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A new version of distance and similarity
measures for hesitant fuzzy linguistic
term sets and its application
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Abstract. In this paper, a new version of distance measure for hesitant fuzzy linguistic term sets is developed. The new version
of distance measure provides an objective way to handle the diverse dimensions of two HFLTSs, i.e., without shortening
the HFLTS to be a linguistic interval or extending the shorter one by adding linguistic terms. The Hamming distance, the
Euclidean distance and the corresponding forms are put forward. By the relationship between the distance measure and
the similarity measure, some parallel similarity measures are also investigated. As applications of the proposed measures,
the issues of pattern recognition, clustering analysis and multi-criteria decision making are considered.
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1. Introduction

The concept of hesitant fuzzy linguistic term
sets (HFLTSs) was first introduced by Rodrı́guez,
Martı́nez and Herrera [1, 5], which was applied
to express the hesitant preferences when evaluating
using a linguistic term set. Different from the 2-tuple
linguistic model [22, 25], the hesitant fuzzy linguistic
term sets represent a hesitant among more than one
linguistic terms, while the 2-tuple linguistic model
considers a certain hesitant degree with given linguis-
tic term. Thus, HFLTSs can be seen as a continuation
of 2-tuple linguistic model [25–27].

Since the notion of HFLTSs has been developed,
it has been widely studied and applied to practical
issues. Beg and Rashid [2] proposed the TOPSIS
(Technique for Order Preference by Similarity to an
Ideal Solution) method for HFLTSs to aggregate the
subjective evaluations given by experts in decision
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making. Chen and Hong [3] provided a multi-criteria
linguistic decision method with HFLTSs using the
pessimistic and the optimistic attitude of the decision
maker. Yavuz, et al. [4] and Montes, et al. [9] applied
the hesitant fuzzy linguistic model to the evaluation
of alternative-fuel vehicles and to the housing market,
respectively. Lee and Chen [6, 7] gave the likelihood-
based comparison relations of HFLTSs and proposed
some hesitant fuzzy linguistic aggregation operators,
such as the hesitant fuzzy linguistic weighted aver-
age (HFLWA) operator, the hesitant fuzzy linguistic
weighted geometric (HFLWG) operator, et al. Wang,
et al. [8] developed a novel outranking rational system
of HFLTSs and also introduced a dominance relation
by using the outranking degrees. Rodrı́guez, Martı́nez
and Herrera [10] utilized the comparative linguistic
expressions, which is closer to human being’s cogni-
tive models for expressing linguistic preferences on
the basis of HFLTSs. Liu and Rodrı́guez [11] pre-
sented a new representation of HFLTSs by means
of a fuzzy envelope to carry out the computing with
words process (CWW).
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As a type of information, in the process of data
analysis and data mining with HFLTSs, the difference
between units needs to be measured, so the similarity
and category of the unit can be determined. Liao,
Xu and Zeng [11] investigated a family of distance
and similarity measures for HFLTSs and analyzed
for discrete and continuous cases. Liao and Xu [12]
introduced another family of distance and similarity
measures for HFLTSs, such as the cosine distance
and similarity measures, the weighted and continuous
cases.

Similar to the way that dealt with hesitant fuzzy
sets [13], Liao, Xu and Zeng [11] and Liao and Xu
[12] extended the shorter HFLTS so that the compared
HFLTSs have equal lengths. However, such way has
a little drawback when it is applied under the hesi-
tant fuzzy linguistic environment. For example, for
two HFLTSs H1

S = {s1, s2} and H2
S = {s−3, s−1, s3},

where S = {sα|α = −3, . . . , −1, 0, 1, . . . , 3} (Liao,
Xu and Zeng [11], Example 2), by using the extend-
ing way, H1

S is extended to H1
S = {s1, s1.5, s2}, but

the extended H1
S is not a HFLTS, i.e., the elements in

the extended H1
S are not consecutive linguistic terms

of S. Thus, it’s of theoretical and practical meanings
to provide a different way to define the distance and
similarity measures for HFLTSs.

Figure 1.1 shows the existing ways to handle the
different dimensions in defining the distance measure
and similarity measure.

The shortening way can be finished according to
Beg and Rashid [2] and Wang, et al. [8], which
utilized the envelope of HFLTS and transformed a
HFLTS into a linguistic interval. Next, the extending
way was given by Liao, et al. [11], which provided
a similar way as dealing with the hesitant fuzzy
sets [14].

However, as mentioned above, both of the two
existing methods have certain drawbacks, i.e., the
shortening way will loss the information provided by
the evaluator and the extending way will be affected
by the attitude of the evaluator. Thus, a new way
to handle the dimension problem will be developed
in this paper, which can avoid the two drawbacks.
Recently, Dong, Chen and Herrera [28] developed a
difference measure between two HFLTSs, which can

Fig. 1.1. Existing ways to handle HFLTSs with different
dimensions.

be seen as a certain distance measure for HFLTSs by
considering the numbers of two HFLTSs’ union and
intersection. The difference measure provides a rela-
tive distance measure for HFLTSs, which is a relative
way to handle the drawbacks mentioned above and is
not easy to be extended to the case of interval-valued
hesitant fuzzy linguistic term sets (IVHFLTSs) [29].
While in practical issues, a direct way may be needed.

To do this, the rest of this paper is arranged as
follows:

In Section 2, we briefly review some elementary
concepts which are needed in this paper. Section 3
discusses a new version of distance and similarity
measure for HFLTSs. Section 4 provides the applica-
tion of the defined distance and similarity measures
to some real problems. Section 5 gives some conclu-
sions and remarks of this paper.

2. Preliminaries

In this section, we mainly review some relevant
concepts so as to facilitate further discussions.

