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In this paper, a new smoothness indicator is proposed to improve the finite-difference lattice
Boltzmann method (FDLBM). The necessary and sufficient conditions for convergence are
derived. A detailed analysis reveals that the convergence order is higher than that of the
previous finite-difference scheme. The coupled double distribution function (DDF) model is used
to describe discontinuity flows and verify the improvement. Numerical simulations of com-
pressible flows with shock wave show that the improved finite-difference lattice Boltzmann
scheme is accurate and has less dissipation. The numerical results are found to be in good
agreement with the analytical results and better than those of the previous scheme.
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1. Introduction

In the past two decades, the lattice Boltzmann method (LBM), which originates
from the lattice gas automata method, has developed into an alternative and
promising numerical scheme for simulating fluid flows and modeling physics in
fluids.! = Unlike the conventional numerical methods, LBM simulates fluid flows by
tracking the evolutions of the distribution functions and then accumulates the dis-
tributions to obtain macroscopic averaged properties. Because of its kinetic nature
and distinctive computational features, LBM has received much attention in a va-
riety of dynamic problems, such as multiphase/multicomponent flows, porous media
flows, particulate suspensions flows, turbulence flows, magneto-hydrodynamics, etc.
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Although the LBM has achieved great success in simulating nearly incompressible
and isothermal flows, it has not been able to handle realistic thermal compressible
flows with enough satisfaction.® Nevertheless, compressible flows with shocks play an

% 50 it is necessary to study the compressible flows.

important role in various field,”
To overcome this constraint, many compressible lattice Boltzmann models have been
developed. These models can be classified into four approaches. First, it is the multi-
speed approach.””!” The multispeed approach is a straightforward extension of the
isothermal lattice Boltzmann models in which only the density distribution function
is used. To recover the energy equation at the macroscopic level, additional particle
speeds are needed and the equilibrium density distribution function should include
higher-order velocity terms. The multispeed models usually suffer severe numerical
instability and a narrow range of temperature variation. Moreover, the Prandtl
number is usually fixed at constant and the specific-heat ratio cannot be chosen freely.
Second, it includes various shock-capturing schemes based on the LBM for solving fully
8720 or Navier—Stokes equations.?! ~2? In this approach, the lattice
velocities are chosen according to the local flow velocity and internal energy. Then the
fluid velocity is no longer limited by the lattice velocities. Consequently, it permits the
mean flow to have high Mach number. However, the relaxation time 7 is fixed and
the Prandt]l number is equal to the specific-heat ratio, which may limit its application.
The third approach is the multiple-relaxation-time (MRT) approach, developed by Xu
et al.>*72" In this approach, the collision step is first calculated in the kinetic moment

compressible Euler!

space. Then the streaming step is performed back in the discrete velocity space.
Compared to the single-relaxation-time (SRT) approach, the MRT approach has more
adjustable parameters and degrees of freedom, i.e. the relaxation rates of the various
kinetic moments due to particle collisions can be adjusted independently. The fourth
approach is double distribution function (DDF) approach, developed by He et al.’ In
this approach, a compressible LBM based on the DDF model?®? is established to
obtain an adjustable specific-heat ratio and Prandtl number. An implicit—explicit
FDLBM is adopted to capture the shock waves in compressible flows. The time de-
rivative is calculated using the total variation diminishing (TVD) scheme. Spatial
derivative in convection term e, - V f, is calculated using the fifth-order weighted
essentially nonoscillatory (WENO) scheme. The numerical results show that the
FDLBM together with DDF model can solve the compressible flows efficiently.

