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Mechanical properties, anisotropy and hardness of group IVA ternary spinel nitrides
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(Received 17 November 2012; final version received 5 January 2013)

In this work, new ternary cubic spinel structures are designed by the substitutional method. The structures, elasticity
properties, intrinsic hardness and Debye temperature of the cubic ternary spinel nitrides are studied by first principles based
on the density-functional theory. The results show that γ -CSn2N4, γ -SiC2N4, γ -GeC2N4 and γ -SnC2N4 are not mechanically
stable. The elastic constants Cij of these cubic spinel structures are obtained using the stress–strain method. Derived elastic
constants, such as bulk modulus, shear modulus, Young’s modulus, Poisson coefficient and brittle/ductile behaviour are
estimated using Voigt–Reuss–Hill theories. The B/G value, the Poisson’s ratio and anisotropic factor are calculated for eight
ternary stable crystals. Based on the microscopic hardness model, we further estimate the Vickers hardness of all the stable
crystals. From the calculated hardness of the stable group IVA ternary spinel nitrides by Gao’s and Jiang’s methods, it is
observed that the stable group IVA ternary spinel nitrides are not superhard materials except for γ -CSi2N4. Furthermore, the
Debye temperature for the eight stable crystals is also estimated.

Keywords: elastic property; intrinsic hardness; Debye temperature

1. Introduction

In recent years, nitrogen has turned out to play a key role
in today’s most exciting technological materials. A number
of works have focused on the synthesis of novel carbon
nitrides and silicon nitrides. The cubic spinel structure has
recently been discovered in the group IVA nitrides Si3N4,
Ge3N4 and Sn3N4, in high-pressure and high-temperature
experiments [1–13]. Silicon nitride (Si3N4) is one of the
most important ceramic materials with numerous applica-
tions due to its unique chemical, mechanical and electronic
properties. Especially, the desirable mechanical properties
at high temperatures make silicon nitride an ideal material
in various applications, such as engine parts, bearings and
metal machining. In addition to the well-known hexago-
nal α and β forms are two stable phases of Si3N4. Both
the phases are hexagonal crystal structure, in which all Si
atoms are in tetrahedral bond with N atoms, with a strong
covalent character [9]. The third high-density cubic spinel
phase of Si3N4 (γ -Si3N4) with space group Fd3̄m was dis-
covered in 1999 under high pressure of around 15 GPa and
high temperature of around 2200 K [1]. The experimental
and theoretical work resulted in the synthesis of spinel-type
γ -Si3N4 and γ -Ge3N4 [1,12].

It is worth recalling the case for γ -Si3N4 that there ex-
ists a significant difference between the experimental values
of the evaluated hardness and the elastic stiffness constants.
Subsequently, a detailed calculation by He et al. [10] using
a microscopic model obtained the hardness of 33.3 GPa,

∗Corresponding author. Email: dyccqzx@yahoo.com.cn

which is in good agreement with the experimental results
and demonstrated that γ -Si3N4 is not a superhard mate-
rial. Experimental information on the cubic ternary spinel
nitrides is scarce. Theoretically, these compounds have at-
tracted the attention of some researchers [11–19]. Some
systematic investigations were performed on the structure
and properties of cubic spinel nitrides, including binary and
ternary spinel nitrides [11–19]. Ching and Bouhemadou
have studied the structural, electronic and optical properties
of γ -SiGe2N4 by means of the first-principles orthogonal-
ized linear combinations of atoms’ orbitals (OLCAO) and
methods [14–16]. Wang et al. have investigated the struc-
ture, and the electronic and optical properties of group IVA
binary and ternary spinel nitrides using an ab initio full po-
tential linearized augmented plane waves (FP-LAPW) code
[17]. Neither experimental nor theoretical details of group
IVA ternary spinel nitrides regarding the elastic constants,
hardness and the thermodynamic properties are available.
First-principles calculations offer one of the most powerful
tools for carrying out theoretical studies of an important
number of physical and chemical properties of the con-
densed matter with great accuracy. It is now possible to
explain and predict properties of solids which were previ-
ously inaccessible to experiments.

The hardness of the group IVA binary spinel nitrides γ -
C3N4, γ -Si3N4, γ -Ge3N4 and γ -Sn3N4 has been researched
[11,20–22]. Of all the potential compounds, a hypotheti-
cal ternary nitride, cubic spinel CSi2N4 (γ -CSi2N4), was

C© 2013 Taylor & Francis
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predicted to be one of the stable phases with an indirect
band gap [21]. Furthermore, γ -CSi2N4 shows exception-
ally strong covalent bonding and a large bulk modulus,
which suggests it to be a superhard material [21,23]. Based
on the microscopic hardness model, γ -CSi2N4 is predicted
to be a superhard material [21].

