The quadrilateral and hexahedral isoparametric finite elements
are the most popular models used in various numerical analyses.
However, once the element shape is distorted, its numerical accu-
racy may deteriorate dramatically, or even the analysis process has
to be stopped [1,2]. Recently, a number of techniques are still being
proposed for developing new high-performance finite element
models which are robust and less sensitive to mesh distortions;
these include, for examples, the quadrilateral area and hexahedral
volume coordinate method [3–11], the unsymmetric interpolation
element method [12–15], the new spline finite element method
[16,17], the Alpha finite element method [18]. Of course, one
should also remember that, during the history of the finite element
development [2], there are many other effective techniques have
been systematically developed to overcome the difficulties caused
by various mesh distortions, such as the use of incompatible modes
[19–26], and so on.

The idea of introducing drilling degrees of freedom at each node
of a plane element is not new. Indeed, it can improve the order of
the element displacement fields, thus to enhance the element per-
formance without increasing the number of element nodes. More-
over, such drilling degrees of freedom in membrane (plane stress)
elements possess special significance for the finite element analy-
sis of shells. That is, a membrane element with drilling degrees of
ll rights reserved.
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freedom can be combined with a plate bending element to form a
flat-shell element, for which the problem of singular coefficients
associated with the degrees of freedom in the direction normal
to the plane of the shell element can be naturally alleviated.
Numerous researches on plane elements with drilling degrees of
freedom have been accomplished since the mid-60s. A remarkable
scheme was previously proposed by Allman [27], who introduced a
quadratic displacement approximation to supplement the drilling
degrees of freedom at element nodes. Bergan and Fellipa [28] pro-
posed a free formulation method considering drilling degrees of
freedom. Cook [29] combined a hybrid method with the drilling
degrees of freedom. MacNeal and Harder [30] refined Allman’s ele-
ment to remove spurious modes and locking due to Poisson effects.
Element formulations based on the modified variational principles
with independent approximation of the rotational field were given
by Hughes and Brezzi [31], Ibrahimbegovic et al. [32], Iura and
Atluri [33]. Cazzani and Atluri [34] presented a few 4-node as-
sumed unsymmetric stress membrane elements. Long and Xu
[35,36] suggested a new definition of vertex rigid drilling degree
of freedom and developed corresponding generalized conforming
element models. Piltner and Taylor [37] considered three sets of
enhanced strain functions for the improvement of the three-node
triangular finite elements with rotational degrees of freedom.
Geyer and Groenwold [38] formulated two membrane element
families with drilling degrees of freedom by hybrid stress tech-
nique and Hu-Washizu like functional. Pimpinelli [39] proposed
an assumed strain quadrilateral element based on the minimiza-
tion of the modified Hu–Washizu functional where the enhanced
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strain and the enhanced rotation fields are included. Groenwold
et al. [40] also designed new hybrid stress elements based on direct
enforcement of traction free condition through manipulation of the
elemental assumed stress field. Choi et al. [41,42] proposed hybrid
Trefftz plane elements with drilling degrees of freedom. Zhang and
Kuang [43] presented an 8-node membrane element with drilling
degrees of freedom for analysis of in-plane stiffness of thick floor
plates. Other new developments of the membrane elements with
drilling degrees of freedom can be found in most recent papers
[44,45].

Recently, by improving Pian’s first version hybrid stress element
method [46], Fu et al. [47] and Cen et al. [48] proposed a hybrid
stress-function element method for developing plane elements.
The strategy of these new formulations is as follows: (1) instead
of assuming stress fields directly, the Airy stress function /, treated
as a functional variable, is introduced into the complementary en-
ergy functional, (2) the analytical solution of / is found to be the
trial functions for the 2D elements, and the corresponding un-
known stress-function constants are introduced; by doing so, the
stresses satisfy both the equilibrium and compatibility conditions,
(3) using the principle of minimum complementary energy, the
unknown stress-function constants can be expressed in terms of
the displacements along element boundaries, which are, in turn,
interpolated by the element nodal displacements, (4) finally, the
complementary energy functional can be rewritten in terms of ele-
ment nodal displacement vector, and thus, the element stiffness
matrix of such hybrid stress-function (HS-F) element is obtained.
The resulting 8-node and 12-node quadrilateral plane elements
can produce the exact solutions for pure bending and linear bend-
ing problems, respectively, even when the elements degenerate
into triangles or concave quadrangles. Moreover, these elements
do not possess any spurious modes, nor show any rotational frame
dependence.

