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Abstract
A fast hierarchical segmentation method (FHS) for high-reso-
lution remote sensing (HR) image is proposed in the paper. FHS 
is completely unsupervised. It is characterized by two aspects. 
First, the hierarchical segmentation process is accelerated 
by the improved linear nearest neighbor graph (LNNG) model 
and the segment tree model. It runs faster than other existing 
hierarchical segmentation methods, and can produce multi-
resolution segmentations in time linear to the image size. 
Second, an adaptive edge penalty function is introduced to 
formulate the merging criterion, serving as a semantic factor. 
A set of QuickBird, WorldView, and aerial images is used to 
test the proposed method. The experiments show that the 
multi-resolution segmentations produced by FHS can represent 
objects at different scales very well. Moreover, the adaptive 
edge penalty function helps to remove meaningless weak 
edges within objects, enclosing the relation between segments 
and real-world objects.

Introduction
Since the within-class variability is increased in high- 
resolution remote sensing (HR) images, object-based image 
analysis (OBIA) has become the principle method to handle 
them (Blaschke, 2010). Image segmentation is to partition the 
image into a set of spatially contiguous regions. The seg-
mented regions are viewed as image objects, which serve as 
the basis for OBIA.

In HR images, different objects can emerge at various 
scales. For example, detailed objects such as trees and houses 
emerge at fi ner scales, and main structures such as forests 
and urban areas are identifi ed at coarser scales. Hence, image 
segmentation should be able to produce multi-scale seg-
ments and form the segment hierarchy for successive analysis 
(Beaulieu and Goldberg, 1989). Moreover, in the hierarchy, 
multi-scale objects at the same location should be nested 
(Benz et al., 2004).

Among various segmentation methods (Pal and Pal, 1993; 
Cheng et al., 2001; Yang and Kang, 2009; Dey et al., 2010), 
the hierarchical method is a good choice for constructing the 
image object hierarchy for an HR image. It follows the stepwise 
optimization rule and has strong constraint for the optimiza-
tion problem (Beaulieu and Goldberg, 1989). The hierarchi-
cal segmentation method can produce not just one, but a 
sequence of partitions, forming the segment hierarchy: in ini-
tial segmentations, detailed objects are preserved, while only 
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main structures remain in latter segmentations. Moreover, 
as the coarser segments in latter segmentations are produced 
by merging adjacent regions in former ones, the multi-scale 
segments are nested. Hence, the hierarchical segmentation 
method is widely used for segmenting color images (Haris 
et al., 1998; Arbeláez et al., 2011), HR images (Trias-Sanz et al., 
2008; Gaetano et al., 2009; Li et al., 2010) and SAR images 
(Yu and Clausi, 2007; Carvalho et al., 2010).

However, hierarchical segmentation is time-consuming 
due to the search of the most similar pair of adjacent regions 
within the whole image domain. In order to save the segmen-
tation time, Kurita (1995) proposed to store dissimilarities 
of all the pairs of adjacent regions in a heap, rather than in a 
list, making the complexity decreased from P to log(P), where 
P was the number of adjacent region pairs. Beaulieu (1990) 
chose to store the best neighbor of each region in a list. Then, 
the length of the list was reduced to N, where N is equal to the 
number of regions. In the work of Haris et al. (1998), the near-
est neighbor graph (NNG) was introduced, in which only the 
distance between mutual best neighbors was added in a heap. 
The height of heap was further reduced, but it had to scan a 
second-order neighborhood. A region growing engine (SEGEN) 
was proposed by Gofman (2006), in which the best neighbor 
of each segment was recorded in a priority queue. SEGEN need 
not scan the second-order neighborhood, but the queue height 
was larger than that of NNG.

