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Multi-Band Cognitive Radio Spectrum Sensing for
Quality-of-Service Traffic
Seung-Jun Kim, Guobing Li, and Georgios B. Giannakis

Abstract—Cognitive radios (CRs) are capable of sensing the
RF spectrum to identify idle bands dynamically, and transmit
opportunistically so as not to interfere with cohabiting primary
users (PUs) over the same bands. In this work, spectrum sensing
algorithms for CRs that support quality-of-service (QoS) traffic
are investigated. Multiple bands are sensed in parallel to reduce
the sensing delay, while ensuring a fixed minimum rate for CR
transmissions with a given outage probability. Interference con-
straints are also imposed to protect PU transmissions. Both fixed
sample size (FSS) as well as sequential sensing algorithms are
developed to minimize the sensing delay. In the sequential sensing
case, a bank of sequential probability ratio tests (SPRTs) are
run in parallel to detect PU presence in all bands concurrently.
Notably, the parameters for the detectors can be obtained via
convex optimization. Numerical tests demonstrate that sequential
sensing yields average sensing delays significantly smaller than
those of FSS sensing.

Index Terms—Cognitive radio, spectrum sensing, sequential
probability ratio test, quality-of-service, cross-layer design.

I. INTRODUCTION

THE cognitive radio (CR) concept is a promising idea
that can alleviate the spectrum scarcity issue. CRs are

endowed with the capability of sensing the RF environment
so that they can opportunistically access those frequency bands
not occupied by licensed primary users (PUs) in a given time
and geographical area [14], [16]. Other tasks that enable CR
spectrum sharing include spectrum access, transmitter-receiver
handshake, and spectrum mobility management [1]. The focus
of the present work is placed on spectrum sensing.

CR spectrum sensing, whose goal is to detect the presence
of PU signals in the desired frequency bands, is often a
challenging task due to the lack of cooperation from the
PU systems. Moreover, when prior knowledge on the PU
signal characteristics is not available, coherent demodulators
such as matched filter detectors cannot be employed. Under a
stringent interference requirement to protect the PU systems,
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which translates to a tight miss detection probability bound,
non-coherent detectors based on energy [3], or features such
as cyclostationarity [15], may require a large number of
measurements, and incur significant sensing delay.

Sensing delay has been recognized as an important factor
that can affect the overall performance of CR systems. The
sensing-throughput trade-off was studied in [12], motivated
by the observation that prolonged sensing delay can reduce
the time left for data transmission. A similar throughput-
related criterion was employed by [9] to design a multi-
band serial spectrum sensing algorithm. Needless to say,
sensing delay is of paramount importance when the CR system
conveys quality-of-service (QoS) traffic that has hard delay
requirements. Delay analyses for QoS traffic were performed
for cognitive radio networks in [19], [21]. On the other hand,
when supporting QoS traffic, it is at least as important to
provide a fixed data rate with low outage probability rather
than maximize throughput [22].

To sustain the requested data rate with a low chance of
outages under the PU-CR hierarchy, it is critical to sense a
wide band of spectrum. A multi-band sensing architecture
is a natural candidate to achieve this, and has been widely
advocated in the CR literature [18], [20], [5], [24]. In order
to reduce sensing delay to accommodate QoS traffic, it is
desirable to sense the entire multi-band spectrum in parallel
to find a set of unoccupied bands.

There are two possibilities in performing parallel multi-
band sensing. One is to fix the number of samples taken
per band a priori, which is henceforth referred to as fixed
sample size (FSS) sensing. The other is to perform sequential
detection per band, in which case, the sample sizes can
vary depending on the sample realizations. The premise of
sequential detection is improved sensing delay on the average.
FSS sensing has been analyzed in [18] with the objective
of maximizing CR throughput. Likewise, sequential sensing
algorithms were investigated in [4] and [23] as well as in [11]
using dynamic programming to also maximize throughput.

In this work, both FSS and sequential sensing algorithms
are developed to minimize the multi-band sensing delay while
supporting a fixed minimum rate with a given outage probabil-
ity bound. Interference constraints to protect PU systems are
also imposed. For FSS sensing, a series of convex feasibility
problems is formulated to obtain optimal detector parameters.
In the case of sequential sensing, an architecture of running
sequential probability ratio tests (SPRTs) in parallel is adopted.
SPRT is an online detector applicable to simple binary hypoth-
esis testing problems with widely appreciated merits [7], [17].
However, tackling the multi-band sensing problem with the
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parallel SPRT architecture entails a unique challenge due to
random stopping times of the tests. This is mitigated here by
a convex optimization formulation.

The rest of the paper is organized as follows. Sec. II
provides the system model. Sec. III first models the inter-
ference and outage probability constraints for FSS sensing,
and introduces a sample size minimization problem that can
be solved via convex optimization tools. Sec. IV deals with
sequential sensing. Numerical tests are presented in Sec. V,
followed by conclusions in Sec. VI.

II. SYSTEM MODEL

Consider a CR network opportunistically sharing the spec-
trum with 𝐽 licensed PUs. Each CR is equipped with a
multi-band transceiver through which it can communicate over
𝑀 orthogonal narrowband channels using such techniques as
orthogonal frequency division multiplexing (OFDM). As is
often the case with practical implementation, a half-duplex
constraint is present, i.e., the CR transceiver cannot transmit
in one band while listening in other bands. It is assumed
that the spectrum occupancy of the PUs is independent across
bands. The goal of CR spectrum sensing is to detect the PU
occupancy on the individual bands.

To this end, binary hypothesis testing can be performed
per band 𝑚 ∈ {1, 2, . . . ,𝑀} in order to decide presence or
absence of the PU signal. Let 𝑟(𝑚)

𝑛 denote the signal sample
received by the CR under consideration on band 𝑚 at the 𝑛-th
sampling instant. Then, the two hypotheses ℋ(𝑚)

0 and ℋ(𝑚)
1

on band 𝑚, which correspond to the absence and presence of
PU activity on that band, respectively, can be represented as{

ℋ(𝑚)
0 : 𝑟

(𝑚)
𝑛 = 𝑧

(𝑚)
𝑛

ℋ(𝑚)
1 : 𝑟

(𝑚)
𝑛 = ℎ

(𝑚)
𝑛 𝑠

(𝑚)
𝑛 + 𝑧

(𝑚)
𝑛

(1)

where ℎ
(𝑚)
𝑛 is the complex channel coefficient, 𝑠(𝑚)

𝑛 the
PU signal sample, and 𝑧(𝑚)

𝑛 the independent and identically
distributed (i.i.d.) additive white complex Gaussian noise
sample with zero mean and variance 𝜎2, all on band 𝑚 at
time 𝑛. The PU signal 𝑠(𝑚)

𝑛 is assumed to be i.i.d. Gaussian
with mean zero and unit variance for all 𝑚. (The latter
is without loss of generality since the known channel gain
can be otherwise properly scaled to account for non-unit
variance.) It is also assumed that the channels between the
PUs and the CR are quasi-static; that is, for all 𝑚, the channel
coefficients {ℎ(𝑚)

𝑛 } stay invariant during the detection process.
Let also 𝐺(𝑚) := ∣ℎ(𝑚)

𝑛 ∣2 > 0 denote the channel gain on
band 𝑚, and 𝜋(𝑚)

0 and 𝜋(𝑚)
1 the prior probabilities of the

two hypotheses Pr{ℋ(𝑚)
0 } and Pr{ℋ(𝑚)

1 }, respectively. The
conditional p.d.f.’s of 𝑟(𝑚)

𝑛 under ℋ(𝑚)
0 and ℋ(𝑚)

1 are denoted
by 𝑝(𝑚)

0 (𝑟
(𝑚)
𝑛 ) and 𝑝(𝑚)

1 (𝑟
(𝑚)
𝑛 ), respectively.