In the present paper, we design group IVA ternary spinel
nitrides by the substitutional method. We further study
the mechanical stability, the elastic moduli, the intrinsic
hardness and the Debye temperature of these new ternary
nitrides.

2. Calculation models and methods

Materials design technique is greatly desirable as a re-
quest to assist experiment. Two rational theoretical meth-
ods (substitutional method and global free energy mini-
mization method) of design of superhard materials have
been successfully applied [24]. ‘Substitutional method’ is
an easy-to-use method, which depends on the known struc-
tural database and follows the criterion that a material with
a particular chemical formula (e.g. AmBn) has a structural
type, which is known in other chemically related materials.
This method can be successful if the target crystal forms of
materials are already documented in the structural database.
The well-known hypothetic superhard material, hexagonal
β-C3N4, was proposed by Cohen and Liu [25,26] through
this method, with the knowledge of known β-Si3N4 struc-
ture by substituting C for Si. The notion that C–N bond
in β-C3N4 is shorter than C–C bond in diamond has at-
tracted much attention. It is then remarkably predicted that
the bulk modulus of β-C3N4 could be higher than that of
diamond [25]. Subsequent theoretical calculations further
proposed other dense polymorphs of C3N4, e.g. hexagonal
α-C3N4, cubic C3N4 (c-C3N4), the cubic phase with defec-
tive zinc blende structure (dzb-C3N4) and the pseudocubic
phase (pc-C3N4), among which c-C3N4 has a zero-pressure
bulk modulus exceeding that of diamond [27,28]. With the
structural information of C3N4, several boron carbides, e.g.
α-B4C3, β-B4C3 and pseudocubic B4C3 (pc-B4C3) were
constructed by replacing N with B atoms [29]. The pre-
dicted hardness of these B4C3 phases can reach 51–63 GPa.
These predictions clearly pointed out the possible existence
of potential superhard candidates [29].

Spinel compounds belong to the space group Fd3̄m.
The spinel structure is geometrically a ternary structure
with stoichiometry AB2X4, where A and B are, respectively,
tetrahedral (8a) coordinated cations and octahedral (16d)
coordinated cations, and X represents anions (32e). For
γ -Si3N4 and γ -Ge3N4, all Si and Ge atoms occupy the
tetrahedral and octahedral cation sites. All the N atoms
are fourfold coordinated and occupy the (32e) sites [1,11–
13]. In other words, γ -Si3N4 and γ -Ge3N4 comprise not
only fourfold-coordinated silicon, but sixfold-coordinated

Figure 1. Crystal structure of γ -AB2X4. Gray spheres represent
the tetrahedral (8a) coordinated cations (A sites), blue spheres
are the octahedral (16d) coordinated cations (B sites) and yellow
spheres are anions (32e) (X sites).

silicon as well. In this paper, we discuss about ternary spinel
nitrides γ -AB2X4, which are the C, Si, Ge and Sn atoms
that replace the tetrahedral-A and octahedral-B sites. The
γ - AB2X4 crystal is shown in Figure 1.

Density functional theory (DFT) has played an impor-
tant role. This ‘ab initio’ approach is applied at various lev-
els and has been shown to lead to some significant results
regarding the prediction of structural, elastic and thermo-
dynamic properties [30,31]. In the present work, the first-
principles calculations, based on density functional theory,
were conducted in CASTEP code [32]. The plane wave ba-
sis set was used for the energy calculations. The kinetic
energy cut-off value for plane wave expansions in recip-
rocal space was set to 400 eV. The frozen core approxi-
mation was used for the pseudoatoms. The ultra-soft pseu-
dopotentials of Vanderbilt scheme were used to account
for the electrostatic interaction between the valence elec-
trons and the ionic core [33]. The energy integrations were
performed on a discretised k grid in the first irreducible
Brillouin zone, and we used 10 × 10 × 10 k point meshes
for group IVA ternary spinel nitrides. The method proposed
by Monkhorst–Pack was used for generating the k points
in this paper [34]. The Pulay density-mixing scheme was
applied to the electronic energy minimization. For the con-
vergence, the change of total energy was set to 1 × 10−6

eV/cell; the mean Hellmann–Feymann force acting on the
atom was reduced to 0.01 eV/Å. We have considered
the generalized gradient approximation (GGA)–Perdew-
Burke-Ernzerhof for solids (PBEsol) [35] level exchange-
correlation functional.
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3. Results and discussions

3.1. Elastic properties

In Table 1, the lattice parameters, elastic moduli and me-
chanical anisotropic factor of the group IVA ternary spinel
nitrides and γ -Si3N4 are calculated by the GGA–PBEsol
functional. For γ -Si3N4, it is seen that the calculated lattice
parameters in present work are in good agreement with the
previous results [10,18,21,36] and available experimental
data [1,3,37].