Let S = {s0, s1, . . . , sg} be a linguistic term set,
where g is an even number and the element si rep-
resents a possible value for corresponding linguistic
variable, and the following characteristics are valid:

(1) The set is ordered: sα > sβ, if α > β;
(2) There is a negation operator: neg(sα) = sg−α;
(3) If sα > sβ, then

min{sα, sβ} = sβ, max{sα, sβ} = sα.

To express the hesitancy when using linguistic vari-
ables, Rodrı́guez, et al. [1] introduced the following
concept of hesitant fuzzy linguistic term set (HFLTS).

Definition 2.1. [1] Let S be a linguistic term set. A
hesitant fuzzy linguistic term set HS is an ordered
finite subset of consecutive linguistic terms of S.

Hereinafter, without special instructions, the nota-
tions �(S), S (has the same elements with S) and Ø
are denoted as the set of all HFLTSs, the full HFLTS
and the empty HFLTS, respectively.

The envelope of a HFLTS is defined as follows:

Definition 2.2. [1] The envelope of the HFLTS HS ,
denoted as env(HS), is a linguistic interval whose
limits are the lower bound (min) and the upper bound
(max), i.e.,

env(HS) = [HS− , HS+ ] =
[

min
sj∈HS

{sj}, max
sj∈HS

{sj}
]
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Example 2.1. In order to evaluate the performance
of a student, the linguistic term set S = {s0: none, s1:
very bad, s2: bad, s3: medium, s4: good, s5: very good,
s6: perfect} is used. Then, H1

S = {good, very good,

perfect} and H2
S = {medium, good} are two

HFLTSs on S, and env(H1
S ) = [good, perfect],

env(H2
S ) = [medium, good].

In Rodrı́guez, et al. [1], the following context-free
grammar GH is defined to produce simple but rich
linguistic expressions that can be easily represented
by means of HFLTSs.

Definition 2.3. [1, 8] Given that S is a linguistic term
set, and EGH is a function that transforms the linguis-
tic expression ll, produced by a context-free grammar
GH , into an HFLTS HS : EGH : ll → HS .

According to the production rules, different ways
can be utilized to transform linguistic expressions into
HFLTS, which can be shown as below:

(1) EGH (si) = {si|si ∈ S};
(2) EGH (less than si) = {sj|sj ∈ S and sj ≤ si};
(3) EGH (greater than si) = {sj | sj ∈ S and sj

≥ si};
(4) EGH (between si and sj) = {sk | sk ∈ S and

si ≤ sk ≤ sj}.
The distance measure and similarity measure of

HFLTSs is defined according to

Definition 2.4. [8, 11] Let S be a linguistic term set,
H1

S , H2
S and H3

S be three arbitrary HFLTSs on S, the
distance measure between H1

S and H2
S is defined as

d(H1
S , H2

S ), which satisfies:

(1) d(H1
S , H2

S ) ≥ 0, d(H1
S , H2

S ) = 0 if and only if

H1
S = H2

S ;

(2) d(H1
S , H2

S ) = d(H2
S , H1

S );

(3) d(H1
S , H2

S ) ≤ d(H1
S , H3

S ) + d(H3
S , H2

S ).

Definition 2.5. [11] Assume that S is a linguistic term
set, H1

S and H2
S are two arbitrary HFLTSs on S, the

similarity measure between H1
S and H2

S is defined as
ρ(H1

S , H2
S ), which satisfies:

(1) 0 ≤ ρ(H1
S , H2

S ) ≤ 1;

(2) ρ(H1
S , H2

S ) = 1 if and only if H1
S = H2

S ;

(3) ρ(H1
S , H2

S ) = ρ(H2
S , H1

S ).

With the definitions mentioned above, Wang, et al.
[8] gave the Euclidean distance measure of HFLTSs,
in which the envelope of HFLTS is utilized, while
Liao, et al. [11] defined several families of distance
and similarity measures by using the distance and
similarity measures of hesitant fuzzy set [14].

Property 2.1. If the distance measure is set in
the range [0, 1], it can be easily concluded that
d(H1

S , H2
S ) + ρ(H1

S , H2
S ) = 1, i.e., the distance mea-

sure (or similarity measure) can be derived according
to the similarity measure (or distance measure).

3. New versions of distance measures for two
sets of HFLTSs

For the reason of possible different dimensions of
HFLTSs, Wang, et al. [8] and Liao, et al. [11] provided
two models to deal with the dimensions, i.e., shorten-
ing the HFLTSs by using the envelope or extending
the HFLTSs by adding linguistic labels so that the
dimensions are the same. In this section, we will give
a different way to solve the dimension problem.

Before developing the new version of distance
measures between two sets of HFLTSs, we first con-
sider the following new distance of HFLTSs.

The notion of distance is used to measure the
difference between two objects. When the distance
measure is applied to HFLTSs, an effective way is
comparing the elements of two HFLTSs one by one
(see Fig. 3.1).

Assume that H1
S = {sσ1(1), sσ1(2), . . . , sσ1(m)} and

H2
S = {sσ2(1), sσ2(2), . . . , sσ2(n)} are two HFLTSs

and m ≤ n. According to Fig. 3.1, because the ele-
ments are arranged in increasing order, one can
determine the difference between two HFLTSs by
comparing the elements one by one.

Actually, the comparison between two HFLTSs
can also be finished in the following way:

From Fig. 3.2, the comparison between two
HFLTSs can start from the ends of two HFLTSs
(named as Mode II), which is different from Mode

Fig. 3.1. Comparison between two HFLTSs-Mode I.

Fig. 3.2. Comparison between two HFLTSs-Mode II.
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I shown in Fig. 3.1. It can be obtained that both of the
two modes can measure the difference between two
HFLTSs. Hereinafter, the first mode will be used.