Remark 1. The PU-to-CR channel knowledge {𝐺(𝑚)} can
be obtained during the acquisition stage, where the CR re-
ceiver can learn the channels blindly, or, by overhearing the
pilots transmitted by the PU system. Especially for immobile
transceivers, a sufficient number of samples can be used in this
stage to ensure practically error-free channel estimates. That
is, the goal here is to obtain reliable channel gain estimates,
possibly accounting for dynamic changes in PU occupancy,

using a long observation window. Based on these acquired
channel estimates, the algorithms of the present work are
intended for the operational stage to detect PU presence even
employing energy detection, while incurring minimum sensing
delay. A justification of PU-to-CR channel knowledge in the
context of digital TV systems is provided in [18], although
the issue of sensing delay may be less prominent there due to
quasi-static PU occupancy.

Under this model, the minimum error probability detector
for (1) amounts to a likelihood ratio test, which here reduces
to an energy detector [10, Ch. 5]. Specifically, based on 𝑁
samples {𝑟(𝑚)

𝑛 }𝑁𝑛=1 per band, the test statistic 𝑡(𝑚)
𝑁 can be

expressed as

𝑡
(𝑚)
𝑁 =

𝑁∑
𝑛=1

∣𝑟(𝑚)
𝑛 ∣2 (2)

which is related to the log-likelihood ratio Λ
(𝑚)
𝑁 ≜∑𝑁

𝑛=1 log
𝑝
(𝑚)
1 (𝑟(𝑚)

𝑛 )

𝑝
(𝑚)
0 (𝑟

(𝑚)
𝑛 )

through

Λ
(𝑚)
𝑁 =

𝐺(𝑚)

(𝐺(𝑚) + 𝜎2)𝜎2
𝑡
(𝑚)
𝑁 +𝑁 log 𝜎2−𝑁 log(𝐺(𝑚)+𝜎2).

(3)
Two approaches are available for testing the binary hypothe-

ses in (1): FSS and sequential tests. An FSS test collects a
pre-determined number, 𝑁 , of samples before declaring that
either of the two hypotheses is in force. A sequential test stops
as soon as enough confidence has been gained as to which of
the hypotheses is true. For this reason, sequential tests have
the potential to reduce the detection delay on the average [7].
Therefore, sequential tests are of particular interest for CRs
when supporting delay-limited traffic where the sensing delay
contributes to the overall packet delay.

On the other hand, QoS traffic typically comes with strict
minimum rate requirements, and an outage will occur if the
minimum rate cannot be supported. To account for these
issues, optimal FSS tests are developed in the ensuing section.
Sequential schemes are investigated in Sec. IV. Note that
collaboration in sensing is not considered, and the sensing
delay analyzed in this contribution does not account for the
protocol issues such as control signaling.

III. FIXED SAMPLE SIZE SENSING

In this section, we formulate a constrained optimization
problem to find the minimum sample size for FSS sensing
with a guaranteed outage probability bound as well as strict
interference constraints to protect the PU transmissions.

A. Interference Constraints

By invoking the central limit theorem for 𝑁 sufficiently
large as in [12], it follows readily that the test statistic in (2)
is asymptotically Gaussian distributed under each hypothesis;
that is,

𝑡
(𝑚)
𝑁 ∼

{
𝒩 (𝑁𝜎2, 𝑁𝜎4) under ℋ(𝑚)

0

𝒩 (𝑁(𝜎2 +𝐺(𝑚)), 𝑁(𝜎2 +𝐺(𝑚))2) under ℋ(𝑚)
1

(4)
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where 𝒩 (𝜇, 𝑣2) denotes the real-valued Gaussian distribution
with mean 𝜇 and variance 𝑣2.

Using (4), one can express the false alarm probability 𝛼(𝑚)
𝑁

and the miss detection probability 𝛽(𝑚)
𝑁 , for a given thresh-

old 𝛾(𝑚)
𝑁 of the FSS energy detector on band 𝑚, as

𝛼
(𝑚)
𝑁 = Pr

{
𝑡
(𝑚)
𝑁 > 𝛾

(𝑚)
𝑁 ∣ℋ(𝑚)

0

}
= 𝑄

(
𝛾
(𝑚)
𝑁 −𝑁𝜎2
𝜎2

√
𝑁

)
(5)

𝛽
(𝑚)
𝑁 = Pr

{
𝑡
(𝑚)
𝑁 < 𝛾

(𝑚)
𝑁 ∣ℋ(𝑚)

1

}

= 𝑄

(
𝑁(𝜎2 +𝐺(𝑚))− 𝛾(𝑚)

𝑁

(𝜎2 +𝐺(𝑚))
√
𝑁

)
(6)

where 𝑄(𝑥) ≜ 1√
2𝜋

∫∞
𝑥 𝑒−𝑡2/2𝑑𝑡.

Using the definition of 𝑄(𝑥), simple inspection of (5) and
(6) reveals that for 𝑁 fixed, 𝛼(𝑚)

𝑁 decreases while 𝛽(𝑚)
𝑁 in-

creases with 𝛾(𝑚)
𝑁 increasing. The resulting trade-off curve can

be traversed by adjusting 𝛾(𝑚)
𝑁 . Moreover, with 𝛾(𝑚)

𝑁 = 𝛾(𝑚)

fixed, increasing 𝑁 lowers both 𝛼(𝑚)
𝑁 and 𝛽(𝑚)

𝑁 .
In the context of CR sensing, miss detection has to be

strictly regulated in order to control CR interference to the
PUs whose presence is overlooked. False alarms are also
undesirable because they result in under-utilization of the
available bands for CR data transmission. These considerations
justify per-band constraints on the false alarm and the miss
detection rates, as

𝛼
(𝑚)
𝑁 ≤ 𝛼̄(𝑚), 𝑚 = 1, 2, . . . ,𝑀 (7)

𝛽
(𝑚)
𝑁 ≤ 𝛽(𝑚), 𝑚 = 1, 2, . . . ,𝑀 (8)

where 𝛼̄(𝑚) and 𝛽(𝑚) are pre-specified bounds.
In addition, if one knows a priori the set of bands that

PUs will occupy, it is sensible to constrain the interference
on a per-PU basis [18]. For example, when a PU occupies
a wide band, and strong error correction coding is employed
across the band, the PU signal may be resilient to partial-
band interference. In such a case, it would be reasonable to
constraint an interference probability averaged over the band.
With a total of 𝐽(< 𝑀) PUs present, let 𝑆𝑗 denote the set of
bands that PU 𝑗 occupies for 𝑗 = 1, 2, . . . , 𝐽 , where ∪𝑗𝑆𝑗 =
{1, 2, . . . ,𝑀}. Then, for a set of nonnegative weights {𝑤𝑗𝑚}
with

∑
𝑚∈𝑆𝑗

𝑤𝑗𝑚 = 1, pertinent interference constraints take the

form ∑
𝑚∈𝑆𝑗

𝑤𝑗𝑚𝛽
(𝑚)
𝑁 ≤ 𝛽𝑗 , 𝑗 = 1, . . . , 𝐽. (9)

Note that the weights are related to relative importance of
each band to the PU transmissions. For instance, PU 𝑗 that
occupies the set of bands 𝑆𝑗 may find certain bands in 𝑆𝑗 more
susceptible to interference than other bands, e.g., because they
are used for control signaling or pilot transmissions.