By following the strategy outlined in the above, a 4-node plane
quadrilateral element with drilling degrees of freedom is presented
in this paper. The element stress fields are derived from the funda-
mental analytical solutions of the Airy stress function, and possess
first order completeness in Cartesian coordinates x and y. And the
element boundary displacements employ quadratic displacement
field with the drilling degrees of freedom along an edge suggested
by Allman [27]. To assess the numerical performance of the pro-
posed formulation, a number of benchmark problems are solved
using the new element and the results are compared with other
known 4-node quadrilateral elements available in the literatures.
It clearly shows that the present element exhibits better numerical
accuracy and improved convergence property for both stresses and
displacements. In particular, the element can still perform well
even when the element shape degenerates into a triangle or con-
cave quadrangle. Furthermore, the element does not possess rota-
tional frame dependence.

2. The general formulations of the hybrid stress-function
element

Derivation procedure of the hybrid stress-function elements has
been given in [47,48], thus will not be repeated herein. Only the
major steps are outlined. For a plane finite element model, its com-
plementary energy functional can be written in the following ma-
trix form [46]:

PC ¼ P�C þ V�C ¼
1
2

ZZ
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rTCrt dA�
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where P�C is the complementary energy within the element; V�C is
the complementary energy along the kinematic boundaries (here,
all element boundaries are treated as the kinematic boundaries be-
cause the boundary displacements will be prescribed in Eq. (4)); t is
the thickness of the element; r, the element stress vector; T, the
surface force vector along the element boundaries; C, the elastic
flexibility matrix; also E0 = E and l0 = l for plane stress problem,
whereas E0 = E/(1 � l2) and l0 = l/(1 � l) for plane strain problem,
in which E and l are Young’s modulus and Poisson’s ratio, respec-
tively; �u, the displacement vector along element boundaries, which
can be interpolated by the element nodal displacement vector qe:

�u ¼ NjCqe; ð4Þ

where matrix N|C is the interpolation function matrix for element
boundary displacements, and will be given in Section 3.

Following the usual procedure in the theory of elasticity, the
stress vector r is derivable from the Airy stress function /, i.e.
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rx

ry

sxy

8><>:
9>=>; ¼

@2/
@y2

@2/
@x2

� @2/
@x@y

8>>>><>>>>:

9>>>>=>>>>; ¼
eRð/Þ; ð5Þ

and the traction force vector T can be written as
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where l and m are the direction cosines of the outer normal n of the
element boundaries.

Substitution Eqs. (5) and (6) into Eq. (1) yields

PC ¼ P�C þ V�C ¼
1
2
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eRð/ÞTCeRð/Þt dA�
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C
½LeRð/Þ�T �ut ds ð7Þ
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Z

C
½LeRð/Þ�T �ut ds: ð9Þ

Thus, the element complementary energy functional containing the
Airy stress function is established.

Let

/ ¼
XN

i¼1

/ibi ¼ ub; ð10Þ

with

u ¼ ½/1 /2 /3 � � � /N �;
b ¼ ½b1 b2 b3 � � � bN �

T;
ð11Þ

where N is the number of the fundamental analytical solutions used
for stress function / in Eq. (10); bi (i = 1–N), N unknown constants;
/i (i = 1–N), N fundamental analytical solutions (in Cartesian coordi-
nates) of the Airy stress function /, which satisfy the following
biharmonic equation (compatibility equation):
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r4/i ¼
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@y4 ¼ 0: ð12Þ

The first seven fundamental analytical solutions of /i and resulting
stresses are listed in Table 1. Obviously, such trial functions will di-
rectly lead to more reasonable stress fields satisfying both equilib-
rium and compatibility conditions.

Substitution of Eq. (10) into Eq. (8) yields

P�C ¼
1
2

bTMb ð13Þ

with

M ¼
ZZ

Ae
STCSt dA; ð14Þ

where M is the flexibility matrix, and its evaluation procedure is gi-
ven in the Appendix; S is the stress solution matrix derived from
Eqs. (5) and (10), given by

S ¼

rx1 rx2 rx3 � � � rxN

ry1 ry2 ry3 � � � ryN

sxy1 sxy2 sxy3 � � � sxyN

26664
37775; ð15Þ

in which, stresses rxi, ryi and sxyi (i = 1–N) are derived from the fun-
damental analytical solutions of /i and their first seven expressions
are given in Table 1.

Further, substitution of Eqs. (4) and (10) into Eq. (9) yields

V�C ¼ �bTHqe ð16Þ

with

H ¼
Z

C
STLTNjCt ds; ð17Þ

where H is the leverage matrix, and its evaluation procedure is also
given in the Appendix.