In other works, different features, such as spectral homo-
geneity, shape (Baatz and Schäpe, 2000), texture (Ryherd and 
Woodcock, 1996; Hu et al., 2005), and structural features 
(Pesaresi and Benediktsson, 2001; Akçay and Aksoy, 2008), 
have been used for remote sensing image segmentation. 
However, it is still diffi cult to defi ne suitable feature with 
semantic meaning for HR image. The feature of edge strength 
was adaptively integrated in the region growing process as 
a semantic factor by Yu and Clausi (2008). The graduated 
increase edge penalty (GIEP) was proposed, and the results 
were appealing. But in their work, the edge penalty served as 
the parameter of spatial context model in the framework of 
Markov random fi eld (MRF), and the incremental schedule was 
just determined to be experimentally satisfactory.

The objective of this paper is twofold. First, the linear 
nearest neighbor graph (LNNG) model is proposed to acceler-
ate the hierarchical segmentation process. The segment tree 
model is adopted to represent the segment hierarchy, which 
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Inspired by the work of Gofman (2006), the linear nearest 
neighbor graph (LNNG) is proposed, which performs in time 
linear to the neighborhood size of a new region in the region 
merging iteration.

The data structure of RAG and LNNG is defi ned as below. 
First, the array of arcs E is constructed, recording pointers to 
the adjacent nodes. Then, the array of nodes V is constructed. 
With each node vi, a list Li of pointers to incident arcs is 
associated. In addition, a list Q, where each member qi points 
to the shortest arc connected to node vi, is also constructed. 
When qi and qj point to the same arc eij, the corresponding 
nodes of vi and vj form a cycle, and eij is called the cycle-arc. 
A priority queue is constructed to record the cycle-arcs. The 
queue element is the pointer to cycle-arc, and the arc weight 
is being prioritized. The queue height B is equal to the num-
ber of cycle-arcs, which is no greater than N / 2.

The difference of the data structure between NNG and 
LNNG is the list Q recording the shortest arc for each node, 
which allows LNNG to avoid having to scan the second-order 
neighborhood.

Segment Tree from Hierarchical Merging
In hierarchical segmentation process, the globally most simi-
lar pair of adjacent regions is merged iteratively. Each merging 
iteration includes two stages: merging two regions, and updat-
ing the arc weight and queue.

The globally most similar pair of adjacent nodes vi and 
vj is connected by the arc eij pointed by the top of the priority 
queue. After merging vi and vj, the new node is assigned as vi 
in order to reduce the computational complexity. Then, the 
merging stage includes: (a) remove eij in both Li and Lj, replace 
node vj to vi in the arcs pointed by Lj, and append Lj to Li, 
(b) remove the redundant arcs connecting the same adjacent 
nodes in Li, and (c) recalculate the features of vi. The process 
of merging two nodes is similar for different graph-based 
region merging algorithms.

When updating the weight of arcs connected to the new 
node vi, in addition to recalculating all the arc weights, the 
emphasis is to re-determine the shortest arcs for the new node 
(qi) and all its adjacent nodes ({qk}). To begin with, the list Li 
is scanned. For each arc eki in Li, which connects node vk and 
vi, if its weight ωki is less than the weight of the shortest arc 
pointed by qk, qk is changed to point to eki. On the other hand, 
if ωki is increased, and at the same time eki is just pointed by 
qk, then it needs to scan Lk to re-determine qk by fi nding the 
new shortest arc in Lk. Altogether, if qk is changed and at the 
same time the arc pointed by the old qk is a cycle-arc, remove 
the old cycle-arc from the priority queue. After scanning Li, qi 
is updated by fi nding the shortest arc in Li.

The fi rst step in updating the priority queue is the 
removal of the arc from the top of the queue. Then, if the 
shortest arc connected to the new node vi points to a cycle-
arc, add it in the queue. Finally, scan {qk} corresponding to all 
the adjacent nodes {vk} of vi. If any new cycle-arc emerges in 
{qk}, add it in the queue.