At this point, it is useful to remember that constraints
(7), (8) and (9) are all expressible in terms of the detection
thresholds {𝛾(𝑚)

𝑁 }𝑀𝑚=1, the choice of which will be optimized
in Sec. III-D.

B. Outage Probability Constraints

Delay-limited traffic often entails a hard minimum rate
requirement. When the minimum rate cannot be achieved,
an outage occurs. Thus, it is desirable to regulate the outage
probability. Note that such design consideration is quite dif-
ferent from that of average throughput maximization pursued
in [9], [11], [12], [18], where supporting QoS traffic is not of
main concern.

Suppose that band 𝑚 can support a CR rate of 𝑅(𝑚)
0 if

no PU is present. Rates {𝑅(𝑚)
0 } are deterministically known

and supportable because the channel gains of the CR links
are assumed non-random and fixed. Such information can be
initially learned during link establishment, and updated during
data transmission using pilot signals. With PU(s) possibly
present, the rate supported on band 𝑚 can be modeled as
a random variable

𝑅(𝑚) ≜ 𝑅(𝑚)
0 �{ℋ(𝑚)

0 true and ℋ(𝑚)
0 correctly detected} (10)

where �𝐴 is the indicator function of the event 𝐴. Note that
the underlying assumption is that if a PU is active on band 𝑚,
and a CR transmitter sends a packet over the band owing to
miss detection, the CR receiver cannot decode the message due
to, e.g., interference. This is a conservative way of estimating
the achievable rate of the CR system. The event of accepting
ℋ(𝑚)

0 amounts to having 𝑡(𝑚)
𝑁 < 𝛾

(𝑚)
𝑁 in the context of the

FSS test. The random variable 𝑅(𝑚) takes the value 𝑅(𝑚)
0 with

probability 𝜋(𝑚)
0 (1− 𝛼(𝑚)

𝑁 ), and the value 0 with probability
1− 𝜋(𝑚)

0 (1−𝛼(𝑚)
𝑁 ). Its mean is clearly given by 𝔼{𝑅(𝑚)} =

𝑅
(𝑚)
0 𝜋

(𝑚)
0 (1− 𝛼(𝑚)

𝑁 ).
A prime example of QoS traffic is the one that periodically

generates a certain amount of traffic Rmin to be delivered with
small delay. An outage is declared if the total rate 𝑅𝑀 ≜∑𝑀

𝑚=1𝑅
(𝑚) over all 𝑀 bands falls below the minimum rate

target Rmin. Thus, the outage probability constraint becomes

Pr {𝑅𝑀 < Rmin} ≤ 𝜖 (11)

where 𝜖 > 0 is a small constant prescribing the outage upper
bound.

1) An Upper Bound to Outage Probability: The outage
probability in (11) is hard to express in closed form as a
function of detection parameters. For analytical tractability,
Hoeffding’s inequality [8] can be invoked to obtain an upper
bound to this outage probability. The resulting upper bound
can then be constrained not to exceed 𝜖 for a conservative
design

Pr {𝑅𝑀 < Rmin} ≤ exp

⎡
⎣−2 (𝔼{𝑅𝑀} − Rmin)

2

∑𝑀
𝑚=1𝑅

(𝑚)
0

2

⎤
⎦ ≤ 𝜖. (12)

Under the typically satisfied assumption that Rmin < 𝔼{𝑅𝑀},
the second inequality in (12) can be written as

𝔼{𝑅𝑀} ≥ Rmin +

√√√⎷− log 𝜖

2

𝑀∑
𝑚=1

𝑅
(𝑚)
0

2
(13)

It is now clear that the outage constraint has been translated
to a constraint on having the average rate stay above Rmin
by a margin that is dependent on the outage target 𝜖. Let
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𝑅̄ ≜
∑𝑀

𝑚=1𝑅
(𝑚)
0 𝜋

(𝑚)
0 denote the average achievable rate

when sensing is free of false alarms. Since 𝔼{𝑅(𝑚)} =

𝑅
(𝑚)
0 𝜋

(𝑚)
0 (1− 𝛼(𝑚)

𝑁 ), it is possible to re-write (13) as

𝑀∑
𝑚=1

𝑅
(𝑚)
0 𝜋

(𝑚)
0 𝛼

(𝑚)
𝑁 ≤ 𝐶1(𝜖) (14)

where

𝐶1(𝜖) ≜ 𝑅̄− Rmin −
√√√⎷− log 𝜖

2

𝑀∑
𝑚=1

𝑅
(𝑚)
0

2
. (15)

Thus, the conservative outage constraint upper-bounds a
weighted sum of the false alarm probabilities, which are
expressible in terms of {𝛾(𝑚)

𝑁 }𝑀𝑚=1 (cf. (5)). Note also that
since 𝐶1(𝜖) must be positive, the feasible values that the pair
(𝜖, Rmin) can take are constrained. Specifically, 𝜖 is lower-
bounded by

𝜖 > exp

⎡
⎣− 2(𝑅̄− Rmin)

2∑𝑀
𝑚=1𝑅

(𝑚)
0

2

⎤
⎦ . (16)

2) An Alternative Approximation: The outage upper bound
in (12) often turns out to be quite loose, as will be exemplified
by numerical tests in Sec. V. This motivates the goal of this
subsection to obtain an alternative approximation to the outage
probability, using once again the central limit theorem.

Lemma 1. Under mild regularity conditions, it holds that

𝑅𝑀 − 𝔼{𝑅𝑀}√
var{𝑅𝑀} ∼

𝑀→∞
𝒩 (0, 1) .

For uniformly bounded {𝑅(𝑚)}, having var{𝑅𝑀} → ∞
as 𝑀 → ∞ is sufficient for the central limit theorem to
hold [6, p. 264]. This regularity condition is easily justifiable
in practice. Taking𝑀 large enough1, the random variable 𝑅𝑀

can thus be approximated as Gaussian with mean and variance
given by

𝔼{𝑅𝑀} =
𝑀∑

𝑚=1

𝑅
(𝑚)
0 𝜋

(𝑚)
0 (1− 𝛼

(𝑚)
𝑁 ) (17)

var{𝑅𝑀} =
𝑀∑

𝑚=1

𝑅
(𝑚)
0

2
[
𝜋
(𝑚)
0 (1− 𝛼

(𝑚)
𝑁 )− 𝜋

(𝑚)
0

2
(1− 𝛼

(𝑚)
𝑁 )2

]
.