Therefore, the following concept of distance mea-
sure for HFLTSs is valid:

Definition 3.1. Let H1
S = {sσ1(1), sσ1(2), . . . , sσ1(m)}

and H2
S = {sσ2(1), sσ2(2), . . . , sσ2(n)} be two HFLTSs

and m ≤ n, then the distance measure between H1
S

and H2
S is

d
(
H1

S , H2
S

)
=

m∑
k=1

|σ1(k) − σ2(k)| +
n∑

k=m+1

|σ2(k)|
(1)

which is said to be the Hamming distance measure of
HFLTSs.

Similarly, the Euclidean distance measure can be
defined as below:

Definition 3.2. Let H1
S = {sσ1(1), sσ1(2), . . . , sσ1(m)}

and H2
S = {sσ2(1), sσ2(2), . . . , sσ2(n)} be two HFLTSs

and m ≤ n, then the Euclidean distance measure
between H1

S and H2
S is

d
(
H1

S , H2
S

)

=
√√√√ m∑

k=1

(σ1(k) − σ2(k))2 +
n∑

k=m+1

σ2
2 (k) (2)

From Equations (1) and (2), two conclusions can
be listed in the following:

Proposition 3.1. Equations (1) and (2) sat-
isfy the properties of distance measure given in
Definition 2.4.

Proposition 3.2. Given that H1
S , H2

S and H3
S are three

HFLTSs, if H1
S ⊆ H2

S ⊆ H3
S , then

d(H1
S , H2

S ) ≤ d(H1
S , H3

S )

and

d(H2
S , H3

S ) ≤ d(H1
S , H3

S ).

Proof. Firstly, we prove that d(H1
S , H2

S ) ≤
d(H1

S , H3
S ) is valid.

Assume that H1
S = {sσ1(1), sσ1(2), . . . , sσ1(l)}, H2

S

= {sσ2(1), sσ2(2), . . . , sσ2(m)} and H3
S = {sσ3(1),

sσ3(2), . . . , sσ3(n)}.
Since H1

S ⊆ H2
S ⊆ H3

S , then l ≤ m ≤ n, the fol-
lowing cases are considered.

Case 1. If l ≤ m = n, then H1
S ⊆ H2

S = H3
S and

d(H1
S , H2

S ) ≤ d(H1
S , H3

S );

Case 2. If l = m < n, because d(H1
S , H2

S ) = 0
and d(H1

S , H3
S ) > 0, the result that d(H1

S , H2
S ) ≤

d(H1
S , H3

S ) is right.

Case 3. If l < m < n, it can always suppose that
m = l + 1 and n = l + 2. Otherwise, according to
the concept of distance measure (Taking Hamming
distance as an example), the distance will be enlarged.

For the reason that the linguistic term H2
S − H1

S

= sσ1(1)−1 or sσ1(l)+1 and H3
S − H1

S = {sσ1(1)−1,

sσ1(1)−2} or {sσ1(l)+1, sσ1(l)+2} or {sσ1(1)−1, sσ1(l)+1},
then

(1) If H2
S − H1

S = sσ1(1)−1 and H3
S − H1

S =
{sσ1(1)−1, sσ1(1)−2}, then

H1
S = {sσ1(1), sσ1(2), · · · , sσ1(l)},

H2
S = {sσ1(1)−1, H

1
S }

and H3
S = {sσ1(1)−2, sσ1(1)−1, H

1
S }.

We have d(H1
S , H2

S ) = 2l and d(H1
S , H3

S ) =
4l − 1, since l ≥ 1, the conclusion is right.

(2) If H2
S − H1

S = sσ1(1)−1 and H3
S − H1

S =
{sσ1(l)+1, sσ1(l)+2}, then

H1
S = {sσ1(1), sσ1(2), . . . , sσ1(l)},

H2
S = {sσ1(1)−1, H

1
S }

and H3
S = {H1

S , sσ1(l)+1, sσ1(l)+2}.
Thus, d(H1

S , H2
S ) = 2l and d(H1

S , H3
S ) =

2l + 1, the conclusion is right.
(3) If H2

S − H1
S = sσ1(1)−1 and H3

S − H1
S =

{sσ1(1)−1, sσ1(l)+1}, then

H1
S = {sσ1(1), sσ1(2), . . . , sσ1(l)},

H2
S = {sσ1(1)−1, H

1
S }

and H3
S = {sσ1(1)−1, H

1
S , sσ1(l)+1}.

So d(H1
S , H2

S ) = 2l and d(H1
S , H3

S ) = 4l +
1, the conclusion is right.

(4) If H2
S − H1

S = sσ1(l)+1 and H3
S − H1

S =
{sσ1(1)−1, sσ1(1)−2}, then

H1
S = {sσ1(1), sσ1(2), · · · , sσ1(l)},

H2
S = {H1

S , sσ1(l)+1}

and H3
S = {sσ1(1)−2, sσ1(1)−1, H

1
S }.
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We have d(H1
S , H2

S ) = l + 1 and d(H1
S , H3

S )
= 4l − 1, since l ≥ 1, the conclusion is valid.

(5) If H2
S − H1

S = sσ1(l)+1 and H3
S − H1

S =
{sσ1(l)+1, sσ1(l)+2}, then

H1
S = {sσ1(1), sσ1(2), · · · , sσ1(l)},

H2
S = {H1

S , sσ1(l)+1}
and H3

S = {H1
S , sσ1(l)+1, sσ1(l)+2}.

Thus, d(H1
S , H2

S ) = l + 1 and d(H1
S , H3

S ) =
2l + 1, the conclusion is right.

(6) If H2
S − H1

S = sσ1(l)+1 and H3
S − H1

S =
{sσ1(1)−1, sσ1(l)+1}, then

H1
S = {sσ1(1), sσ1(2), . . . , sσ1(l)},

H2
S = {H1

S , sσ1(l)+1}
and H3

S = {sσ1(1)−1, H
1
S , sσ1(l)+1}.