Since the complexity of the merging stage is similar for 
different graph-based region merging methods, the focus is on 
analyzing the complexity of the updating strategy. For LNNG, 
the complexity of the updating stage is O(hS � β•log2(B)), 
where hS is the total length of the lists scanned to update the 
arc weights in Li, to re-determine the shortest arcs {qk}, and to 
fi nd new cycle-arcs in {qk}. Hence, hS is equal to the length of 
2Li � Lk’s. β is the number of modifi ed cycle-arcs. Compared 
with the NNG method, in which the complexity of updating 
stage is O(h(2) � β•log2(B)), the difference exists between hS 
and h(2). The h(2) denotes the second-order neighborhood size 
of the new node, which is equal to the sum degree of the new 
node and all its adjacent nodes, whereas hS in LNNG method is 

can produce multi-resolution results without repeating the 
time-consuming hierarchical segmentation process. Second, 
the feature of edge strength is adaptively integrated into hier-
archical segmentation, serving as a semantic factor to enclose 
the relation between HR image segments and real-world 
objects.

Methodology
In the fast hierarchical segmentation (FHS) method, the 
watershed transform (Vincent and Soille, 1991) is fi rst 
applied on multispectral image gradient (Xiao et al., 2010) 
to produce over-segmented initial segmentation. Then, the 
region adjacency graph (RAG) (Trémeau and Colantoni, 2000; 
Felzenszwalb and Huttenlocher, 2004) and the linear nearest 
neighbor graph (LNNG) are defi ned on the initial segmentation. 
Based on the graph model, the hierarchical region merging 
process is performed to build the segment tree, which repre-
sents the hierarchical structure of the image. Finally, multi-
resolution segmentations are produced by cutting the segment 
tree at different levels.

Linear Nearest Neighbor Graph
The regions in initial segmentation are labeled fi rst 
(Figure 1a). Then, the RAG, G = (V, E), is constructed, as 
shown in Figure 1b. V represents all the nodes {vi}, and E 
represents the set of all the arcs {eij}. In RAG, a node vi repre-
sents a region, and an arc eij connects two adjacent nodes vi 
and vj, indicating the adjacency between the two nodes. RAG 
is a weighted undirected graph. The arc weight represents the 
similarity between its two adjacent nodes. Setting the node 
number as N and the mean degree of nodes as c, then the arc 
number is (c•N) / 2 in RAG. When fi nding the globally most 
similar pair of adjacent regions in hierarchical segmentation, 
the best arc should be searched out from all the arcs.

In order to reduce the solution space, combined with RAG, 
a possible NNG (Haris et al., 1998) of Figure 1b can be defi ned 
as Figure 1c. NNG is a directed graph. In NNG, the out-degree 
of each node is equal to one. The arc starts from a node and 
is directed to its most similar neighbor. In addition, a cycle in 
NNG is defi ned as a sequence of connected nodes in which the 
starting and ending nodes coincide. However, in this paper, 
the node number in a cycle is limited to two, which means 
that a cycle is composed of two mutual best neighbors, such 
as the node v1 and v2 in Figure 1c. The globally most similar 
pair of adjacent nodes in RAG must belong to the cycles in 
NNG. Since the number of cycles is no larger than N / 2 (Haris 
et al., 1998), the solution space is signifi cantly reduced by 
searching the best pair of neighbors among all the cycles in 
NNG, rather than among all the (c•N) / 2 arcs (Kurita, 1995) or 
among all the N shortest arcs of each node (Beaulieu, 1990; 
Gofman, 2006) in RAG. However, the NNG-based method needs 
to scan the second-order neighborhood of a new region. 

(a) (b) (c)

Figure 1. (a) Five-partition image, (b) corresponding RAG, 
and (c) a possible NNG.

12-082.indd   7212-082.indd   72 18/12/13   4:56 PM18/12/13   4:56 PM



 PHOTOGRAMMETR IC  ENGINEER ING &  REMOTE  SENS ING J a n u a r y  2 0 1 4 73

be merged. Basically, the merging criterion integrates the fea-
tures of region size and change of standard deviation (CStd) 
after a virtual merge (Baatz and Schäpe, 2000), corresponding 
to the segmentation scale and homogeneity, respectively. CStd 
is defi ned as Equation 1:

 CStd � Std � (a1Std1 � a2Std2)/(a1 � a2), (1)

where Std and Stdi correspond to the standard deviation of 
the newly created region and the original region, a and ai cor-
respond to the region size, respectively.