The FDLBM was developed by Reider and Sterling.*” Later, Cao et al.*' proposed
to use a second-order Runge—Kutta scheme for time discretization and discussed the
FDLBM in detail. Mei and Shyy*? suggested a new FDLBM in curvilinear coordi-
nates using body-fitted coordinates with nonuniform grids. The collision term was
treated semi-implicitly to improve the numerical stability in their paper. Tolke
et al*® discussed the implicit discretization and nonuniform mesh refinement
approaches in the FDLBM and validated their approaches with steady flows. By
introducing a novel distribution function, Guo et al.** obtained an explicit FDLBM
for curvilinear coordinates. Li et al.?” proposed an alternative FDLBM in body-fitted
coordinates by employing the features of the implicit—explicit finite-difference
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scheme. Moreover, the FDLBM was also used for simulating thermal flows,*¢ fracture
flows,*” phase separation in liquid—vapor systems,*® compressible flows with shock
waves,*™*? and binary mixtures.*>** In this work, a less dissipation FDLBM is
proposed. In order to capture the discontinuities in compressible flows with sufficient
accuracy, a new smoothness indicator is proposed by analyzing the space dis-
cretization. The convergence order is found to be higher than that of the previous
finite-difference scheme. The numerical results demonstrate that the new FDLBM
can solve compressible problems accurately and efficiently.

The rest of this paper is organized as follows. In Sec. 2, the FDLBM based on
coupled DDF is described. In Sec. 3, the space discretization scheme WENO is
analyzed and the improved scheme is proposed. The improved FDLBM is applied to
compressible flows in Sec. 4. Finally, a brief conclusion is given in Sec. 5.

2. Coupled DDF of FDLBM
2.1. D2Q13 model

A lattice Boltzmann model has three main ingredients: discrete velocity model, the
equilibrium density distributions and an evolution equation. In order to recover the
compressible momentum equation correctly, the D2Q13 square lattice model (see in
Fig. 1) is used which is defined as:

0 a=0,

™
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Fig. 1. Discrete velocities of the D2Q13 model.
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Here ¢ = /RT, is the characteristic speed of the lattice fluid, in which 7, is the
characteristic temperature.

2.2. Coupled DDF model

The first DDF lattice Boltzmann model was devised by He et al.>® The model in-
troduced an internal energy density distribution function to simulate the tempera-
ture field. The macroscopic density and velocity fields are still simulated using the
density distribution function. This model has attracted much attention since its
emergence for its excellent numerical stability and adjustability of the Prandtl
number. However, this model includes complicated gradient terms involving tem-
poral and spatial derivatives of the macroscopic flow variables, which may introduce
some additional errors and do harm to the numerical stability. Recently, Guo et al.?’
proposed another DDF model by introducing a total energy distribution function to
replace the internal energy distribution function, but the model is a decoupling model
in which the energy equation is decoupled from the momentum equation. In other
words, the temperature field does not affect the flow field. It is known that, for
compressible flows, the continuity equation is taken as the transport equation for the
density while the energy equation is the transport equation for the temperature. The
pressure can be obtained from the density and temperature by the thermal equation
of state, p = p(p, T'). So we can naturally use the thermal equation of state to couple
the two different distribution functions in the DDF model. In the coupled DDF
lattice Boltzmann model, the evolution equation of density distribution function is
given as follows:

e i (e V)fu= —(a = £ (@=1,2,,N), @
Tf

The evolution equation of total energy distribution function is given as:

O (ew V= (e~ B+ (g ) ([ — S, (8)
ot Ty Thy

where f, and h, are the density distribution function and the total energy distri-
bution function, respectively; fo! and h{! are the equilibrium density distribution
function, and the equilibrium total energy distribution function, respectively, whose
specific expressions can be found in Refs. 4 and 6; 7 is the density relaxation time, 7,
is the total energy relaxation time and 7,; = 7,7;/(7; —7,). The macroscopic
variables are defined as:

p= 31, (4a)

pu; = Z f(exqe(yh (4b)
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2 u?
= — eq_
T bR, ( E hg 5 ), (4c)

p=pR,T, (4d)

where p, p, T are macroscopic pressure, density, temperature, respectively; R, is
the specific gas constant; b is a constant, which is related to specific-heat ratio v =

(b+2)/b.

2.3. Finite-difference scheme

To solve the hyperbolic equations (2) and (3), an implicit—explicit FDLBM, which
consists of the implicit—explicit Runge—Kutta schemes in time discretization and
WENO scheme in space discretization, is adopted.