So d(H1
S , H2

S ) = l + 1 and d(H1
S , H3

S ) = 4l + 1,
the conclusion is right.

The conclusion that d(H2
S , H3

S ) ≤ d(H1
S , H3

S ) is
similar to be proved.

Therefore, the conclusion is valid. �

Remark 3.1. Equations (1) and (2) are two objective
distance measures, which do not loss the information
of two HFLTSs.

With the distance measures of HFLTSs, the dis-
tance measure of two sets of HFLTSs can be derived.
The main problem of defining the distance between
two sets of HFLTSs can be summarized as follows:

(1) The diverse dimensions of elements in two sets
of HFLTSs;

(2) The different dimensions of two sets of
HFLTSs, i.e., let�1 = {

H11
s , H12

S , . . . , H1m
S

}
and �2 = {

H21
s , H22

S , . . . , H2n
S

}
be two sets

of HFLTSs, H
1p
s =

{
sσ1

p(1), . . . , sσ1
p(mp)

}
,

H
2q
s =

{
sσ2

q (1), . . . , sσ2
q (nq)

}
and m, n ∈ N+,

p = 1, . . . , m, q = 1, . . . , n (see Fig. 3.3).

Similar to the way that handle HFLTSs, the dis-
tance measure of two sets of HFLTSs can be defined
as follows:

Definition 3.3. Given that �1 = {
H11

s , . . . , H1m
S

}
and �2 = {

H21
s , . . . , H2n

S

}
are two sets of HFLTSs

(m ≤ n, m, n ∈ N+), where H
1p
s = {sσ1

p(1), . . . ,

sσ1
p(mp)} and H

2q
s = {sσ2

q (1), . . . , sσ2
q (nq)}, p = 1, 2,

. . . , m, q = 1, 2, . . . n, then the Hamming dis-
tance measure between �1 and �2 can be defined
according to

dH (�1, �2)

=
m∑

k=1

d
(
H1k

s , H2k
S

)
+

n∑
k=m+1

d
(
H2k

s , ∅
)

(3)

where d
(
H2k

s , ∅) =
nk∑
l=1

|σk(l)|, k = m + 1, . . . , n

and d
(
H1k

s , H2k
S

)
, k = 1, 2, . . . , m are defined

according to Equation (1).
Thus, the Euclidean distance measure between �1

and �2 is written by

dE (�1, �2)

=
√√√√ m∑

k=1

d2
(
H1k

s , H2k
S

) +
n∑

k=m+1

d2
(
H2k

s , ∅)
(4)

where d
(
H2k

s , ∅)=∑nk

l=1 σ2
k (l), k = m + 1, . . . , n

and d
(
H1k

s , H2k
S

)
, k = 1, 2, . . . , m are defined by

Equation (2).

Proposition 3.3. Equations (3) and (4) sat-
isfy the properties of distance measure given in
Definition 2.4.

To show the application of the proposed distance
measures, the following example is valid:

Example 3.1. Let S = {s0 = Very Poor, s1 = Poor,
s2 = Medium Poor, s3 = Fair, s4 = Medium Good,
s5 = Good, s6 = Very Good}, �1 = {{s2, s3},
{s4, s5, s6}, {s0, s1, s2}, {s4, s5}} and �2 = {{s3},
{s2, s3, s4}, {s2, s3}, {s6}} are two sets of HFLTSs,
then the distance measures between �1 and �2 can
be listed in Table 3.1.

Fig. 3.3. Comparisons between two sets of HFLTSs.
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Table 3.1
Distance measures between �1 and �2

Distance Wang, et al. [8] Liao, et al. [11] Hamming distance Euclidean distance

Value
√

19 14.5/7 23
√

63

From Table 3.1, it can be concluded that the val-
ues are non-negative, but the levels are different. For
comparative purposes, the normalized Hamming dis-
tance measure and the normalized Euclidean distance
measure are put forward, i.e.,

dnH (�1, �2)

= 1

max
{
len�1 , len�2

} 1

g
·
⎛
⎝ 1

max
{

lenH1k
s

, lenH2k
s

} m∑
k=1

d
(
H1k

s , H2k
S

)
+

n∑
k=m+1

1

lenH2k
s

d
(
H2k

s , ∅
)⎞
⎠ (5)

where d
(
H2k

s , ∅) = ∑nk

l=1 |σk(l)|, k = m + 1, . . . ,

n and d
(
H1k

s , H2k
S

)
, k = 1, 2, . . . , m are defined

according to Equation (1), len∗ represents the length
of the set of HFLTS.

dnE (�1, �2) = 1

max
{
len�1 , len�2

} 1

g
·

√√√√√
⎛
⎝ m∑

k=1

1

max
{

lenH1k
s

, lenH2k
s

}d2
(
H1k

s , H2k
S

) +
n∑

k=m+1

1

lenH2k
s

d2
(
H2k

s , ∅)⎞⎠ (6)

where d
(
H2k

s , ∅) = ∑nk

l=1 σ2
k (l), k = m + 1, . . . ,

n and d
(
H1k

s , H2k
S

)
, k = 1, 2, . . . , m are defined

according to Equation (2).

Proposition 3.4. Equations (5) and (6) satisfy the
properties of distance measure given in Defini-
tion 2.4.

Example 3.2. Following Example 3.1, the normal-
ized Hamming distance measure and the normalized
Euclidean distance measure between �1 and �2 are

19/48 and
√

2
/

6.

From Example 3.2 and Equations (5, 6), it can be
known that the normalized Hamming distance and the
normalized Euclidean distance measure are located in
the range of [0, 1].