The features of CStd and region size do not refl ect the 
local structure information, while the edge feature can indi-
cate the image structure from a local sight. If the edge between 
two neighboring regions is weak, the neighboring regions 
tend to have greater possibility to be merged. Then, the local 
statistic, such as edge strength (ES), can be incorporated in the 
merging criterion, where a greater penalty is applied to strong 
edge and a lesser penalty to weak edge. Furthermore, the edge 
penalty term can be replaced by a monotonically increasing 
function of edge strength.

Since the initial watershed segmentation has one-pixel-
wide region boundaries, edge strength is calculated in terms 
of the boundary pixels. Supposing that R1 and R2 are the two 
neighboring regions astride the common boundary, the edge 
strength of a boundary pixel (PES) is calculated based on the 
spectral difference between the R1 pixels and R2 pixels in its 
8-neighborhood, as shown in Figure 3. Then, ES of the com-
mon boundary is calculated according to:

 ES = a PESi /n
i =1

n

 (2)

where n is the pixel number of the common boundary, and 
PESi is the edge strength of boundary pixel i.

As recommended by Yu and Clausi (2008), it is better to 
avoid choosing a single edge penalty function for a variety of 
scenes and applications. Moreover, since at the initial merg-
ing iterations, the segments are small and far from semanti-
cally meaningful, especially, there are some tiny structures 
associated with strong edges. In this case, the incorporation 
of strong edge penalty may produce meaningless segments, 
which in turn would make the segmentation even worse. 
Therefore, the effect of edge penalty should be weak at the 
initial stages and increased gradually along with the merging 
process. Then, the penalty function can be formulated as

 g(ES) � exp(�ε/ES), (3)

where ε is the parameter adjusting the strength of edge pen-
alty. As shown in Figure 4, supposing ES has been normalized 
to [0, 1], along with the increase of the tuning parameter ε, the 

linear to the neighborhood size. In terms of the SEGEN method, 
the complexity of updating stage is O(hS � p•log2(N)), where p 
is the number of modifi ed shortest arcs in Q. Comparing LNNG 
with SEGEN, since the times number of updating the cycle-arcs 
is less than that of updating the shortest arcs, and the queue 
height of B is also less than N, the complexity of LNNG is sig-
nifi cantly reduced.

At each merging iteration, the labels of two merged nodes 
are recorded in a list ML. As the merging process proceeds to 
that only one region remains, there are N � 1 records in ML, 
through which the segment tree is constructed, as shown in 
Figure 2. In the segment tree, a node represents a segment, 
and the links between nodes at different levels indicate set 
inclusion. The segments are getting coarser along with the 
increase of level. The root of the tree represents the whole 
image, and the leaves indicate initial segments. When cut-
ting the tree at level k, a set of nodes, {Sk

i , i � 1, …, N-k-1}, is 
obtained, which represents a segmentation solution. Based 
on ML and the initial segments, the key issue of cutting the 
segment tree is to build the set inclusion relation between the 
exported segments and the initial segments. The complex-
ity of cutting the segment tree is O(N). By cutting the tree at 
different levels, multi-resolution segmentations are produced 
without repeating the hierarchical merging process. The seg-
mentation exported from higher level is at coarser scale, while 
that from lower level emerges at fi ner scale.

Merging Criterion with Adaptive Edge Penalty
The arc weight in RAG is calculated according to the merg-
ing criterion. A small arc weight indicates that two adjacent 
regions have larger similarity, and they are more inclined to 

Figure 2. A sample segment tree with fi ve 
initial segments.

Figure 3. Samples of calculating edge strength of a pixel (PES). The black 
and gray pixels are edge pixels in the one-pixel-wide boundary. In the 
8-neighborhood of the black boundary pixel, PES is calculated based on the 
spectral difference between R1 pixels and R2 pixels.
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Experiments
Four HR images (T1, T2, T3, and T4) are used to test the FHS 
method. The parameters of the test images are presented in 
Table 1. T1 and T2 were sharpened to 0.6 m using the pan-
sharpening method proposed by Zhang (2002). T1 and T2 are 
for an urbanized landscape, while T3 and T4 are for a rural 
area.