2.3.1. Time discretization

Implicit—explicit Runge—Kutta schemes are efficient in time discretization. The
implicit—explicit expression of density distribution function is given as follows:

a(k) f”

k) eq(J
fh—st Sz mge (}'sz(w )+ 6t 30 1kaT—+%mJJfaq()

£ = - - , (5)
! 1+ (J) myy
/

eq(k)

where here f((yk), and Tgck) are the kth-stage density distribution function, local

equilibrium distribution function and relaxation time. The two r X r matrices M =
[ (Mg =0 for k> J) and M = [my] (my =0 for k> J) characterize the
implicit—explicit Runge—Kutta schemes.*” Similarly, the implicit—explicit expres-
sion of internal energy distribution function is as follows:

k J 2(1(k) _ ((lk)
B 6tz ka Vhﬁ)‘ )) a 6tZk:1 ka(ea : u(k))T})f
- h « (St cq(k)
hg:]) = h i . (6)
1+ 85myy

2.3.2. Space discretization

Consider the 2 component of the convection terms e, - Vf, and e, - Vh, in Egs. (2)
and (3), e, - Vf, is described as:

0 eazfa 1 7 7~
% - A_x (F(y,i+1/2,j - Fry,i—l/Z,j)' (7)
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In WENO scheme, the definition of the numerical flux ﬁm +1/2,j 1s given as:

~

~0 1 ~9
Foivi=woF aiv172; +wiF qivi/2) T woF o v/, (8)

~

Under the condition e, > 0, three third-order fluxes on three different stencils

oar —

}A'”Z,JH/Q’j(q =1,2,3) are given as:

~0 1 7 11

Foivi25= gFa,ia,]‘ - gFa,ifl‘j + EFQW (9a)
~1 1 5 1

Foivi25= _gFa,ifl,j + EF()7J + gFa,iH,jv (9b)
~2 1 5 1

Foivi25= §Fa,i,j + EFa.i+l.j - EFQ,HQ,J'? (9c)

where I, ; ; = €q, fa ;- The detailed analysis of wy, is given in Sec. 3. Similarly, under
the condition e,, < 0, a mirror image procedure (with respect to i + 1/2) of Eq. (9)
can be carried out. For two-dimensional problems, these schemes should be applied
in both z- and y-directions.

3. Analysis and Improvement of FDLBM

The WENO scheme is one of the most popular finite-difference methods. But a
detailed analysis reveals that the version of this scheme implemented by Jiang and
Shu*® is only third-order accurate at critical points.*” According to the analysis of
the WENO scheme, a new smoothness indicator is devised to improve the order of
convergence.

3.1. Weighted method of WENO

The WENO scheme is an improvement on the essentially nonoscillatory (ENO)
scheme, and it uses a convex combination of all candidate stencils instead of just one

as in the original ENO scheme. From Eq. (8), the polynomial approximation fa,i +1/2,5

is built through the convex combination of the interpolated values ]?,f,ﬂ /2 in
WENO scheme. To describe conveniently, F' is replaced by f in this section.

Consider a uniform grid defined by the points z; = iAx, i =0,..., N, which are
also called cell centers, with cell boundaries given by x4/, = z; + Ax /2, where Az
is the uniform grid spacing. Following Liu and Osher,*® the numerical flux function
h(z) is defined according to

z+ Az /2
fo)=as [ nlode (10)

— Az /2
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Hence the spatial derivative d(e,, f,)/Ox can be exactly approximated by a con-
servative finite difference formula at the cell boundaries

Iewfo) 1
Foeted = b = b .

where hiil/? = h(xiil/2)‘
By approximating h(z) in Eq. (10), these approximations of h(z) are denoted by
f(l‘) and the spatial derivative is approximated by

a(eazfa) 112 7
T%A_x fi+1/2_fi71/2]' (12)

The above equation is identical to Eq. (7).
The classical fifth-order WENO scheme uses a 5-points stencil, named S°, which is
subdivided into three 3-points stencils {5, S}, S»}, as shown in Fig. 2. The numerical

flux ﬁ-il /2 is rebuilt by the third degree polynomial as follows:
o~ 2 ~
fizye = Z kak(xi:tl/Q)a (13)
=0