(18)

Therefore, the outage constraint (11) can be approximated as

𝑄

(
𝔼{𝑅𝑀} − Rmin√

var{𝑅𝑀}

)
≤ 𝜖 (19)

which can be readily shown to be non-convex w.r.t.
{𝛾(𝑚)

𝑁 }𝑀𝑚=1. To bypass this difficulty, a conservative approach

1Since the number of bands can only be finite, Lemma 1 merely provides
an insight to facilitate tractable design, which must be verified by numerical
tests. On the other hand, the idea of pursuing a multi-band CR architecture
is to capitalize on “frequency diversity." That is, provided that 𝑀 is large, it
will be likely that there are enough idle bands for the CRs to use. Modern
wideband systems often use OFDM with the number of bands easily reaching
100’s. In Sec. V, numerical tests verifies our design with 𝑀 = 10 bands.

is taken once more by upper-bounding the variance of 𝑅𝑀 .
To this end, consider the following bound [cf. (18)]:[

𝜋
(𝑚)
0 (1 − 𝛼(𝑚)

𝑁 )− 𝜋(𝑚)
0

2
(1− 𝛼(𝑚)

𝑁 )2
]

≤ 𝑓(𝜋(𝑚)
0 ) ≜

{
𝜋
(𝑚)
0 − 𝜋(𝑚)

0

2
if 0 ≤ 𝜋(𝑚)

0 < 1
2

1
4 if 1

2 ≤ 𝜋(𝑚)
0 ≤ 1

(20)

which is obtained simply by viewing the l.h.s. of (20) as a
quadratic function of 𝑥 := 𝜋

(𝑚)
0 (1 − 𝛼(𝑚)

𝑁 ), where 0 ≤ 𝑥 ≤
𝜋
(𝑚)
0 . Now, a conservative approximate outage constraint is

given by

𝑄

⎛
⎝ 𝔼{𝑅𝑀} − Rmin√∑𝑀

𝑚=1𝑅
(𝑚)
0

2
𝑓(𝜋

(𝑚)
0 )

⎞
⎠ ≤ 𝜖 (21)

which is equivalent to
𝑀∑

𝑚=1

𝑅
(𝑚)
0 𝜋

(𝑚)
0 𝛼

(𝑚)
𝑁 ≤ 𝐶2(𝜖) (22)

where

𝐶2(𝜖) ≜ 𝑅̄− Rmin −𝑄−1(𝜖)

√√√⎷ 𝑀∑
𝑚=1

𝑅
(𝑚)
0

2
𝑓(𝜋

(𝑚)
0 ). (23)

Again, 𝐶2(𝜖) > 0 is necessary for feasibility.

C. Optimization Problem

The optimization problem of interest is to minimize the
number of samples (and thus sensing delay) under the inter-
ference and outage constraints. The sensing delays of all bands
are aligned due to a half-duplex hardware constraint. That is, a
multi-band transceiver often cannot transmit in one band while
sensing in another band. This makes it optimal to equalize the
sensing durations over the bands, since finishing sensing on
one band earlier than other bands simply translates to lower
detection performance on that band without any benefit in rate.
Specifically, consider the following optimization problem:

(P1) min
𝑁∈𝒩 ,{𝛾(𝑚)

𝑁 }
𝑁

subject to 0 ≤ 𝛼(𝑚)
𝑁 ≤ 𝛼̄(𝑚), 𝑚 = 1, . . . ,𝑀 (24)

0 ≤ 𝛽(𝑚)
𝑁 ≤ 𝛽(𝑚), 𝑚 = 1, . . . ,𝑀 (25)∑

𝑚∈𝑆𝑗

𝑤𝑗𝑚𝛽
(𝑚)
𝑁 ≤ 𝛽𝑗 , 𝑗 = 1, . . . , 𝐽 (26)

𝑀∑
𝑚=1

𝑅
(𝑚)
0 𝜋

(𝑚)
0 𝛼

(𝑚)
𝑁 ≤ 𝐶(𝜖). (27)

Here, 𝒩 ≜ {𝑁min, 𝑁min + 1, . . . , 𝑁max} with 𝑁min and 𝑁max

denoting pre-selected minimum and maximum allowed sample
sizes, respectively.

The constraints in (24) regulate the false alarm probabilities
on each band. Constraints (25)–(26) limit the probability of
interfering with the PUs due to miss detection: (25) constrains
the miss detection per band, while (26) protects 𝐽 PUs that are
known to occupy the set of bands 𝑆1, 𝑆2, . . . , 𝑆𝐽 . Constraint
(27) is the rate outage constraint given the outage probability
bound 𝜖, where 𝐶(𝜖) can be set equal to either 𝐶1(𝜖) in (15),
or, 𝐶2(𝜖) in (23).
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D. Optimal FSS Sensing

Problem (P1) in Sec. III-C can be solved by searching for
the minimum 𝑁 ∈ 𝒩 , which renders the constraints (24)–
(27) feasible. For a given 𝑁 , it is straightforward to check
the feasibility of (24) and (25) using (5) and (6). Once they
turn out to be feasible for a given 𝑁 , the following feasibility
problem can be solved to check whether the constraints (24)–
(27) are jointly satisfied:

(P2) min
𝑠,{𝛾(𝑚)

𝑁 }
𝑠

subject to (24) and (25) (28)∑
𝑚∈𝑆𝑗

𝑤𝑗𝑚𝛽
(𝑚)
𝑁 ≤ 𝛽𝑗𝑠, 𝑗 = 1, . . . , 𝐽 (29)

𝑀∑
𝑚=1

𝑅
(𝑚)
0 𝜋

(𝑚)
0 𝛼

(𝑚)
𝑁 ≤ 𝐶(𝜖)𝑠. (30)

Note that this problem is always feasible provided the con-
straints (24) and (25) are feasible, since the l.h.s.’s of (29)
and (30) are bounded. Moreover, if the optimal 𝑠 turns out to
be less than or equal to 1, then it can be deduced that the orig-
inal constraints (24)–(27) are feasible for the considered 𝑁 .
To solve (P2), the following result is instrumental.

Proposition 1. Problem (P2) is a convex optimization problem
when 𝛼̄(𝑚) ≤ 1

2 and 𝛽(𝑚) ≤ 1
2 , and thus can be efficiently

solved.

Proof: The convexity follows from the fact that𝑄(𝑥) is convex
when 𝑄(𝑥) ≤ 1

2 , which implies that 𝛼(𝑚)
𝑁 and 𝛽

(𝑚)
𝑁 , in

(5) and (6), respectively, are convex w.r.t. 𝛾(𝑚)
𝑁 . It is then

straightforward to see that the feasible set defined by (28)–
(30) is convex. ■

Standard convex problems such as (P2) can be solved
efficiently using, e.g., the interior point method [2]. Moreover,
thanks to the monotonicity of 𝛼(𝑚)

𝑁 and 𝛽(𝑚)
𝑁 w.r.t. 𝑁 , the

optimal 𝑁 can be found via binary search which requires
solving (P2) at most ⌈log2(𝑁max −𝑁min + 1)⌉ times.

Once the optimal detector parameters have been obtained,
FSS sensing gives PU occupancy decisions on all bands with
fixed sensing delay. However, since 𝑁 has to be determined
without observing actual sample realizations, even the opti-
mized 𝑁 may be quite large, especially when the SNR is
relatively low. The sequential sensing algorithm developed
next can achieve significant savings in average sensing delay
by allowing the sample size to depend on sample realizations.