Two supervised evaluation methods are chosen to 
check the segmentation performance, including the method 
E (Carleer et al., 2005) and the Rand index (RI) (Rand, 
1971). Reference segmentations of T1 and T2 are produced 
by human interpretation, as shown in Figure 6a and 6b, 
respectively.

The indicator of E is calculated based on the number of 
mis-segmented pixels in the segmented images compared 
with the reference segmentation, indicating the segmentation 
precision. According to E, the rightly-segmented ratio (RR) is 
defi ned as:

 RR = a Ck /S.
k =1

Nseg

 (5)

where Nseg is the number of regions in the segmented result, 
Ck represents the number of rightly-segmented pixels in seg-
ment k, and S is the total number of pixels in the image. The 
rightly-segmented pixels for a segment are defi ned as those in 
the largest part when intersecting the segment with a refer-
ence region.

The indicator of RI is the measure of correspondence 
between the segmented result and the reference segmentation 
based on how pixel pairs are labeled in the contingency table. 
The RI indicating the agreement probability is adopted, which 
is defi ned as:

 RI � A/(S(S � 1)/2). (6)

where the denominator represents the total number of pixel 
pairs in the image, and A represents the number of pairs in 
which the pixels are placed in the same or different labels in 
both the segmented result and the reference segmentation. 
Hence, before calculating RI, each region should be assigned 
a unique label in both the segmented result and the reference 
segmentation.

The multi-resolution segmentation method integrated 
in the commercial image analysis software eCognition® 8 is 
adopted to make a comparison with FHS. eCognition® uses the 
local mutual best region growing strategy, and the merging 
criterion includes the region size, spectral standard deviation, 
and a combined shape factor of compactness and smoothness 
(Baatz and Schäpe, 2000). In order to highlight the differ-
ence caused by the edge penalty function in FHS, the spectral 
weight of eCognition® is set as 0.9.

edge penalty value is decreased, which means that the edge 
penalty makes more contribution to lessening the arc weight.

The remaining question is to determine an adaptive 
increment schedule for the edge penalty function param-
eter ε. In the hierarchical merging process, weak edges are 
removed fi rst, and strong edges are preserved in the latter 
process. Hence, the mean edge strength of the remaining 
edges is increased along with the merging process (Figure 5). 
Moreover, the increment speed of the mean edge strength is 
determined by the image itself. According to extensive experi-
ments, the mean edge strength is too signifi cant as the tuning 
parameter at the initial iterations, so that the parameter ε is set 
as half of the mean edge strength.

Finally, the features of region size (a1 and a2), CStd, and 
the edge penalty function are multiplied to form the merging 
criterion (MC):

 MC � (a1 � a2).CStd.g (ES). (4)

Figure 4. Edge penalty function defi ned by Equation 3.

Figure 5. The increasing trend of mean 
edge strength along with the merging pro-
cess in terms of four test images.

TABLE 1. PARAMETERS OF THE TEST IMAGES

Platform
Size 
(pixels)

Spatial 
resolution

Band 
combination Location

T1 QuickBird  644 � 497 0.6 m NIR, R, G Nanjing, 
China

T2 QuickBird  658 � 504 0.6 m NIR, R, G Hangzhou, 
China

T3 WorldView  512 � 512 2.0 m R, G, B Xuzhou, 
China

T4 Aerial 1000 � 800 0.5 m R, G, B Changzhou, 
China
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region number is used to indicate the segmentation scale, 
where small region number indicates coarse scale and large 
region number corresponds to fi ne scale.

For the multi-resolution segmentations of T1 and T2, the 
RR differences between FHS results with edge penalty or not 
are weak, which shows that the edge penalty function cannot 

Based on the reference segmentation of T1 and T2 
(Figure 6), a set of multi-resolution segmentations of FHS and 
eCognition® are evaluated according to RR and RI. In order to 
show the effectiveness of the adaptive edge penalty function, 
the segmentation results of FHS without edge penalty are also 
evaluated. The evaluation results are shown in Figure 7. The 

(a) (b)

Figure 6. The reference segmentation of QuickBird test image (a) T1 and (b) T2.