~ ~k
Where fk(l'i+ 1/2) = fi-‘rl/? = Z?ZO ijfi—k+j,i = 0, ey N. It can be ShOWn by Taylor
series expansion of Eq. (13) as follows:

~k .
Fivie = his1jp + ApAz® + O(Az?). (14)
The weights in Eq. (8) are defined as
[e73
W =—5 > (15)
212:0 Qp
dy
Qp = 75 (16)
CTBire)?
L 5—8—=8 & a—8——ba—@
Eia Hia X Eap Ew Ein
5 @ L & & &
S » &
5 @ @ - )Y
5, @ & & [,

Fig. 2. (Color online) The computational uniform grid z; and the 5-points stencil S°, composed of three
3-points stencils Sy, S}, S, used for the fifth-order WENO reconstruction.

1250074-7



Int. J. Mod. Phys. C 2012.23. Downloaded from www.worldscientific.com
by UNIVERSITY OF WARSAW on 02/19/15. For personal use only.

Q. Chen & X. B. Zhang

where the coefficient dy = 1/10, d; = 3/5, d, = 3/10 are the ideal weights, §;. is
smooth indicator.

3.2. Analysis and improvement of the smoothness indicator

Smoothness indicator?” is defined as:
2 Tiviy gl ~ 2
B, = IZMZH/ (dxlfk(x)> dz. (17)
=1 Ti-1/2

A polynomial form is postulated f* = by + b,z + byz? (see Ref. 47) and the integral is
simplified as,

13b2Az*
B, = b2 A2 +2Tx. (18)
According to Ref. 47, substitution b; and b, into Eq. (18) gives
13 , 1 )
By = iD) (fice = 2fica + i) 1 (fice —4fiz1 +3f)7, (19a)
Az2(fI+0(Ax)) 2Ax(f1+0(Az2))
13 , 1 ,
B = iD) (fic1 = 2fi + fisr) 1 (fic1 = fira)”, (19b)
Az?(f+0(A2?)) 2Az f1+O(Ax?)
13 , 1 )
By = D) (fi = 2fix1 + fisa) 1 (3fi = Afiza + fira)” . (19¢)
Az2(fI4+0(Ax)) —2Az(f1+0(Aa?))
The Taylor series expansions of Egs. (19) give:
13 2
12 2 "2 ! el 4
— f2A TN AUN
50 [ €T +<12 7 3f1f7> x
13 o T oom 5 6
- Ffz fi _§fifi Az’ + O(Ax®), (20a)
_p2 2 13 7”2 1 ! e 4 6
13 2
o= f2007 4 (1o 12 - S1is ) ot
]‘3 n el ]‘ ! el 5 6
+ Ffifi _§fifi Az® + O(Az®). (20c)

With the above equations, it is assumed that the smoothness indicator can be written as:
B = D(1+0(Aa?) k=0,1,2, (21)
where D is a nonzero constant.

1250074-8
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Table 1. Orders comparison of ;..

P40 /=0

Bo=(fAxP(1+0(A2%) 5 _ % (f"Az?) (1 + O(Ax))
Br=(FAa)(+0(A2%) 5 _ g (f"A2%)2(1 + O(Az?)

By = (fAxP(1+0(A2?) 5 _ % (f"Az?2(1 + O(Ax))

Substituting Eq. (21) into Egs. (15) and (16) gives:

" (DO +0(Ax2)? T D?

Wi = dk =+ O(A$2)

(%

(1+0(Az?)),

(22)

(23)

Equation (23) satisfies one of the necessary and sufficient constraints for fifth-order
convergence.'” But if the first derivative vanishes (f = 0), 3, and 3, cannot satisfy

Eq. (23), as shown in Table 1.