The normalized generalized distance measure for
two sets of HFLTSs can be defined as below:

dnG (�1, �2) = 1

max
{
len�1 , len�2

} 1

g
·

⎛
⎝

⎛
⎝ m∑

k=1

1

max
{

lenH1k
s

, lenH2k
s

}dλ
(
H1k

s , H2k
S

)
+

n∑
k=m+1

1

lenH2k
s

dλ
(
H2k

s , ∅
)⎞
⎠

⎞
⎠

1
λ

(7)

where d
(
H1k

s , H2k
S

)
, k = 1, . . . , m and d

(
H2k

s , ∅)
are defined by Equations (1, 2), λ > 0.

Known by Equation (7), dnH (�1, �2) and
dnE (�1, �2) are two special cases of dnG (�1, �2).

By Property 2.1 and the normalized distance mea-
sures, we can get corresponding similarity measures.

4. Applications

In this section, several examples will be devel-
oped to show the application of proposed measures
in the fields of pattern recognition, fuzzy clustering
and multiple attribute decision making.

4.1. Hesitant fuzzy linguistic approach to pattern
recognition

Example 4.1. The application of linguistic approach
to pattern recognition has been widely studied by
scholars. For instance, Narasimhan [16] introduced a
linguistic approach to pattern recognition, Feder [17]
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made a literature survey of the linguistic approach to
pattern recognition. Recently, Cai, et al. [18] devel-
oped a pattern recognition method based on linguistic
ordered weighted distance measure. In many real
applications, the HFLTS is often used to identify an
object’s true features. An illness can be determined
by the doctor through the descriptions of the patient
and an offender may also be locked according to the
identifications of witness are such cases.

Assume that there are four patterns (adapted from
Li, et al. [15] and Du & Hu [19]), which are all rep-
resented by the HFLTS, denoted as �1, �2, �3, �4
(see Table 4.1), F = {F1, F2, F3, F4} is the set of
features for recognition. Now, there is an unknown
sample B, a practical issue is to justify which pattern
the unknown sample B belongs to.

Herein, S = nothing (s0), very low (s1), low (s2),
medium (s3), high (s4), very high (s5), perfect (s6) is
the basic linguistic term set used for evaluating the
degree that four patterns and the unknown example
fit for the features.

By Equations (5) and (6), Table 4.2 shows two
distance measures between �i(i = 1 ∼ 4) and B.

The notation Doc(j) represents the confidence of
an distance metric in recognizing a given sample that
belongs to the pattern (j), which is introduced by
Hatzimichailidis, et al. [20], Papakostas, et al. [21]
and can be defined by:

Doc(j) =
n∑

i=1
i /= j

∣∣d(�i, B) − d(�j, B)
∣∣ (8)

The greater the value of Doc(j) is, the more confi-
dent the result would be.

From Table 4.2, both of the two distance measures
show that the given sample B should be classified to
Pattern 3.

Table 4.1
Patterns description

F1 F2 F3 F4

�1 {s2, s3} {s4, s5, s6, s7} {s0, s1, s2} {s4, s5}
�2 {s3} {s2, s3, s4} {s2, s3} {s6}
�3 {s3, s4} {s3, s4} {s4} {s0, s1, s2, s3}
�4 {s4, s5, s6} {s4} {s2, s3, s4} {s3, s4}
B {s5, s6} {s3, s4, s5} {s3, s4} {s2}

Table 4.2
Distance measures’ results

d(�1, B) d(�2, B) d(�3, B) d(�4, B) Max Doc(j)

dnH (�, �′) 0.4861 0.4167 0.3403 0.4375 0.3194
dnE(�, �′) 0.2759 0.2569 0.2097 0.2673 0.1710

When using the normalized generalized distance
measure dnG

(
�, �′), with the changing of param-

eter λ, the results are shown in Fig. 4.1.
According to Fig. 4.1, with the changing of

the parameter λ, the comparison between d(�2, B)
and d(�4, B) is also changing. However, the given
unknown sample B should always be classified to Pat-
tern 3, i.e., the distance between Pattern 3 and sample
B is always the least one among the four distances.

Table 4.3 shows the recognition produced by some
existing distance measures.

From Table 4.3, it can be concluded that the given
sample B should be classified to Pattern 4, the result
is different from the recognition produced by our
method. Actually, by comparing the corresponding
linguistic term in two HFLTSs, from a global aspect,
Pattern 3 is closer to sample B. However, when the
lengths of two HFLTSs are unified to be the same
by using the envelope (or adding some linguistic
label(s)), the initial meanings of the hesitant fuzzy
linguistic evaluations have been changed.

Thus, compared with the existing distance mea-
sures, our proposed approach is objective and is able
to avoid too much information loss.

Example 4.2. (Clustering analysis, adapted from Du
& Hu [19]). Given that there exists 9 patterns, denoted

Fig. 4.1. The affection of parameter λ to the recognition.

Table 4.3
Recognition given by other distance measures

Distance measure d(�1, B) d(�2, B) d(�3, B) d(�4, B)

[2] Hamming distance 20 17 9 7
[8] Euclidean distance 2

√
10 7

√
15 3

[11] Hamming distance 0.8750 0.4286 0.3750 0.2857
Euclidean distance 0.5546 0.3643 0.3625 0.2315
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Table 4.4
Similarities between the 9 patterns

A1 A2 A3 A4 A5 A6 A7 A8 A9

A1 1.000 0.875 0.889 0.931 0.903 0.972 0.875 0.958 0.917
A2 0.875 1.000 0.896 0.917 0.875 0.861 0.917 0.875 0.903
A3 0.889 0.896 1.000 0.896 0.958 0.903 0.847 0.896 0.861
A4 0.931 0.917 0.896 1.000 0.917 0.917 0.861 0.958 0.875
A5 0.903 0.875 0.958 0.917 1.000 0.875 0.833 0.917 0.875
A6 0.972 0.861 0.903 0.917 0.875 1.000 0.875 0.944 0.875
A7 0.875 0.917 0.847 0.861 0.833 0.875 1.000 0.833 0.958
A8 0.958 0.875 0.896 0.958 0.917 0.944 0.833 1.000 0.875
A9 0.917 0.903 0.861 0.875 0.875 0.875 0.958 0.875 1.000