Remark 2. The proposed approach will be most suitable
for stationary or slowly moving PUs and CRs. In such a
case, the channel gains and supported rates can be accurately
estimated; see also Remark 1. The prior probabilities for
PU activities can also be estimated and continuously updated
similarly, an assumption often made in CR literature [24], [5].
The minimum required rate and the outage target can be
deduced from application requirements, and are often assumed
to be known [22], [21]. As long as channel statistics and
rate requirements vary slowly, (P1) needs to be solved only
infrequently, and few iterations will track optimal parameters.
Overall, while the practicality of the proposed approach de-

pends on actual deployment and application contexts, there are
ample scenarios to which the proposed design can be applied.

IV. SEQUENTIAL SENSING

In this section, a sequential detection scheme is developed
for multi-band spectrum sensing using a bank of SPRTs, one
per band. The SPRT has a very simple structure where the
likelihood ratio of the observed samples is tested against two
thresholds. This test is known to minimize the average sample
number (ASN) among all detectors that achieve the given false
alarm and miss detection probabilities [7]. As QoS traffic
benefits from minimal sensing delay, this property makes it
particularly relevant to investigate the proposed architecture
from both performance and complexity perspectives.

A key challenge associated with the proposed online multi-
band detector, however, is that parallel SPRTs do not yield
the same sample sizes, simply because the latter are random
variables which depend on the observed samples. As a result,
the overall sensing delay will be dictated by the largest
detection delay among those of the parallel detectors, until the
set of bands that can support the requested rate is discovered.
A rigorous design of sequential sensing based on dynamic
programming was treated in [11] for maximizing average
throughput.

The aim here is to retain the parallel SPRT structure for
simplicity of implementation, while optimizing the SPRT
parameters to mitigate the loss in delay performance due to
disparate sample sizes. Common to the previous section, the
objective is to minimize the sensing delay under an outage
constraint on the supported rate as well as the interference
constraints imposed to abide by the PU-CR hierarchy.

A. Optimization Problem

In SPRT, there are two thresholds against which the like-
lihood ratio is compared at each sampling time [7]. If the
likelihood ratio exceeds either one of the thresholds, the
detection process terminates and a decision is declared. Denote
the two thresholds used for the SPRT on band 𝑚 as 𝐴(𝑚) and
𝐵(𝑚), where 𝐴(𝑚) > 𝐵(𝑚) > 0 holds. Then, the SPRT on
band 𝑚 operates at each sampling instant 𝑛 as follows:⎧⎨

⎩
Λ
(𝑚)
𝑛 ≥ log𝐴(𝑚) ⇒ choose ℋ(𝑚)

1

Λ
(𝑚)
𝑛 ≤ log𝐵(𝑚) ⇒ choose ℋ(𝑚)

0

log𝐵(𝑚) < Λ
(𝑚)
𝑛 < log𝐴(𝑚) ⇒ take next sample

(31)
where the thresholds are related to the false alarm probability
𝛼(𝑚) and the miss detection probability 𝛽(𝑚) as [7, p. 20]

𝐴(𝑚) ≈ 1− 𝛽(𝑚)

𝛼(𝑚)
and 𝐵(𝑚) ≈ 𝛽(𝑚)

1− 𝛼(𝑚)
. (32)

The ASN for band 𝑚 under ℋ(𝑚)
0 , which is denoted by

ASN(𝑚)
0 , for prescribed values of 𝛼(𝑚) and 𝛽(𝑚) is given

approximately by [7, p. 30]

ASN(𝑚)
0 (𝛼(𝑚), 𝛽(𝑚)) ≈ 1

𝒟(𝑝
(𝑚)
0 ∣∣𝑝(𝑚)

1 )

[
𝛼(𝑚) log

𝛼(𝑚)

1− 𝛽(𝑚)

+(1− 𝛼(𝑚)) log
1− 𝛼(𝑚)

𝛽(𝑚)

]
(33)
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where 𝒟(𝑝
(𝑚)
0 ∣∣𝑝(𝑚)

1 ) is the Kullback-Leibler divergence of the
two p.d.f.’s 𝑝(𝑚)

0 and 𝑝(𝑚)
1 . In the present context, the latter is

equal to 𝒟(𝑝
(𝑚)
0 ∣∣𝑝(𝑚)

1 ) = log(1 + SNR(𝑚)) − SNR(𝑚)

1+SNR(𝑚) with
SNR(𝑚) ≜ 𝐺(𝑚)/𝜎2; cf. (1).2

The proposed optimization problem is to minimize the
maximum ASN(𝑚)

0 over all bands 𝑚 ∈ {1, 2, . . . ,𝑀} subject
to the interference and outage constraints:

(P3) min
{𝛼(𝑚)},{𝛽(𝑚)}

max
𝑚∈{1,...,𝑀}

ASN(𝑚)
0

subject to 0 ≤ 𝛼(𝑚) ≤ 𝛼̄(𝑚), 𝑚 = 1, . . . ,𝑀 (34)

0 ≤ 𝛽(𝑚) ≤ 𝛽(𝑚), 𝑚 = 1, . . . ,𝑀 (35)

∑
𝑚∈𝑆𝑗

𝑤𝑗𝑚𝛽
(𝑚) ≤ 𝛽𝑗 , 𝑗 = 1, . . . , 𝐽 (36)

𝑀∑
𝑚=1

𝑅
(𝑚)
0 𝜋

(𝑚)
0 𝛼(𝑚) ≤ 𝐶(𝜖). (37)

The per-band false alarm constraints in (34) are analogous to
those in (24). Likewise, constraints (35)–(36) are interference
constraints similar to those in (25)–(26). In the same way,
(37) is the approximate outage constraint, whose justification
is completely analogous to the FSS case detailed in Sec-
tions III-B1 and III-B2. The constant 𝐶(𝜖) can be chosen to
be either 𝐶1(𝜖) or 𝐶2(𝜖).

Contrary to the case of (P2) for FSS sensing, the optimiza-
tion variables in (P3) are the false alarm and the miss detection
probabilities in each band. More interestingly, and to much
practical appeal, the optimization for sequential sensing is seen
to be simpler than that for the FSS counterpart, as one does
not need to solve optimization problems for different sample
sizes. Rather, the optimal {𝛼(𝑚)} and {𝛽(𝑚)} determine the
ASNs automatically.

The min-max formulation (P3) essentially renders the ASNs
in different bands identical and minimal. The rationale behind
this approach is that by aligning the ASNs, one can expect
that the actual stopping times of the SPRTs are also not too
distant from one another. Recall that the actual sensing delay
is the time until a set of unoccupied bands is found enabling
a combined rate above Rmin. Since one does not know a priori
what will be such a set, it is reasonable to adopt a conservative
approach that regards all bands as candidates, and attempts to
minimize the stopping times of all bands. Moreover, (P3) can
be efficiently solved for the reason stated in the following
proposition.

Proposition 2. Problem (P3) is a convex optimization prob-
lem.

Proof: The constraints are linear and thus convex. To show
that the objective function is also convex, it is first shown that
the function ASN(𝑚)

0 (𝛼, 𝛽) is convex w.r.t. 𝛼 and 𝛽, where

2The ASN under ℋ(𝑚)
1 is not relevant because the sensing procedure stops

when enough idle bands to support Rmin are identified; cf. Sec. IV-B. Thus,
provided that channels are not in outage (i.e., there are actually enough free
bands to support CR traffic in the first place), the overall sensing delay
is influenced only by the ASNs under ℋ(𝑚)

0 . In the rare case of outage,
the sensing procedure will be eventually terminated if the delay exceeds a
tolerable level. Thus, we do not propose to minimize the sensing delay in
outage.