In order to improve the order of convergence, a new smoothness indicator which

uses the whole 5-points stencil S° is devised. We denote it by 7 and it is simply

defined as the absolute difference between (3, and (3, at x;:
76 =By — Bal-
From Eq. (19) it can be seen that the truncation error of 74 is
r = ST 1AL + O(A0),

Now the new smoothness indicator 3¢ is defined as

G Br te
=———— k=0,1,2.
ﬂk‘ (ﬂk+7'c+5), s Ly

The new WENO weights ka are given as,

.
Yool
d T
G _ %% _ G _
ak_@_dk<1+/6k+g> k—0,1,2

Then the convergence order can be obtained:

(1 + ;2) =1+ O(Az?),

k

w§ = d, + O(Az?).

1250074-9
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3.3. The analysis of convergence

Adding and subtracting 37 dkfk(xiil /2) from Eq. (13) gives

7i1/2 = Z dkf ir1/2 T Z f i+1/2

2

= [hzi1/2+B Aif +O Al’ +Z Wi _dk i1/

k=0
2

= hix1y Z (Wi — di) + Az Z Ap(wis — dy) + ; (wi —dp)O(Az?). (31)

k=0 k=0

Substituting the results above at a finite difference formula for the polynomial

approximation f;i/

fi+1/2_fi71/2_ hizip—hi—1)2 5
Ax n Az +0(Az7)

n Z%:o (wz - dk)}:ﬂ—l/Q - Zzzo (w

k *dk)fi—uz

Az

= f'(z;)+O(Az") +

hiy1/2 Z%:o (WZ —dy) —

hi- 1/2 Z%:O (wy —

2
+ A2 Y Ap(wi —wi) +
k=0

The order of the improving WENO scheme is given as
s = min(5, $; + 2, $9 + 3),

where

From Eq. (28) it is easily found that

TG
ﬂere’

¢ _q :0( TG )
W k ﬂkG‘f‘c?

1250074-10
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For s;, Eq. (34) can be expanded as™’

2 _ _
N+t+D- — N-D*t
G+ G-\ _ -
;Ak(wk — W )—Q+—Q =T DtD- (38)
where
2 2 +
o FiF (A d
0 =Y A = A ) gy B (3
k=0 1+ Zk:() Fk (1) ﬁk:
and
iiQGiQAkdk i2Gii2Gi2dk
NE=ro| [T 8 ) Y D= 11 s +ra 11 677 ) D —er
k=0 =0 Pk k=0 k=0 = Bk
(40)

In the above derivation, we have used S 7_y Axd, = 0 and S 7 dj, = 1.

Ifff£0,8 =6, =3;If f/ =0, s =2, sy = 1. Therefore, if the first derivatives
vanishes, the order of the WENO-G scheme is attained order s = 4, improving over
the classical WENO which attains only order 3, or s = 5.

4. Improved Finite-Difference Lattice Boltzmann Scheme
for Compressible Flows

In Sec. 3, an improved finite-difference lattice Boltzmann method (FDLBM-G) is
developed. In this section, as preliminary tests, numerical simulation is performed for
the Riemann problem. The flow of the Riemann problem includes a shock wave,
contact surface and an expansion wave. Hence, it is a wonderful model problem that
can be used to study the performance of the numerical schemes in simulating com-
pressible flows. Two different cases are considered in this study.

Case 1. Sod shock tube with the initial conditions given as

{(p/pOauz/uap/pO) = (1707 1)7 0< x/LO S 1/27
(P/POaua:/va/po) = (01251()’01)7 1/2 < ‘T/LO < 17

where L is the reference length and Ly = 2m; py, uy = \/m y, fo = foland T are
reference density, reference velocity, reference pressure and reference temperature,
respectively. The characteristic time of system is defined as t; = Lj/ug. The fluid is
assumed as the ideal gas with py = 1.165kg/m?, R, = 287J/(kg-K), T, = 303K and
1 =1.86 x 107> kg/(m -s). The specific-heat ratio is set to be 1.4 with b = 5 and the
Prandtl number is set to be 0.71. The mesh is specified by setting N, x N, = 400 x 5,
where N, and NN, are the lattice numbers along the z and y directions, respectively.

(41)

On the boundary nodes in the z-direction, f, = f,! is set before the disturbance
reaches the two ends. In the y-direction, the periodic boundary condition is adopted.