Table 4.5
Clustering results with different levels based on dnE

α Clustering results

0.972 < α ≤ 1 {A1}, {A2}, {A3}, {A4}, {A5}, {A6}, {A7}, {A8}, {A9}
0.958 < α ≤ 0.972 {A1, A6}, {A2}, {A3}, {A4}, {A5}, {A7}, {A8}, {A9}
0.917 < α ≤ 0.958 {A1, A4, A6, A8}, {A2}, {A3, A5}, {A7, A9}
0 ≤ α ≤ 0.917 {A1, A2, A3, A4, A5, A6, A7, A8, A9}

as HFLTS in E = {x}. The 9 patterns are listed as
follows:

A1 = {x, {vl, l, m}}, A2 = {x, {h, vh}},
A3 = {x, {h}}, A4 = {x, {l, m}},
A5 = {x, {m}}, A6 = {x, {n, vl, l}},
A7 = {x, {h, vh, p}}, A8 = {x, {vl, l}},

and A9 = {x, {m, h, vh}},
where the basic linguistic term set S is the same as in
Example 4.1.

Herein, the similarity measure generated by the
normalized Euclidean distance measure dnE(�1, �2)
is considered. Table 4.4 shows the similarities
between the 9 patterns.

By using the hierarchical clustering method, the
clustering results are listed in the following Table 4.5.

According to Table 4.5, the hierarchical clustering
shows the partitions that determined by levels of α.
Given a value α in [0, 1], for instance, α = 0.92, then
{A1, A4, A6, A8} forms a cluster, {A2} is a cluster
with only one pattern and {A3, A5}, {A7, A9} form
another two distinct clusters.

4.2. TOPSIS method for multi-criteria decision
making with HFLTSs

Multi-criteria decision making is an important
branch of decision theories, which has been widely
studied and applied to many practical issues. The
combination of HFLTS and multi-criteria deci-
sion making has also been widely researched

[1, 3, 4, 6–9, 12]. With the concept of distance mea-
sure of HFLTSs, Beg and Rashid [2] considered the
‘Technique for Order Preference by Similarity to an
Ideal Solution’ (TOPSIS) method of multi-criteria
decision making with HFLTSs. To illustrate the appli-
cation of proposed distance/similarity measures, the
following TOPSIS method with new measures is
given.

Example 4.3. (Adapted from Liu and Rodrı́guez
[23]) According to Robert Parker Jr.’s theory, 4 fac-
tors can be used to evaluate a wine, i.e., Colour and
appearance (C1), Aroma and bouquet (C2), flavor and
finish (C3), overall quality level or potential (C4).
After a preliminary screening, 4 alternatives, denoted
as X = {x1, x2, x3, x4}, have remained in the candi-
date list for further consideration. The basic linguistic
term set is S = {s0: Nothing(N), s1: Very bad(VB),
s2: Bad(B), s3: Medium(M), s4: Good(G), s5: Very
good(VG), s6: Perfect(P)}.

The assessments are listed in Table 4.6.
The solution can be summarized as follows:

1. Transforming the hesitant fuzzy linguistic term
sets to linguistic labels

Table 4.6
The assessments provided for this problem

C1 C2 C3 C4

x1 {M, G, VG} {M} {G, VG, P} {VG, P}
x2 {G, VG, P} {VG, P} {M, G} {B, M}
x3 {VG, P} {B, M} {G, VG} {G, VG, P}
x4 {M, G} {VG, P} {G, VG} {N, VB, B}
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Table 4.7
The assessments provided for this problem

C1 C2 C3 C4

x1 {s3, s4, s5} {s3} {s4, s5, s6} {s5, s6}
x2 {s4, s5, s6} {s5, s6} {s3, s4} {s2, s3}
x3 {s5, s6} {s2, s3} {s4, s5} {s4, s5, s6}
x4 {s3, s4} {s5, s6} {s4, s5} {s0, s1, s2}

To be convenient for analysis, by transform-
ing the hesitant fuzzy linguistic term sets to
linguistic labels Table 4.6 can be rewritten by

2. Determining the positive and negative ideal
points

By comparing the evaluated HFLTSs
under the same criteria, the positive ideal
point

(
HFLTS+)

and negative ideal point(
HFLTS−)

can be obtained, i.e.,

HFLTS+ = ({s5, s6}, {s5, s6}, {s4, s5, s6},
{s5, s6}),

HFLTS− = ({s3, s4}, {s2, s3}, {s3, s4},
{s0, s1, s2}).

3. Calculating the distance/similarity between
each alternative and the ideal points

Take the Hamming distance measure as an
example, the results are shown in Table 4.8.

Let HFLTSi = (HFLTSi 1, HFLTSi 2,
HFLTSi 3, HFLT Si 4) be the evaluated
hesitant fuzzy linguistic term set of the i-th
alternative. Then, the distance between the i-th
alternative and the positive (or negative) ideal
point is denoted as d+

i (or d−
i ), where d+

i =
d(HFLTS+, HFLTSi) (d−

i = d(HFLTS−,

HFLTSi), i = 1, 2, 3, 4). The results are listed
in Table 4.8.

4. Computing the closeness coefficients of all
alternatives

With the distances between the ideal points
and the alternatives, the closeness coefficient of
the i-th alternative can be computed according
to

Table 4.8
Hamming distance between each alternative and the ideal points

d x1 x2 x3 x4

HFLTS+ 17 22 20 22
HFLTS− 29 20 18 8
Closeness coefficient I 0.6304 0.4762 0.4737 0.2667
Closeness coefficient II 0.6389 0.4706 0.5294 0.3077

ci

= d−
i (HFLTS−, HFLTSi)

d−
i (HFLTS−, HFLTSi) + d+

i (HFLTS+, HFLTSi)
,

i = 1, 2, 3, 4 (9)

By Equation (9) and Table 4.8, the closeness
coefficients of all alternatives are calculated, the
results are shown in the last row of Table 4.8.