(a) (b)

(c) (d)

Figure 7. Supervised evaluation results of multi-resolution segmentations 
of T1 and T2: (a) RR for T1, (b) RI for T1, (c) RR for T2, and (d) RI for T2. 
RR  represents the rightly-segmented ratio, and RI represents the Rand index.
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Figure 9 further shows the effectiveness of the adaptive 
edge penalty function. Figure 9b and 9d are subsets from FHS 
results in Figure 8a and 8c, respectively. Figure 9a and 9c are 
corresponding subsets of FHS results without edge penalty, 
respectively. The region number is set the same. Compared 
with the FHS results without edge penalty, some wrong seg-
ment boundaries are eliminated in FHS results. Moreover, 
some meaningless weak edges are removed in FHS results to 
generate single segments representing the real-world objects.

The multi-resolution FHS results of T3 are presented in 
Figure 10 to show whether they can represent the multi-scale 
real-world objects very well. The fi ne-scale result is shown 
in Figure 10a with 300 regions. At this scale, different objects 
are distinguished with each other. Even the small objects, 
such as boats, single houses embedded in trees, and footpaths, 
are described as single segments. In the medium-scale result 
of Figure 10b, there are 148 regions. At this scale, the small 
objects are merged with their adjacent similar regions. Some 
large objects of forest, village, road, river, and farmland are 
formed. When the segmentation reaches the coarse scale as in 
Figure 10c, there are only 70 regions remaining. The forest, 
bare soil, and impervious surface are segmented into single 
objects, and the dark-toned and light-toned farmlands are 
merged into large single objects, respectively.

improve the segmentation precision signifi cantly. On the 
other hand, the RR values of FHS results are about 5 percent 
higher than those of eCognition® results. In terms of the RI 
measure, the performance of eCognition® and FHS without 
edge penalty is similar, but both of them are not as good as 
FHS, showing that the FHS results have greater correspondence 
to the reference segmentations. This result is owing to the 
semantic performance of the adaptive edge penalty function. 
In other words, the incorporation of adaptive edge penalty 
function helps to enclose the relation between the segmented 
result and the reference segmentation, which describes the 
real-world objects by human interpretation.

Typical FHS and eCognition® results of T1 are shown in 
Figure 8a and 8b, and those of T2 are shown in Figure 8c and 
8d, respectively. The region number of FHS results are the 
same as those of eCognition® results. From visual assessment, 
both FHS and eCognition® can distinguish different objects 
accurately. However, the segmentation pattern of FHS seems 
much “cleaner” than that of eCognition®. An object would be 
represented by a single segment in FHS result, while it could 
be decomposed into several segments in the eCognition® 
result, especially near the boundaries. The difference mainly 
results from the adaptive edge penalty function in FHS, which 
helps to remove the “fake” edges within objects.

(a) (b)

(c) (d)

Figure 8. Visual comparison of FHS and eCognition® results: (a) FHS result of T1 with 465 regions, 
(b) eCognition® result of T1 with 465 regions, (c) FHS result of T2 with 429 regions, and (d) eCognition® 
result of T2 with 429 regions.
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Figure 9. The effectiveness of adaptive edge penalty in FHS: (a) and (c) are FHS results without edge 
 penalty; (b) and (d) are FHS results with edge penalty.

Figure 10. Multi-resolution FHS results of WorldView test image T3. The region number is 300, 
148, and 70 in (a), (b), and (c), respectively.
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Figure 11. Multi-resolution FHS results of the Aerial test image T4. There are 80 and 30 regions in (a) and 
(b), respectively.