Then, after substituting Eqs. (13) and (16) into Eq. (7), the ele-
ment complementary energy functional can be rewritten as

PC ¼
1
2

bTMb� bTHqe: ð18Þ

According to the principle of minimum complementary energy, we
require

@PC

@b
¼ 0: ð19Þ

Thus, by substituting Eq. (18) into Eq. (19), the unknown constant
vector b can be expressed in terms of the nodal displacement vector
qe:

b ¼ M�1Hqe: ð20Þ

Substitution of Eq. (20) into Eq. (13) yields

P�C ¼
1
2

qeT
K�qe; ð21Þ

where

K� ¼ ðM�1HÞTH ¼ HTM�1H: ð22Þ
Table 1
The first seven fundamental analytical solutions of the Airy stress function and
resulting stress solutions for plane problem.

i 1 2 3 4 5 6 7

/i x2 xy y2 x3 x2y xy2 y3

rxi 0 0 2 0 0 2x 6y
ryi 2 0 0 6x 2y 0 0
sxyi 0 �1 0 0 �2x �2y 0
From the viewpoint of element definition given in [46], matrix K⁄ in
the above equation is considered as the stiffness matrix of the hy-
brid stress-function element. Since the form of the matrix K⁄ is
similar to those of the displacement-based elements, it can there-
fore be readily incorporated into a standard finite element program
framework.

Once the element nodal displacement vector qe is found, the
element stresses can be calculated from

r ¼ SM�1Hqe: ð23Þ

The stresses at any point can be readily evaluated by substituting
the Cartesian coordinates of this point within an element into S in
the above equation, and then, the resulting strains can be obtained
by the constitutive equations.

The determination procedure of the nodal equivalent load vec-
tor Re is similar with the usual schemes for displacement-based
elements.
3. A new 4-node quadrilateral hybrid stress-function element
with drilling degrees of freedom

Consider a 4-node quadrilateral element with drilling degree of
freedom shown in Fig. 1, (ni, gi) and (xi, yi) (i = 1–4) are the usual
isoparametric and Cartesian coordinates of element nodes, respec-
tively. Differing from the usual displacement-based models, the
element shape is allowed to be either convex or concave.

For the 4-node elements with drilling degrees of freedom, the
element nodal displacement vector qe is defined as

qe ¼ ½u1 v1 hz1 u2 v2 hz2 u3 v3 hz3 u4 v4 hz4 �T;
ð24Þ

where ui, and vi (i = 1–4) are the nodal displacements in x- and y-
directions, respectively; hzi (i = 1–4) are the element nodal rotations.
However, it should be noted that hzi (i = 1–4) are not the physical
rotations of the element nodes. Instead, the definitions of the dril-
ling degrees of freedom given by Allman [27] are employed.

According to the element displacement fields of Allman [27],
the element boundary displacements can be written as [41]

�u ¼
�u
�v

� �
¼ NjCqe; ð25Þ

where
(i) for edge 12ðg ¼ �1Þ
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(i) for edge 34 ðg ¼ 1Þ
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Fig. 1. 4-Node hybrid stress-function quadrilateral plane element with drilling degrees of freedom.
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For matrix S defined in Eq. (15), let N = 7, i.e., the first seven ana-
lytical solutions /i (i = 1–7) for the stress function / (see Eq. (10)),
which have been listed in Table 1, are taken as the trial functions.
That is to say, seven unknown constants bi are introduced (see Eq.
(11)). Then, the matrix S in Eq. (15) is a 3 � 7 matrix. It can be seen
that the stress fields possess linear completeness in both x and y.
The resulting element model is denoted as HSF-Q4h-7b.

It should be noted that, since the element boundary displace-
ments are assumed independently, a spurious mode may occur
for constant values of nodal rotations. If it occurs, such spurious
mode only affects the results of the nodal rotations. Nevertheless,
in reality so long as any appropriate constraints are imposed on
one or more degrees of rotation, the spurious mode for rotations
will vanish automatically.
4. Numerical examples

Eight problems are used to evaluate and test the performance of
the new element, and the results are compared against those ob-
tained by using well-known or previously published elements.
These elements are listed below:
� Q4: conventional 4-node bilinear isoparametric element with
full integration scheme.
� QM6: 4-node nonconforming isoparametric element with inter-

nal parameters, Taylor et al. [50].
� QUAD4: 4-node quadrilateral element in MSC/NASTRAN, Mac-

Neal et al. [49].
� P-S: 4-node quadrilateral hybrid-stress element, Pian et al. [51].
� Q4S: 4-node quadrilateral element with drilling DOFs, MacNeal

et al. [30].
� GQ12M8: 4-node quadrilateral element with drilling DOFs and

8 internal parameters, Long et al. [35].
� Pimpinelli [39]: assumed strain quadrilateral element with dril-

ling DOFs.
� D-type: 4-node quadrilateral element with drilling DOFs, Ibra-

himgovic et al. [32].
� Choi et al. [41]: 4-node hybrid Trefftz plane elasticity element

with drilling DOFs.
� Choo et al. [42]: 4-node hybrid Trefftz plane elasticity element

with drilling DOFs.
� Allman [53]: 4-node quadrilateral element with drilling DOFs.
� Allman [27]: 3-node triangular element with drilling DOFs.
� Zhang et al. [43]: 8-node quadrilateral element with drilling

DOFs.