5. Ranking the alternatives
Noting that the larger the alternative’ close-

ness coefficient is, the better the alternative
would be. Therefore, the order of all alterna-
tives (Hamming distance with mode I) can be
produced, i.e.,

x1 
 x2 
 x3 
 x4

where the notation ‘a 
 b’ represents that a is
dominant to b.

The best choice is x1.
It can also be derived that the order of all alterna-

tives (Hamming distance with mode II) is x1 
 x3 

x2 
 x4, i.e., the best choice is x1.

Therefore, x1 is the best alternative.
It’s worth noting that our result is different from the

conclusion given by Liu and Rodrı́guez [23], i.e., the
best choice is x3. From Table 4.7, when considering
the criteria of Aroma and bouquet (C2), flavor and
finish (C3) and overall quality level or potential (C4),
it can be seen that x1 are all dominant to x3. So our
result is relatively intuitive.

4.3. Comparisons with existing methods

To compare the feasibility and efficiency of our
developed distance and similarity measures, we give
some comparisons among diverse measures from
both theoretically and practically.

Theoretically, given any two HFLTSs with dimen-
sions m, n(m ≤ n ≤ g), the comparisons among
existing approaches are listed in Table 4.9.

Table 4.9
Comparisons among existing distance/similarity masures

Complexity Processing Correlation Scale

[2] o(n) shorten no [0, 2g]
[8] o(n) shorten no [0,

√
2g]

[11] o(n) enlarge no [0, 1]
Our method ∼ n natural yes [0, mg

−m(m + 1)
/

2]
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Herein, by Table 4.9, the following conclusions can
be derived:

(1) The complexity of the developed method is the
largest, but there does not exist information
loss during the calculation;

(2) The reason that our method keeps the informa-
tion in the processing is the two HFLTSs don’t
need to be shortened or enlarged through the
calculation. Noting that a certain information
loss would happen if the HFLTSs is shortened
to be the envelope or is enlarged so that the
dimensions of two HFLTSs are the same;

(3) In Refs. [2, 8, 11], the forms of Hamming
distance and Euclidean distance are utilized.
Correspondingly, the correlation between
two variables can not be reflected, i.e., the
case that more than one variable of the same
characteristic would not be measured very
well when using such distance/similarity
measures. For instance, to compare the
distances among H1

S = {s3, s4, s5}, H2
S =

{s3, s4, s5, s6}, H3
S = {s3, s4, s5, s6, s7}

and H4
S = {s3, s4, s5, s6, s7, s8}, the results

produced by these three measures are:

d[2](H1
S , H2

S ) = 1, d[2](H1
S , H3

S ) = 2,

d[2](H1
S , H4

S ) = 3; d
[8]
hd (H1

S , H2
S ) = 1

/
19,

d
[8]
hd (H1

S , H3
S ) = 4

/
19, d

[8]
hd (H1

S , H4
S ) = 9

/
19;

d[11](H1
S , H2

S ) = 1, d[11](H1
S , H3

S ) = 2,

d[11](H1
S , H4

S ) = 3.

When using our method, the result is

d(H1
S , H2

S ) = 6, d(H1
S , H3

S ) = 13, d(H1
S , H4

S ) = 21

Therefore, from the angle of jumpy and nonlin-
earity of human thinking, the distance given by our
method is more intuitive.

In accordance with the natural processing way,
the largest scale allows us to measure the dis-
tance/similarity among HFLTSs without any data
compression.

5. Conclusions

The article introduced a new version of distance
and similarity measure for HFLTSs. It is worth men-
tioning that the existing ways in defining the distance
(or similarity) measures of HFLTSs usually loss

the information either or contain certain subjective
factors. For the reason that the distance (or simi-
larity) measure is used to describe the difference
(or similarity) between two HFLTSs and the mea-
suring process can be finished by comparing the
elements in two HFLTSs one-by-one, the new ver-
sion of distance/similarity measure is developed. The
Hamming distance, the Euclidean distance and their
corresponding normalized ones are investigated. As
applications of the proposed measures, three practical
issues including the pattern recognition, the cluster-
ing analysis and the multi-criteria decision making
are studied.

In the future, we consider the importance of
each HFLTS in two series of HFLTSs and put
forward the weighted distance/similarity measures.
Besides, some other objective information measures
of HFLTSs, for example, the entropy measure, are
also meaningful to be considered. Moreover, the new
version of distance/similarity measures can also be
extended to hesitant fuzzy sets [13–15].

Acknowledgments

The work was supported by National Natural
Science Foundation of China (Nos. 71301001,
71371011, 71501002). Philosophy and social
science planning project in Anhui Province
(No. AHSKQ2016D13), Provincial Natural Sci-
ence Research Project of Anhui Colleges (Nos.
KJ2015A379, KJ2016A250).

References

[1] R.M. Rodrı́guez, L. Martı́nez and F. Herrera, Hesitant fuzzy
linguistic term sets for decision making, IEEE Transaction
on Fuzzy Systems 20 (2012), 109–119.

[2] I. Beg and T. Rashid, TOPSIS for hesitant fuzzy linguistic
term sets, International Journal of Intelligent Systems 00
(2013), 1–10.

[3] S.-M. Chen and J.-A. Hong, Multicriteria linguistic decision
making based on hesitant fuzzy linguistic term sets and the
aggregation of fuzzy sets, Information Sciences 286 (2014),
63–74.

[4] M. Yavuz, B. Oztaysi, S.C. Onar and C. Kahraman,
Multi-criteria evaluation of alternative-fuel vehicles via a
hierarchical hesitant fuzzy linguistic model, Expert Systems
with Applications 42 (2015), 2835–2848.