𝛼, 𝛽 ∈ (0, 1). Clearly, ASN(𝑚)
0 (𝛼, 𝛽) is twice differentiable,

and the Hessian matrix is given by

1

𝒟(𝑝
(𝑚)
0 ∣∣𝑝(𝑚)

1 )

[
1
𝛼 + 1

1−𝛼
1

1−𝛽 + 1
𝛽

1
1−𝛽 + 1

𝛽
𝛼
𝛽2 + 1−𝛼

(1−𝛽)2

]
. (38)

Next, we argue that the positive 𝒟(𝑝
(𝑚)
0 ∣∣𝑝(𝑚)

1 ) times the
matrix in (38) is positive semi-definite because both of its
leading principal minors are non-negative. Indeed, the first
leading principal minor 1

𝛼 + 1
1−𝛼 is obviously positive since

𝛼 ∈ (0, 1). The second leading principal minor is(
1

𝛼
+

1

1− 𝛼
)(

𝛼

𝛽2
+

1− 𝛼
(1− 𝛽)2

)
−
(

1

1− 𝛽 +
1

𝛽

)2

=
[(1− 𝛼)𝛽 − 𝛼(1− 𝛽)]2
𝛼(1 − 𝛼)𝛽2(1− 𝛽)2 ≥ 0. (39)

Since ASN(𝑚)
0 is convex for all 𝑚, max

𝑚
ASN(𝑚)

0 is also
convex. Thus, (P3) is a convex optimization problem; and
hence, it can be solved efficiently. ■

B. Operation of Sequential Sensing

Once the optimal {𝛼(𝑚)} and {𝛽(𝑚)} have been found,
the sensing operation can proceed as follows. Collect samples
until an SPRT on any band 𝑚 declares ℋ(𝑚)

0 . Check whether
the rate exceeds the required rate Rmin. If not, continue collect-
ing samples until any of the SPRTs on the remaining bands
declares absence of PUs. If the accumulated rate exceeds Rmin,
stop. The number of samples collected so far corresponds to
the sensing delay. Otherwise, keep sensing until all the SPRTs
stop or until a prescribed maximum number 𝑁max of samples
have been observed. If the accumulated rate is still less than
Rmin, declare an outage.

It should be noted that if the requested rate Rmin is much
smaller than the raw achievable rate 𝑅̄, the sequential sensing
procedure will usually terminate much earlier than the time
needed for all the SPRTs to stop. In fact, in most practical
scenarios, the sensing will terminate as soon as a few idle
bands have been identified. Thus, the overall sensing delay will
be determined by the few bands with detection delays shorter
than those of the remaining bands. It is this opportunistic
mechanism that leads to significant savings in sensing delay
for the sequential sensing algorithm.

However, precisely because the sequential sensing stops as
soon as the requested rate is deemed supportable, and because
such a decision is made based on imperfect detector outputs,
the sequential sensing algorithm suffers from what we term
“false successes." False successes occur when the SPRTs make
miss detection errors, and thus the set of bands identified as
idle by the sensing procedure actually contains busy bands.
Since a band 𝑚 occupied by a PU cannot really support rate
𝑅

(𝑚)
0 for CR transmissions, the actual rate supportable by the

set of bands identified by sequential sensing with the busy
ones excluded, may well be less than Rmin.

Note that a false success is not as problematic in FSS
sensing because the detection results for all 𝑀 bands are
available simultaneously. Although miss detection errors lead
to reporting more idle bands than required by the outage
constraint, the outage constraint (11) strictly enforces a set
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of truly idle bands to be identified with probability exceeding
(1− 𝜖); cf. (10). Fortunately, a simple remedy is possible for
false successes in sequential sensing, which is elaborated next.

C. Remedy for False Successes

Clearly, in order to compensate for miss detection, the
sequential sensing algorithm must not stop immediately after
Rmin becomes supportable. Instead, it is proposed to stop when
Rmin + Δ𝑅 is supportable, where Δ𝑅 > 0 denotes a rate
margin introduced to counter false successes. The following
lemma justifies this approach concretely.

Lemma 2. For a constant 𝜖0 ∈ (0, 1), and a rate margin
Δ𝑅 ≥ 0, the following two constraints imply that the outage
constraint in (11) is met:

Pr

{
𝑀∑

𝑚=1

𝑅
(𝑚)
0 �{ℋ(𝑚)

1 true and ℋ(𝑚)
0 detected} > Δ𝑅

}
≤ 𝜖0

(40)

Pr

{
𝑀∑

𝑚=1

𝑅
(𝑚)
0 �{ℋ(𝑚)

0 detected} ≤ Rmin +Δ𝑅

}
≤ 𝜖(1− 𝜖0).

(41)

Proof: Consider the following (in)equalities

Pr

{
𝑀∑

𝑚=1

𝑅
(𝑚)
0 �{ℋ(𝑚)

0 detected} ≤ Rmin +Δ𝑅

}

= Pr

{
𝑀∑

𝑚=1

𝑅
(𝑚)
0 �{ℋ(𝑚)

0 true and ℋ(𝑚)
0 detected}

+

𝑀∑
𝑚=1

𝑅
(𝑚)
0 �{ℋ(𝑚)

1 true and ℋ(𝑚)
0 detected} ≤ Rmin +Δ𝑅

}

(42)

≥ Pr

{
𝑀∑

𝑚=1

𝑅
(𝑚)
0 �{ℋ(𝑚)

0 true and ℋ(𝑚)
0 detected} ≤ Rmin

}

⋅ Pr
{

𝑀∑
𝑚=1

𝑅
(𝑚)
0 �{ℋ(𝑚)

1 true and ℋ(𝑚)
0 detected} ≤ Δ𝑅

}
(43)

≥ Pr {𝑅𝑀 ≤ Rmin} ⋅ (1 − 𝜖0) (44)

where (43) is obtained because the two events inside Pr{⋅}
in (43) are independent, and jointly imply the event inside
Pr{⋅} in (42); and (44) is obtained from the definition of 𝑅𝑀

and (40). Upon combining (44) with (41), the desired result
is obtained. ■

Given the design parameter 𝜖0, (40) provides the means
to calculate the margin Δ𝑅. In the operation of sequential
sensing, one can stop sensing as soon as the accumulated
rate based on the detector outputs exceeds Rmin +Δ𝑅. Then,
including (41) as a constraint in the optimization formulation,
the desired upper bound on the outage probability is enforced.