4.1. Constant stress/stress problem

A small patch is divided into some arbitrary elements, as shown
in Fig. 2. The displacement fields corresponding to the constant
strain are:

u ¼ 10�3ðxþ y=2Þ; v ¼ 10�3ðyþ x=2Þ; h ¼ 0: ð27Þ

The exact stress solution is as follows:

rx ¼ ry ¼ 1333:3333; sxy ¼ 400:0 ð28Þ

The displacements of the boundary nodes are the displacement
boundary conditions. No matter the inner element edges are
straight or curved, and no matter the shapes of the elements are
convex or concave, the exact results of the displacements and
stresses at each node were obtained using the present HS-F ele-
ment. This demonstrates that the new element passes the patch
test and thus to ensure solution convergence.
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4.2. Pure bending for a simply-supported beam (Fig. 3)

A simple beam with a length-to-height aspect ratio of 10 is sub-
jected to a pure bending. There are exact solutions from the beam
theory for the vertical displacement, the lateral displacement, and
the end rotation. In all other literatures, this beam was usually
modeled by one row of six regular or distorted membrane ele-
ments with drilling degrees of freedom (see mesh 5 and mesh 6
in Fig. 3). However, for the present element, i.e. HSF-Q4h-7b, much
0.24 

0.12 

y

(10),2/(10 33 =+= −− vyxu

,3333.1333 === xyyx τσσ

Fig. 2. Constant stress
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Fig. 3. Pure bending for a si
coarser meshes with distorted geometry are used: mesh 1 contains
two regular elements; mesh 2 contains four degenerated triangles;
mesh 3 also contains four distorted elements, with two of
them degenerated into concave quadrangles; and mesh 4 contains
four distorted elements similar to mesh 6. In addition to the
simply-supported constraints, the drilling degree of freedom at
point B (see Fig. 3) is restrained (i.e. hB = 0) due to symmetry.
The displacement and stress results of select points are listed in
Table 2.
x
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Table 2
Numerical results at selected points of a simply-supported cantilever under pure bending (Fig. 3).

Model Mesh uA vB hC rxA rxB rxC

HSF-Q4h-7b Mesh 1 �0.600 1.500 �0.600 6.000 �6.000 6.000
Mesh 2 �0.600 1.500 �0.600 6.000 �6.000 6.000
Mesh 3 �0.597 1.493 �0.566 6.100 �6.155 6.100
Mesh 4 �0.598 1.502 �0.613 6.040 �6.219 6.040
Mesh 5 �0.600 1.500 �0.600 6.000 �6.000 6.000
Mesh 6 �0.599 1.517 �0.650 6.021 �6.052 6.021

Allman [27] Mesh 5 �0.600 1.500 �0.600 – – –
Mesh 6 �0.498 1.215 �0.536 – – –

D-type [32] Mesh 5 �0.600 1.500 �0.600 – – –
Mesh 6 – 1.142 �0.573 – – –

Pimpinelli [39] Mesh 5 – 1.500 �0.600 – – –
Mesh 6 – 1.390 �0.540 – – –

Choi et al. [41] Mesh 5 �0.600 1.500 �0.600 – – –
Mesh 6 �0.599 1.517 �0.632 – – –

Zhang et al. [43] (8-node model) Mesh 5 – 1.500 �0.600 – – –
Mesh 6 – 1.242 �0.595 – – –

Exact �0.600 1.500 �0.600 6.000 �6.000 6.000

522 S. Cen et al. / Computers and Structures 89 (2011) 517–528
It can be seen that the present element HSF-Q4h-7b provides
good results in all mesh divisions. It is quite insensitive to various
mesh distortions, even when some quadrilateral elements degen-
erate to be triangles or concave quadrangles. Furthermore, even
if the drilling degrees of freedom were not restrained, the same re-
sults can still be obtained for the vertical and lateral displacements,
and the stresses as well.
(b) 

6 

0.2 

(a) 

(c) 

45° 45°

Fig. 4. MacNeal’s b

Table 3
The normalized results of the tip deflection for the MacNeal’s thin beam using different m

Element Load P

Mesh (a) Mesh (b) Mes

Q4 0.093 0.035 0.00
QM6 [50] 0.993 0.623 0.04
QUAD4 [49] 0.904 0.080 0.07
P-S [51] 0.993 0.798 0.22
Allman [53] 0.904 0.873 0.80
Q4S [30] 0.993 0.988 0.98
GQ12M8 [35] 0.993 0.993 0.98
Choi et al. [41] 0.993 0.988 0.98
HSF-Q4h-7b 0.993 0.988 0.99
Exact 1.000a

a The standard value is �0.1081.
b The standard value is �0.0054.
4.3. MacNeal’s thin cantilever beam with distorted meshes (Fig. 4)

Consider a thin beam presented in Fig. 4. Three different mesh
shapes are adopted: rectangular, parallelogram and trapezoidal.
This example, proposed by MacNeal et al. [49], is a classic bench-
mark for testing the sensitivity to mesh distortion of 4-node quad-
rilateral membrane elements. Besides the distortion caused by the
1.0 

1.0 1.0 

45°
1.0 1.0 

1.0 

1.0 

1.0 

1.0 
45°

eam problem.

eshes (Fig. 4).