Two FHS results of T4 are shown in Figure 11. The 
fi ne-scale segmentation result in Figure 11a has 80 regions. 
This result is suitable for the detailed analysis or extrac-
tion of small objects such as country lanes, embankment, 
small ponds and small canals because they are described as 
single objects. In the coarse-scale result of Figure 11b, there 
are only 30 regions; the large objects of farmland, forest, 
bare soil, river, and large ponds are segmented as single 
regions. At this scale, small objects are merged, while only 
large objects remain, which is suitable for the coarse-scale 
analysis.

The segmentation time performed on a laptop computer 
with CPU of 2.6 GHZ is shown in Table 2. Four larger test 
images of T’1, T’2, T’3, T’4 are used, which are from the 
same scenes as T1 through T4, respectively. The hierarchi-
cal region merging process based on NNG (Haris et al., 1998) 
and SEGEN (Gofman, 2006) is applied on the same water-
shed initial segmentation as FHS, using the same merging 
criterion. The difference among NNG, SEGEN, and FHS is the 
complexity of the stage of updating arc weights and queue. 
The merging time does not take the watershed transform 
into account. The results show that SEGEN takes much more 
time than FHS. Comparing FHS with NNG, since there is no 
need to scan the second-order neighborhood with the ben-
efi t of LNNG, FHS reduces the segmentation time by 5 percent 
to 10 percent. FHS runs slower than eCognition® because 

the complexity of hierarchical merging strategy is higher 
than that of the local-oriented merging strategy. However, 
the segmentation time of FHS is still endurable. Moreover, it 
is extremely fast to cut the segment tree to produce multi-
resolution segmentations.

Conclusions
The fast hierarchical segmentation method (FHS) was pro-
posed to segment high-resolution remote sensing (HR) images 
in this paper. FHS is totally unsupervised, and the only 
user-defi ned parameter is the region number in segmentation 
result, which determines the segmentation scale directly. An 
adaptive edge penalty function is incorporated in FHS, using 
the gradually increased edge penalty function parameter of 
mean edge strength, which is self-adaptive to various images. 
Both the supervised evaluation and visual analysis of segmen-
tation results of different test images show that the adaptive 
edge penalty function performs as an effective semantic factor. 
It cannot improve the segmentation precision signifi cantly, 
but it helps to remove meaningless weak edges within objects 
and produce semantic segments represent the real-world 
objects very well.

In order to accelerate the graph-based hierarchical seg-
mentation process, the nearest neighbor graph (NNG) model 
was improved to the linear nearest neighbor graph (LNNG) 

TABLE 2. MEAN SEGMENTATION TIME AVERAGED OVER TEN RUNS.

Image T’1 T’2 T’3 T’4

Size (pixel) 2453�2375 2781�2492 3179�2968 2000�2000

Watershed 
transform (s) 27 32 41 17.9

NNG (s) 112 170 284 68

SEGEN (s) 475 1296 1811 350

FHS (s) 100 163 262 65

Tree cutting (s) 1.8 2.3 3.1 1.4

eCognition® (s) 45 58 79 29
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model. LNNG has the lowest priority queue height, and it does 
not need to search the second-order neighborhood during 
the merging iteration. The experiment shows that LNNG helps 
to reduce the segmentation time by 5 percent to 10 percent 
than NNG.

The hierarchical segmentation process acts as a tool to 
transform the graph model to a segment tree. Then, multi-
resolution segmentations can be generated by cutting the 
segment tree at different levels without repeating the hier-
archical merging process. The segment tree represents the 
nested multi-scale objects and can export multi-resolution 
results in time linear to the image size, which makes it quite 
useful because the problem of optimal scale for various 
objects is still unsolved. The fi ne-scale FHS results describe 
small objects very well, while large objects are unnecessar-
ily decomposed into several segments at such scales. On the 
other hand, in the coarse-scale FHS results, the main structures 
are described as single objects, whereas some small objects are 
eliminated at these scales. Hence, when applying FHS results 
to successive analysis task, it needs to generate multi-resolu-
tion segmentation results in order to provide suitable scales 
for various objects.

Future research would focus on expanding the segment 
tree to the hierarchical representation of image content. 
The expansion task includes the integration of more effec-
tive features and the adaptive way of combining different 
features.
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