First, to obtain Δ𝑅 given 𝜖0, an approach similar to that
used in Lemma 1 is employed. Based on the central limit
theorem,

∑𝑀
𝑚=1𝑅

(𝑚)
0 �{ℋ(𝑚)

1 true and ℋ(𝑚)
0 detected} is treated as

Gaussian with mean
∑𝑀

𝑚=1𝑅
(𝑚)
0 𝜋

(𝑚)
1 𝛽(𝑚), and standard de-

viation 𝑠1 ≜
√∑𝑀

𝑚=1𝑅
(𝑚)
0

2
𝜋
(𝑚)
1 𝛽(𝑚)(1− 𝜋(𝑚)

1 𝛽(𝑚)), for

sufficiently large 𝑀 . Thus, (40) can be approximated as

𝑄

(
Δ𝑅−∑𝑀

𝑚=1𝑅
(𝑚)
0 𝜋

(𝑚)
1 𝛽(𝑚)

𝑠1

)
≤ 𝜖0 (45)

which yields

Δ𝑅 ≥ 𝑄−1(𝜖0)𝑠1 +

𝑀∑
𝑚=1

𝑅
(𝑚)
0 𝜋

(𝑚)
1 𝛽(𝑚). (46)

Since Δ𝑅 ≥ 0, it follows that

𝜖0 ≤ 𝑄
(
−
∑𝑀

𝑚=1𝑅
(𝑚)
0 𝜋

(𝑚)
1 𝛽(𝑚)

𝑠1

)
. (47)

Similarly,
∑𝑀

𝑚=1𝑅
(𝑚)
0 �{ℋ(𝑚)

0 detected} is asymptotically
Gaussian distributed for large 𝑀 with mean∑𝑀

𝑚=1𝑅
(𝑚)
0 [𝜋

(𝑚)
0 (1 − 𝛼(𝑚)) + 𝜋

(𝑚)
1 𝛽(𝑚)], and standard

deviation

𝑠2 ≜
{

𝑀∑
𝑚=1

𝑅
(𝑚)
0

2 [
𝜋
(𝑚)
0 (1 − 𝛼(𝑚)) + 𝜋

(𝑚)
1 𝛽(𝑚)

−
(
𝜋
(𝑚)
0 (1− 𝛼(𝑚)) + 𝜋

(𝑚)
1 𝛽(𝑚)

)2
]} 1

2

. (48)

Then, (41) can be approximated as

𝑄

⎛
⎝

∑𝑀
𝑚=1 𝑅

(𝑚)
0

[
𝜋
(𝑚)
0 (1− 𝛼(𝑚)) + 𝜋

(𝑚)
1 𝛽(𝑚)

]
− (Rmin +Δ𝑅)

𝑠2

⎞
⎠

≤ 𝜖(1− 𝜖0). (49)

Setting Δ𝑅 equal to the lower-bound in (46), and substituting
back into (49) yields

𝑀∑
𝑚=1

𝑅
(𝑚)
0 𝜋

(𝑚)
0 𝛼(𝑚) ≤

𝑀∑
𝑚=1

𝑅
(𝑚)
0 𝜋

(𝑚)
0 − Rmin −𝑄−1(𝜖0)𝑠1

−𝑄−1(𝜖(1− 𝜖0))𝑠2. (50)

Since typically 𝜋
(𝑚)
1 𝛽(𝑚) ≪ 1

2 holds, we obtain 𝑠1 ≤
𝑠1 ≜

√∑𝑀
𝑚=1𝑅

(𝑚)
0

2
[𝜋

(𝑚)
1 𝛽(𝑚) − (𝜋

(𝑚)
1 𝛽(𝑚))2]. Simi-

larly, it can be shown that [cf. (20)] 𝑠2 ≤ 𝑠2 ≜√∑𝑀
𝑚=1𝑅

(𝑚)
0

2
𝑓(𝜋

(𝑚)
0 + 𝜋

(𝑚)
1 𝛽(𝑚)). Thus, a conservative

surrogate for (50) is given by

𝑀∑
𝑚=1

𝑅
(𝑚)
0 𝜋

(𝑚)
0 𝛼(𝑚) ≤ 𝐶3(𝜖, 𝜖0) (51)

where

𝐶3(𝜖, 𝜖0) ≜ 𝑅̄−Rmin−𝑄−1(𝜖0)𝑠1−𝑄−1(𝜖(1− 𝜖0))𝑠2. (52)

Thus, (P3) is solved with 𝐶(𝜖) set to 𝐶3(𝜖, 𝜖0) to ensure (41).
In the same way as for 𝐶1(𝜖) and 𝐶2(𝜖), it is noted that
𝐶3(𝜖, 𝜖0) > 0 is necessary for the feasibility of condition (37).
In particular, this yields a bound on Rmin as

Rmin < 𝑅̄−𝑄−1(𝜖0)𝑠1 −𝑄−1(𝜖(1− 𝜖0))𝑠2. (53)

The issue of selecting the value of 𝜖0 will be discussed in
Sec. V.
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TABLE I
OUTAGE PROBABILITIES. WHEN THE REMEDY FOR FALSE SUCCESSES IS APPLIED THROUGH 𝐶(𝜖) = 𝐶3(𝜖, 𝜖0), THE OUTAGE TARGET IS STRICTLY

OBSERVED.

SNR (dB) −7 −6 −5 −4 −3 −2

Prescribed (𝜖) 0.01 0.01 0.01 0.01 0.01 0.01
Achieved (𝐶(𝜖) := 𝐶1(𝜖), FSS) 0.0006 0.0008 0.0005 0.0006 0.0005 0.0007
Achieved (𝐶(𝜖) := 𝐶1(𝜖), seq.) 0.0064 0.0070 0.0067 0.0067 0.0055 0.0058
Achieved (𝐶(𝜖) := 𝐶2(𝜖), FSS) 0.0092 0.0088 0.0098 0.0093 0.0083 0.0088
Achieved (𝐶(𝜖) := 𝐶2(𝜖), seq.) 0.0147 0.0138 0.0121 0.0113 0.0111 0.0099

Achieved (𝐶(𝜖) := 𝐶3(𝜖, 𝜖0), seq.) 0.0098 0.0090 0.0090 0.0093 0.0083 0.0088
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(a) 𝐶(𝜖) := 𝐶1(𝜖).
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(b) 𝐶(𝜖) := 𝐶2(𝜖).

Fig. 1. (Average) sample sizes of FSS and sequential sensing. The sequential
sensing saves the sensing delay significantly.

V. NUMERICAL TESTS

To verify the performance of the proposed FSS and sequen-
tial sensing algorithms, numerical tests are performed. A total
of 𝑀 = 10 bands are available, and the achievable CR rates
{𝑅(𝑚)

0 }𝑀𝑚=1 are given by [2, 8, 10, 12, 14, 4, 6, 16, 18, 10].
The minimum rate requirement for CR traffic is given by
Rmin = 25. The prior probability of the null hypothesis ℋ(𝑚)

0

is set to 𝜋(𝑚)
0 = 1 − 𝜋

(𝑚)
1 = 0.8 for all 𝑚, unless stated

otherwise. The upper bounds for the false alarm and the miss
detection probabilities are set to 𝛼̄(𝑚) = 0.4 and 𝛽(𝑚) = 0.05,

respectively, for all 𝑚. Note that actual false alarm rates
are dictated by constraints (27) or (37). However, setting
𝛼̄(𝑚) < 0.5 is necessary to ensure convexity of (P2). The
number of PUs present is 𝐽 = 3, and 𝛽𝑗𝑚 = 0.01 for all
𝑚 and 𝑗. The weights {𝑤𝑗𝑚} are set as 𝑤𝑗1 = 𝑤𝑗2 = 0.3,
𝑤𝑗3 = 0.4 for 𝑗 = 1; 𝑤𝑗4 = 𝑤𝑗5 = 0.3, 𝑤𝑗6 = 0.4 for 𝑗 = 2;
and 𝑤𝑗7 = 0.1, 𝑤𝑗8 = 0.2, 𝑤𝑗9 = 0.3, 𝑤𝑗10 = 0.4 for 𝑗 = 3,
with the rest of the weights set to 0. The outage probability
bound 𝜖 is set to 0.01, unless stated otherwise. In addition,
the received PU signal power is assumed to be equal in all
bands. 𝑁min = 1 and 𝑁max = ∞ were used. The signal and
noise model follows the one set forth in Sec. II.