Load M

h (c) Mesh (a) Mesh (b) Mesh (c)

3 0.093 0.031 0.022
4 1.000 0.722 0.037
1 – – –
1 1.000 0.852 0.167
5 0.910 – –
6 – – –
8 – – –
5 1.000 – –
1 1.000 0.996 0.999

1.000b
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Fig. 5. Cook’s skew beam problem.
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length-width ratio, a combined distortions of parallelogram and
trapezoidal shapes together with length-width ratio are taken into
account.

There are two loading cases under consideration: bending and
shearing at the free end, respectively. The Young’s modulus of
the beam is E = 107; the Poisson’s ratio, l = 0.3; and the thickness
of the beam, t = 0.1. The results of the tip deflection are shown in
Table 3. In addition to the proposed element, the results obtained
by well-known 4-node conventional isoparametric element,
incompatible element, hybrid-stress element, and models with
drilling degrees of freedom, are also given for comparison. It can
be seen that the present element possesses the best accuracy.

4.4. Cook’s skew beam problem (Fig. 5)

As shown in Fig. 5, a skew cantilever under plane stress condi-
tion is subjected to a shear distributed load at the free edge. This
Table 4
Results of Cook’s skew beam under plane stress condition (Fig. 5).

Mesh density Element

2 � 2 Allman [53]
Q4S [30]
GQ12M8 [35]
Pimpinelli [39]

Zhang et al. [43] (8-node)
Choi et al. [41]
HSF-Q4h-7b

4 � 4 Allman [53]
Q4S [30]
GQ12M8 [35]
Pimpinelli [39]

Zhang et al. [43] (8-node)
Choi et al. [41]
HSF-Q4h-7b

8 � 8 Allman [53]
Q4S [30]
GQ12M8 [35]
Pimpinelli [39]

Zhang et al. [43] (8-node)
Choi et al. [41]
HSF-Q4h-7b

16 � 16 Q4S [30]
Choi et al. [41]
HSF-Q4h-7b

Reference solutiona

a Results of the element GT9M8 [36] using 64 � 64 mesh.
example was proposed by Cook [52]. The results of vertical deflec-
tion at point C, the maximum principal stress at point A and the
minimum principal stress at point B are all listed in Table 4. Com-
pared with the results of other elements with drilling degrees of
freedom, the present model exhibits better convergence property,
especially for the stresses.

4.5. Cantilever beam subjected shearing at the free end (Fig. 6)

A cantilever beam is calculated by using five distorted and reg-
ular mesh divisions (see Fig. 6). The results of the tip deflections
and stress rx at a selected point (12, 6) are listed in Table 5. From
Table 5, it can be seen again that the element HSF-Q4h-7b gives
more accurate solutions than those obtained from other elements,
also insensitive to mesh distortion.

4.6. A wedge subjected to a uniformly distributed load (Fig. 7)

As shown in Fig. 7, a cantilever wedge is subjected to a uni-
formly distributed load q. Because of its triangular shape, the
wedge cannot be modeled without the use of triangular and/or dis-
torted quadrilateral elements. The theoretical solutions for this
problem are given by [54]

rr ¼ q
tga�a ða� h� sin h cos h� sin2 htgaÞ;

rh ¼ q
tga�a ða� hþ sin h cos h� cos2 htgaÞ;

srh ¼ q
2ðtga�aÞ ð1þ sin2 h� cos2 h� 2tga sin h cos hÞ:

9>>=>>; ð29Þ

Since the present quadrilateral HS-F element can still perform well
when its shape degenerates into triangle (Examples 4.1 and 4.2), it
can therefore be readily used to model the wedge problem. As
shown in Fig. 7, three mesh divisions, 1 � 6, 2 � 12 and 4 � 24,
are employed, in which some elements are triangular in shape.
Numerical results and the percentage errors of the radial stresses
at selected points are listed in Table 6. Again, the present element
HSF-Q4h-7b performs very well for such high-order bending
problem.
vC rAmax rBmin

20.27 0.1825 �0.1716
21.27 0.1600 �0.2307
22.49 0.2083 �0.2216
21.02 – –

22.76 0.2145 �0.1934
22.55 0.1721 �0.2306
22.55 0.2158 �0.2086

22.78 0.2261 �0.1921
23.06 0.2355 �0.1516
23.44 0.2338 �0.2045
23.01 – –

23.21 0.2238 �0.1994
23.44 0.2181 �0.1879
23.44 0.2357 �0.2029

23.56 0.2340 �0.2004
23.66 0.2379 �0.1803
23.78 0.2361 �0.2028
23.68 – –

23.89 0.2352 �0.2008
23.79 0.2303 �0.1929
23.79 0.2364 �0.2027

23.86 0.2383 �0.1990
23.90 0.2347 �0.1982
23.90 0.2367 �0.2039

23.96 0.2362 �0.2023



Table 5
The tip deflection and normal stresses of cantilever beam (Fig. 6).