1250074-11



Int. J. Mod. Phys. C 2012.23. Downloaded from www.worldscientific.com
by UNIVERSITY OF WARSAW on 02/19/15. For personal use only.

Q. Chen & X. B. Zhang

— Exact
Exact —— FDLBM
1.0 —— FDLBM 1.04 —— FDLBM-G
—— FDLBM-G
0.8 0.8
- | 0.6
% 0.6 <
3
0.4 0.4
.2+
0.2 0
0.0+ L
0.0 T T T T y . . . T !
00 02 04 06 08 10 00 02 04 06 08 10
x/L, XL
0
(a) density (b) velocity
Exact
ol -
1.24 — FDLBM-G 1.0 —  FDLBM-G
1.1 081
N 1.0+ < 06
< ]
R 0] N
0.4
0.8
0.2
0.7
T T T ' 0.0 T T T !
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
XL, x/L,
(c) temperature (d) pressure

Fig. 3. (Color online) Comparisons between two numerical and exact solutions for sod shock tube.

The predicted profiles of the velocity, temperature, density and pressure at t =
0.1644t, for the sod shock tube are presented in Fig. 3. The numerical results of the
improved scheme are found to be in excellent agreement with the analytical ones and
better than those of the previous scheme. Although the accuracy is improved, it can
be observed from Fig. 3 that there are some minor discrepancies between the two
numerical and exact solutions on the position of the contact discontinuities. The
local details of the temperature and density near the shock wave are shown in Fig. 4.

Case 2. Strong shock wave with the initial conditions given as,

{ (p/pOau:t/uvp/p()) = (1707 1000)a 0< x/LU S 1/27
(p/pOauar/u7p/p0) = (1707001)7 1/2 < I/LO <1l

The strong shock wave problem, which has an extremely large pressure ratio,
100000, is a very challenging problem for numerical schemes. For this test, we set
T, = 10007}. The profiles of the velocity, temperature density and pressure at ¢t =
0.012t; are shown in Fig. 5. To sum up, the numerical results agree well with the
analytical results. However, there are some noticeable difference between FDLBM

(42)
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(Color online) Local details of the temperature and density near the shock wave in 0.6—0.7.
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Table 2. Relative global errors of the density, velocity, temperature
and pressure.

Case 1 Case 2
FDLBM FDLBM-G FDLBM FDLBM-G
p 1.24 x 104 1.12x 104 1.93x 1073 1.84 x 1073
u 1.47 x 1073 1.13x 1073 3.02x 1072 1.89 x 102
T 3.58 x 10~* 2.99 x 104 6.94 x 1073 5.63 x 1073
p 1.00 x 104 8.7x107° 5.42 x 1074 4.45 %1074

and FDLBM-G near the shock wave, expansion wave and contact surface. According
to the results of two cases, it is shown that FDLBM-G has less dissipation and more
accurate than FDLBM.

To enable a comparison between the improved scheme and the previous scheme,
the relative global errors of the density, velocity, temperature and pressure are
measured. The results are given in Table 2. The relative global error”® is defined by

> i (Pij— 5i,j)2
Zz’,j E?J

where 5,] is the analytical solution of the density, velocity, temperature and pres-

Error = (43)

sure; ¢; ; is the numerical solution of the density, velocity, temperature and pressure
for the improving and previous scheme.

Table 2 shows that the relative global errors predicted by the scheme proposed in
this paper are smaller than the errors of the previous finite-difference lattice Boltz-
mann scheme. Moreover, it is seen that the numerical results confirm the theoretical
analysis.

5. Conclusions

In this paper, the space discretization of the finite-difference lattice Boltzmann is
analyzed and a new smoothness indicator is proposed. The new smoothness provides
a convex combination of stencils with enhanced order of convergence and less dis-
sipation at shocks. The improved scheme together with the coupled DDF lattice
Boltzmann model is used to simulate compressible flows. Numerical results of
sod shock tube and strong shock wave show that the improved FDLBM confirms
the theoretical analysis. Numerical results demonstrated that FDLBM-G has less
dissipation and more accurate than FDLBM.
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