Fig. 1 depicts the (average) sample sizes of the FSS and
the sequential sensing schemes for different values of received
SNRs. Fig. 1(a) represents the case where (P1) and (P3) are
solved with 𝐶(𝜖) := 𝐶1(𝜖), and Fig. 1(b) with 𝐶(𝜖) := 𝐶2(𝜖).
The solid curves with square markers represent the minimized
sample sizes for the FSS sensing. The dashed curves marked
by stars correspond to the optimized ASN values, which are
the optimal objective values of (P3). The optimized ASN value
is different from the actual sensing delay since the sensing
procedure stops as soon as the required rate Rmin can be
supported. The average sensing delays obtained from 50,000
independent realizations are shown as the solid curves marked
by triangles. It can be seen from Fig. 1 that the sensing delay
of the sequential algorithm is much lower than that of the FSS
sensing. The delay reduction is more pronounced in the low
SNR regime (note the log scale in the y-axis), which is the
typical operating condition for CRs.

It should be noted that two avenues for delay reduction are
being exploited. One is the saving achieved by opportunistic
stopping of the detection procedure, which is inherent to
SPRTs. This is manifested by the lower optimized ASN values
compared to the sample sizes of the FSS alternatives. On top
of that, the multi-band sensing architecture provides a diversity
effect that further reduces delay by means of opportunistically
terminating the sensing procedure whenever the minimum
required rate has been achieved. The final sensing delays
depicted by the solid curves with triangle markers are seen
to be even lower than the optimal ASN values due to this
latter effect.

Comparing Figs. 1(a) and (b), one can deduce that using
𝐶2(𝜖) yields sensing delays far lower than using 𝐶1(𝜖), espe-
cially for the FSS case. The outage probabilities achieved by
the two approaches are shown in Table I, where it can be seen
that both approaches meet the prescribed outage upper-bound
in the case of FSS sensing. Therefore, using 𝐶(𝜖) := 𝐶2(𝜖) is
preferred, and the remaining numerical results for FSS sensing
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Fig. 2. Performance of sequential sensing versus 𝜖0 at SNR −6 dB.
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Fig. 3. Average sensing delay of sequential sensing with remedy for false
successes. The remedy slightly increases the sensing delay for sequential
sensing.

will be based on this choice.
In case of sequential sensing, however, Table I shows that

the outage upper-bound is actually violated if 𝐶(𝜖) := 𝐶2(𝜖)
is used. This is due to the false successes. To test the efficacy
of the remedy for false successes proposed in Sec. IV-C,
an outage constraint with 𝐶(𝜖) := 𝐶3(𝜖, 𝜖0) is considered.
For an appropriate choice of the value of 𝜖0, we advocate
the value that maximizes 𝐶3(𝜖, 𝜖0). Since 𝐶3(𝜖, 𝜖0) is strictly
concave w.r.t. 𝜖0, it is straightforward to find the unique
maximizer, which is equal to 0.3 for the given simulation
parameters. There are two justifications for this choice. First,
large 𝐶3(𝜖, 𝜖0) renders the outage constraint (37) in (P3)
less tight, so that the optimal ASN value becomes smaller.
Although a small optimal ASN does not guarantee the overall
sensing delay to be small, it is a reasonable choice, espe-
cially considering the lack of an analytic formula for the
overall sensing delay. Secondly, as can be seen from (53),
the proposed choice of 𝜖0 maximally broadens the range of
the admissible Rmin values.

Fig. 2 depicts the optimized ASNs and the simulated
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0
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Fig. 4. Sensing delay versus Rmin/𝑅̄ at SNR −6 dB when 𝜖 = 0.01 and
𝜋
(𝑚)
0 = 0.8, as well as when 𝜖 = 0.05 and 𝜋

(𝑚)
0 = 0.5.

sensing delays for different values of 𝜖0 for SNR −6 dB. It is
verified that the smallest ASN is achieved when 𝜖0 = 0.3.
Although the actual sensing delay slightly decreases when
𝜖0 > 0.3, the gain is negligible. In fact, per (46), too large
a value for 𝜖0 may yield a Δ𝑅 that is too small, or even
negative, which may raise issues with the applicability of
Lemma 2. When 𝜖0 = 0.3, the corresponding Δ𝑅 turns out
to be 1.16. The outage probability obtained when the sensing
procedure was terminated only when an accumulated rate of
Rmin +Δ𝑅 was achieved, is shown in the last row of Table I.
It is verified that the outage constraints are strictly satisfied
with this approach.

Fig. 3 depicts the optimal ASNs along with the average
sensing delays obtained from simulations for the sequential
sensing algorithm with the remedy for false successes. Com-
pared to the curves in Fig. 1(b), the ASNs and the average
sensing delays are increased slightly to cope with the false
successes. Still though, the average sensing delay is consid-
erably lower than that of the FSS counterpart, particularly in
the low SNR regime.

Fig. 4 plots the sensing delay performance at SNR −6 dB
when Rmin is varied, when 𝜖 = 0.01 and 𝜋(𝑚)

0 = 0.8, as
well as when 𝜖 = 0.05 and 𝜋(𝑚)

0 = 0.5. It is noted that the
proposed sequential sensing algorithm is most advantageous
over the FSS sensing when Rmin is small compared to the
maximum average achievable rate 𝑅̄. Since over-provisioning
of resources is often pursued to support QoS traffic with high
quality-of-service, the proposed sequential sensing approach
is highly attractive.

VI. CONCLUSIONS

CR spectrum sensing algorithms that scan multiple bands
in parallel to support QoS traffic were considered. Both FSS
and parallel SPRT-based sequential sensing approaches were
investigated. The objective was to minimize sensing delay
while observing interference constraints for PU protection as
well as outage probability constraints to support a requested
rate for QoS traffic with high reliability. For FSS sensing,
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a convex feasibility optimization problem was formulated
for a given sample size, whereby the minimum sample size
satisfying all the constraints can be searched for. For sequential
sensing, a convex optimization problem to minimize the
maximum ASN of the parallel SPRTs was formulated so that
the random stopping times of SPRTs could be approximately
aligned. Subsequently, an opportunistic sensing procedure was
developed that stops sensing as soon as a set of unoccupied
bands capable of supporting the requested rate is obtained.
Since such a stopping decision is based on imperfect de-
tector outputs, the problem of false successes emerged. To
remedy this problem, the stopping criterion was strengthened
to include a rate margin, which was derived analytically
to ensure the prescribed outage constraint. Numerical tests
verified the efficacy of the proposed design, and demonstrated
that significant reduction in sensing delay is possible through
sequential sensing, especially when the operating SNR is low,
and the spectral resource is over-provisioned. Future research
directions include adoption of truncated SPRT [7, p. 76] to
enforce a maximum sample size in sequential sensing and
extensions to multi-CR cooperation [13].
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