Mesh Allman [27] Allman [53] Pimpinelli [39] Zhang et al. [43] (8-node model) HSF-Q4h-7b

vtip 1 � 4 distorted – – – – 0.3506
1 � 4 0.2696 0.3026 0.3493 0.3445 0.3493
2 � 8 0.3261 0.3394 0.3523 0.3505 0.3541
4 � 16 0.3471 0.3512 0.3548 0.3549 0.3559
Exact [54] 0.3558

rx at (12, 6) 1 � 4 distorted – – – – 59.081
1 � 4 39.4 52.7 – 55.3 60.000
2 � 8 52.3 58.4 – 57.8 60.510
4 � 16 59.6 59.7 – 59.9 60.040
Exact [54] 60.000

Corner nodes of a quadrilateral element 
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Fig. 7. A wedge subjected to a uniformly distributed load.
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Fig. 6. Cantilever beam with various mesh divisions.
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Table 6
HSF-Q4h-7b results of radial stress at selected points for a wedge subjected to a uniformly distributed load (Fig. 7).

Mesh 1 � 6 2�12 4�24 Exact [54]

rr at point A (0, 5) 7.6835 (1.38%) 7.5894 (0.13%) 7.5806 (0.02%) 7.5792
rr at point B (1, 5) �7.7920 (1.47%) �7.7088 (0.39%) �7.6832 (0.05%) �7.6792

δp=3.0 

(5, 2.5) 

(5, 1) 

Mesh 2 Mesh 3 

(0,5) 

(0,0) (10,0) 

(10,5) 

P= 0.2 

P= 0.2 

x 

y 

u=v=θ =0 

E=100.0; 

μ=0.3; t=1.0 

Mesh 1 

Mesh 4 

A 

Fig. 8. Rotation dependence test: cantilever beam problem and meshes.

Table 7
Percentage (%) errora of HSF-Q4h-7b in the displacement at point A computed for the rotational frame invariance test (Fig. 8).

h 0� 10� 20� 30� 40� 50� 60� 70� 80� 90�

Mesh 1 �0.62 �0.62 �0.62 �0.62 �0.62 �0.62 �0.62 �0.62 �0.62 �0.62
(Numerical results: 0.05366)

Mesh 2 �0.21 �0.21 �0.21 �0.21 �0.21 �0.21 �0.21 �0.21 �0.21 �0.21
(Numerical results: 0.05389)

Mesh 3 �0.62 �0.62 �0.62 �0.62 �0.62 �0.62 �0.62 �0.62 �0.62 �0.62
(Numerical results: 0.05366)

Mesh 4 �3.55 �3.55 �3.55 �3.55 �3.55 �3.55 �3.55 �3.55 �3.55 �3.55
(Numerical results: 0.05208)

a With respect to ‘overkill’ solution = 0.054.
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Fig. 9. Cantilever beam represented by two elements with distortion parameter e.
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Table 8
Results of the maximum displacements and stresses of a cantilever beam subjected to a pure bending M (Fig. 9).

e 0 0.5 1 2 3 4 4.9 5 Exact

uA 20 20 20 20 20 20 20 20 20
uB �20 �20 �20 �20 �20 �20 �20 �20 �20
vA 100 99.93 99.47 95.95 87.14 71.87 52.47 50 100
vB 100 100 100 100 100 100 100 100 100
vB by Choo et al [41] 100 99.2 99.6 100.9 83.6 57.8 41.4 – 100
vB by Allman [53] 93.8 95.0 90.7 56.7 31.8 17.9 11.2 – 100
rxA 3000 3000 3000 3000 3000 3000 3000 3000 3000
rxB �3000 �3000 �3000 �3000 �3000 �3000 �3000 �3000 �3000
rxC �3000 �3000 �3000 �3000 �3000 �3000 �3000 �3000 �3000
rxD �3000 �3000 �3000 �3000 �3000 �3000 �3000 �3000 �3000
rxE 3000 3000 3000 3000 3000 3000 3000 3000 3000
rxF 3000 3000 3000 3000 3000 3000 3000 3000 3000

e 0 �0.5 �1 �2 �3 �4 �4.9 �5 Exact

uA 20 20 20 20 20 20 20 20 20
uB �20 �20 �20 �20 �20 �20 �20 �20 �20
vA 100 100.07 100.53 104.05 112.86 128.13 147.53 150 100
vB 100 100 100 100 100 100 100 100 100
rxA 3000 3000 3000 3000 3000 3000 3000 3000 3000
rxB �3000 �3000 �3000 �3000 �3000 �3000 �3000 �3000 �3000
rxC �3000 �3000 �3000 �3000 �3000 �3000 �3000 �3000 �3000
rxD �3000 �3000 �3000 �3000 �3000 �3000 �3000 �3000 �3000
rxE 3000 3000 3000 3000 3000 3000 3000 3000 3000
rxF 3000 3000 3000 3000 3000 3000 3000 3000 3000
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4.7. Rotational frame dependence test (Fig. 8)