[5] R.M. Rodrı́guez, L. Martı́nez and F. Herrera, Hesitant fuzzy
linguistic term sets, in: Y. Wang and T. Li (Eds.): Founda-
tions of Intelligent Systems, AISC 122, pp. 287–295.

[6] L.-W. Lee and S.-M. Chen, Fuzzy decision making based
on hesitant fuzzy linguistic term sets, in: A. Selamat et al.
(Eds.): ACIIDS 2013, Part I, LNAI 7802, pp. 21-30, 2013.



Z. Tao et al. / A new version of distance and similarity measures for HFLTSs and its application 1811

[7] L.-W. Lee and S.-M. Chen, Fuzzy decision making based
on likelihood-based comparison relations of hesitant fuzzy
linguistic term sets and hesitant fuzzy linguistic operators,
Information Sciences 294 (2015), 513–529.

[8] J.Q. Wang, J. Wang, Q.H. Chen, H.Y. Zhang and X.H. Chen,
An outranking approach for multi-criteria decision-making
with hesitant fuzzy linguistic term sets, Information Sci-
ences 280 (2014), 338–351.

[9] R. Montes, A.M. Sánchez, P. Villar and F. Herrera, A web
tool to support decision making in the housing market using
hesitant fuzzy linguistic term sets, Applied Soft Computing
35 (2015), 949–957.

[10] R.M. Rodrı́guez, L. Martı́nez and F. Herrera, A group
decision making model dealing with comparative linguis-
tic expressions based on hesitant fuzzy linguistic term sets,
Information Sciences 241 (2013), 28–42.

[11] H.C. Liao, Z.S. Xu and X.J. Zeng, Distance and similarity
measures for hesitant fuzzy linguistic term sets and their
application in multi-criteria decision making, Information
Sciences 271 (2014), 125–142.

[12] H.C. Liao and Z.S. Xu, Approaches to manage hesitant
fuzzy linguistic information based on the cosine distance
and similarity measures for HFLTSs and their application
in qualitative decision making, Expert Systems with Appli-
cations 42 (2015), 5328–5336.

[13] Z.S. Xu and M.M. Xia, Distance and similarity measures
for hesitant fuzzy sets, Information Sciences 181 (2011),
2128–2138.

[14] V. Torra, Hesitant fuzzy sets, International Journal of Intel-
ligent Systems 25 (2010), 529–539.

[15] D.Q. Li, W.Y. Zeng and J.H. Li, New distance and similarity
measures on hesitant fuzzy sets and their applications in
multiple criteria decision making, Engineering Applications
of Artificial Intelligence 40 (2015), 11–16.

[16] R. Narasimhan, A linguistic approach to pattern recognition
(Illinois. University. Digital Computer Laboratory. Report);
1962.

[17] J. Feder, The linguistic approach to pattern analysis: A liter-
ature survey, New York Univ Bronx Lab for Electroscience
Research; 1966.

[18] M. Cai, Z.W. Gong, D.Q. Wu and M.J. Wu, A pattern
recognition method based on linguistic ordered weighted
distance measure, Journal of Intelligent & Fuzzy Systems
27(4) (2014), 1897–1903.

[19] W.S. Du and B.Q. Hu, Aggregation distance measure and
its induced similarity measure between intuitionistic fuzzy
sets, Pattern Recognition Letters 60-61 (2015), 65-71.

[20] A.G. Hatzimichailidis, G.A. Papakostas and V.G. Kaburla-
sos, A novel distance measure of intuitionistic fuzzy sets
and its application to pattern recognition problems, Interna-
tional Journal of Intelligent Systems 27(4) (2012), 396–409.

[21] G.A. Papakostas, A.G. Hatzimichailidis and V.G. Kaburla-
sos, Distance and similarity measures between intuitionistic
fuzzy sets: A comparative analysis from a pattern recog-
nition point of view, Pattern Recognition Letters 34(14)
(2013), 1609–1622.

[22] Z.S. Xu, Linguistic decision making: Theory and methods,
Science Press Beijing and Springer-Verlag Berlin Heidel-
berg; 2012.

[23] H. B Liu and R.M. Rodrı́guez, A fuzzy envelope for hesitant
fuzzy linguistic term set and its application to multicri-
teria decision making, Information Sciences 258 (2014),
220–238.

[24] Z.F. Tao, H.Y. Chen, L.G. Zhou and J.P. Liu, On new
operational laws of 2-tuple linguistic information using
Archimedean t-norm and s-norm, Knowledge-Based Sys-
tems 66 (2014), 156–165.

[25] F. Herrera and L. Martı́nez, A 2-tuple fuzzy linguistic
representation model for computing with words, IEEE
Transactions on Fuzzy Systems 8 (2000), 746–752.

[26] Y.C. Dong and E. Herrera-Viedma, Consistency-driven
automatic methodology to set interval numerical scales of
2-tuple linguistic term sets and its use in the linguistic GDM
with preference relations, IEEE Transactions on Cybernet-
ics 45 (2015), 780–792.

[27] Y.C. Dong, G.Q. Zhang, W.-C. Hong and S. Yu, Linguistic
computational model based on 2-tuples and intervals, IEEE
Transactions on Fuzzy Systems 21 (2013), 1006–1018.

[28] Y.C. Dong, X. Chen and F. Herrera, Minimizing adjusted
simple terms in the consensus reaching process with hesitant
linguistic assessments in group decision making, Informa-
tion Sciences 297 (2015), 95–117.

[29] J.Q. Wang, J.-T. Wu, J. Wang, H.-Y. Zhang and X.-H.
Chen, Interval-valued hesitant fuzzy linguistic sets and their
applications in multi-criteria decision-making problems,
Information Sciences 288 (2014), 55–72.