In order to show that there is no rotational frame dependence
for the present element model, a benchmark previously tested by
Spilker et al. [55] is considered. As shown in Fig. 8, a cantilever
beam is rotated counterclockwise from 0� to 90� in steps of 10�,
and the problem is solved for the displacements at each step. The
magnitude of displacement, i.e.,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

at point A is monitored
to study the rotational frame-dependent behavior. The test is then
repeated using the four types of meshes, as shown in Fig. 8.

Table 7 shows the results and the percentage errors. The magni-
tude of displacements, based on an ‘overkill’ finite element model
composed of 20,000 8-node quadrilateral elements, were obtained
using ABAQUS as a reference solution. It can be seen that the present
model HSF-Q4h-7b provides invariance under coordinate rotations.
4.8. Cantilever beam represented by two elements containing a
parameter of distortion (Fig. 9)

The cantilever beam shown in Fig. 9 is meshed into two ele-
ments. The shape of the two elements varies with a distortion
parameter e. When e = 0, both elements are rectangular. With the
increase or decrease of e value, the mesh is distorted more and
more severely. This is a well-known benchmark for testing the sen-
sitivity to mesh distortion.

For the case of pure bending problems (load M), the results of
the maximum displacements, including the vertical and lateral dis-
placements at the tip points A and B, are listed in Table 8. Mean-
while, the results of the maximum stress rx at points A, B, C, D, E
and F are also given, in which C and F are two moving points. From
Table 7, it is surprising that most results (especially, all the stress
values) kept to be exact values during the entire distortion process,
even when two adjacent nodes are in coincidence. Only the deflec-
tion at point A is affected by the distortion, but it is still in an
acceptable range.
5. Concluding remarks

In the present paper, a new 4-node quadrilateral plane hybrid
stress-function (HS-F) element, with drilling degrees of freedom
has been formulated and tested numerically. The element exhibits
the following attributes:

(i) The theoretical basis of the present hybrid stress-function
(HS-F) is the principle of minimum complementary energy,
which has been seldom used for development of other pop-
ular finite element models. The value of this principle for
formulating a high performance finite element model is
revealed again in the paper. In the proposed derivation, only
assumed internal stress fields and boundary displacements
are needed, which is much easier to achieve.

(ii) Differing from the traditional schemes, the element stress
fields are derived from the first seven fundamental analyti-
cal solutions (in global Cartesian coordinates) of the Airy
stress function, and the stresses so obtained satisfy both
the equilibrium and compatibility relations. Besides, the
resulting function possesses the first-order completeness
in Cartesian coordinates.

(iii) The new element exhibits better performance in both dis-
placement and stress solutions. Furthermore, it is useful to
mention that the proposed element is quite insensitive to
severe mesh distortion. It still performs quite well even
when the element shape degenerates into a triangle or con-
cave quadrangle.

(iv) The proposed element has a stiffness matrix similar in form
as those of displacement-based elements, thus it can be
readily incorporated into a standard finite element program
framework.

Compared with other numerous displacement-based formula-
tions, such as the modified incompatible mode method [19], which
can also successfully deal with the element distortion, the most
valuable advantage of the proposed formulations is that, they can
well handle more severe distortion cases. Since there is no Jacobi
inverse existing in all integration formulae (Eqs. (14) and (17)),
the influence caused by the element shape becomes very small.
So, the new element can still perform well even when the shape
of a convex quadrilateral element degenerates into triangle or con-
cave quadrangle, which cannot be handled well by the usual for-
mulations. Furthermore, the accuracy for stress solutions
obtained by the present element is obviously higher than those
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by the usual displacement-based formulations with the same
order.

Some finite element techniques, including the incompatible
mode formulation, can be generalized to other problems of
interest, such as plates, shells and 3D solids with rotational de-
grees of freedom [20,21]. Actually, once the sufficient funda-
mental solutions for the stress functions, or the stresses
simultaneously satisfying both the equilibrium and compatibil-
ity equations, are found, the corresponding element models
can be established by following the procedure proposed in this
work. To-date, the appropriate fundamental stress solutions for
fracture, 3D and Mindlin–Reissner plate problems have been
already obtained. And these works will be reported in other
future papers.

However, unlike the incompatible mode method for displace-
ment-based models, which has been applied for efficient analysis
of nonlinear problems for either material or geometric nonlineari-
ties [22–26], the proposed formulations may be more difficult and
inefficient to be used in these fields. But, some successful applica-
tions of hybrid-stress elements in nonlinear problems have been
presented by some researchers [56]. These experiences could be
used for reference in further studies.
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Appendix

The evaluation procedure of symmetrical matrix M in Eq. (14)

In order to evaluate the matrix M by numerical integration, the
Cartesian coordinates should be expressed in terms of local coordi-
nates (isoparametric coordinates). Let

x ¼
X4

i¼1

N0
i ðn;gÞxi; y ¼

X4

i¼1

N0
i ðn;gÞyi; ðA1Þ

where (xi, yi) (i = 1–4) are the Cartesian coordinates of the node i;
N0

i ðn;gÞ ði ¼ 1—4Þ are the shape functions of the standard 4-node
Serendipity isoparametric elements.

Then, after substituting Eq. (A1) into Eq. (15), matrix S becomes

Sðx; yÞ ¼ Sðn;gÞ: ðA2Þ

Thus, Eq. (14) can be rewritten as

M ¼
Z 1

�1

Z 1

�1
Sðn;gÞTCSðn;gÞtjJjdndg; ðA3Þ

where |J| is the is the Jacobian determinant. Then, a Gauss integra-
tion scheme can be used for evaluation of Eq. (A3). The numbers of
Gauss points are 2 � 2.

The evaluation procedure of matrix H in Eq. (17)

The evaluation of Eq. (17) should be performed along four ele-
ment edges. So Eq. (17) can be rewritten as
H ¼
Z

C12

STLTNt dsþ
Z

C23

STLTNt dsþ
Z

C34

STLTNt ds

þ
Z

C41

STLTNt ds; ðA4Þ

where C12, C23, C34 and C41 denote element edges 12; 23; 34 and
41, respectively.

The direction cosines of the outer normal of each element edge,
l and m in Eq. (6), are given by

l ¼ dy
ds
; m ¼ � dx

ds
: ðA5Þ

Along edges 12 ðg ¼ �1Þ and 34 ðg ¼ 1Þ, the relations between ds
and dn are given by

ds ¼ dx
dn

� �2

þ dy
dn

� �2
" #1=2

g¼�1

dn; ds ¼ � dx
dn

� �2

þ dy
dn

� �2
" #1=2

g¼1

dn;

ðA6Þ

and along edge 23 (n = 1) and 41 (n = �1), the relations between ds
and dg are given by

ds ¼ dx
dg

� �2

þ dy
dg

� �2
" #1=2

n¼1

dg; ds ¼ � dx
dg

� �2

þ dy
dg

� �2
" #1=2

n¼�1

dg:

ðA7Þ

Thus, substitution of Eqs. (A1), (A2), (26), (A5), (A6), (A7) into Eq.
(A4) yields

H ¼
Z 1

�1
Sðn;�1ÞTeLjTg¼�1Njg¼�1t dn

þ
Z 1

�1
Sð1;gÞTeLjTn¼1Njn¼1t dg�

Z 1

�1
Sðn;1ÞTeLjTg¼1Njg¼1t dn

�
Z 1

�1
Sð�1;gÞTeLjTn¼�1Njn¼�1t dg; ðA8Þ

where

eLjg¼�1 ¼
dy
dn 0 � dx

dn

0 � dx
dn

dy
dn

" #
g¼�1

¼

P4
i¼1

dN0
i

dn yi 0 �
P4
i¼1

dN0
i

dn xi

0 �
P4
i¼1

dN0
i

dn xi
P4
i¼1

dN0
i

dn yi

26664
37775

g¼�1

;

ðA9aÞ
eLjn¼1 ¼
dy
dg 0 � dx

dg

0 � dx
dg

dy
dg

24 35
n¼1

¼

P4
i¼1

dN0
i

dg yi 0 �
P4
i¼1

dN0
i

dg xi

0 �
P4
i¼1

dN0
i

dg xi
P4
i¼1

dN0
i

dg yi

26664
37775

n¼1

;

ðA9bÞ
eLjg¼1 ¼
dy
dn 0 � dx

dn

0 � dx
dn

dy
dn

" #
g¼1

¼

P4
i¼1

dN0
i

dn yi 0 �
P4
i¼1

dN0
i

dn xi

0 �
P4
i¼1

dN0
i

dn xi
P4
i¼1

dN0
i

dn yi

26664
37775

g¼1

;

ðA9cÞ
eLjn¼�1 ¼
dy
dg 0 � dx

dg

0 � dx
dg

dy
dg

24 35
n¼�1

¼

P4
i¼1

dN0
i

dg yi 0 �
P4
i¼1

dN0
i

dg xi

0 �
P4
i¼1

dN0
i

dg xi
P4
i¼1

dN0
i

dg yi

26664
37775

n¼�1

:

ðA9dÞ

Two Gauss integration points are theoretically needed for evaluat-
ing Eq. (A8).
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