The PBEsol function was a modification of the PBE
function, and the main motivation was to obtain a better
description of the equilibrium lattice properties than the
original PBE function. In practical calculations, the results
of PBEsol are usually between local desity approximation
(LDA) and PBE [38]. The lattice parameter values calcu-
lated by PBEsol method fall in between the values obtained
by LDA and PBE methods. The results seem to indicate
that our results for lattice parameters of γ -Si3N4 are reli-
able. The calculated lattice parameters, elastic moduli and
mechanical anisotropic factor for the group IVA ternary
spinel nitrides are shown for PBEsol.

For γ -CSi2N4, the calculated lattice constants by the
GGA–PBEsol method are larger than the values predicted
by the GGA–PBE method [17,21] and smaller than that pre-
dicted by the OLCAO–LDA method [18,19]. The calculated
bulk modulus lies between PBE and OLCAO–LDA. For γ -
CGe2N4, the calculated lattice constants are larger than the
predicted values by GGA–PBE and OLCAO–LDA meth-
ods [17–19]. The calculated bulk modulus (267.08 GPa) by
the GGA–PBEsol method is in good agreement with the
previous results (259.2 and 266.0 GPa) by GGA–PBE and
OLCAO–LDA methods [17–19]. For γ -SiGe2N4, the cal-
culated bulk modulus (279 GPa) by the GGA–PBE method
[15] is close to the value (277.1 GPa) obtained by OLCAO-
LDA [14,18,19]. The other calculated results are also close
[16,17]. The calculated bulk modulus in the present work is
between these calculated results [14–19]. The Cij values cal-
culated by the PBE method of γ -SiGe2N4 in Refs. [15,16]
are also provided and compared. There are different results
of Cij values. Our PBEsol results are different from the two
results calculated by PBE. For γ -GeSi2N4, the calculated
lattice parameters in the present work are in good agree-
ment with the previous results [14,18]. The calculated bulk
modulus (288.02 GPa) in the present work is in good agree-
ment with the value 283.2 GPa obtained by the VASP-LDA
method [20]. And calculated C12 and C44 are different. For
γ -SnGe2N4, the calculated bulk modulus (199.88 GPa) in
the present work is in good agreement with the value 192.2
GPa obtained by the OLCAO–LDA method [19]. From
Table 1, we can find out that the LDA method underesti-
mates the lattice constants of the group IVA ternary spinel
nitrides, except γ -CSi2N4 and γ -GeSi2N4 [18,19].The elas-
tic constants and other mechanical properties are calculated
by the PBEsol method. Both PBE and PBEsol methods

somewhat overestimate the lattice constants; the reported
mechanical properties here are possibly underestimated. On
the other hand, LDA underestimates the lattice constants;
mechanical properties are possibly overestimated. The full
set of elastic constants of the group IVA ternary spinel ni-
trides and γ -Si3N4 are shown in Table 1. The total number
of independent elastic constants for cubic crystal classes is
3. The obtained elastic constants can be used to estimate the
mechanical stability of the crystal structure through Born–
Huang lattice dynamical criterion. The calculated elastic
constants Cij are shown in Table 1. In γ -CSn2N4, the cal-
culated C11 and C12 are negative values. For γ -SiC2N4,
γ -GeC2N4 and γ -SnC2N4, the calculated C12 values are
larger than the calculated C11 values. These results show
that γ -CSn2N4, γ -SiC2N4, γ -GeC2N4 and γ -SnC2N4 are
not mechanically stable because they do not satisfy the
well-known Born stability criterion [39] of Equation (1).
The corresponding mechanical stability conditions for cu-
bic crystals are

C11 > 0, C44 > 0, C11 − |C12| > 0, C11 + 2C12 > 0 (1)

In the cubic crystal system, the bulk modulus is calculated
by

BH = BV = BR = (C11 + 2C12) /3 (2)

In this work, shear modulus (G) is calculated with the
following equations for the cubic crystal:

GV =1

5
(C11 − C12 + 3C44) (3)

GR = 5C44 (C11 − C12)

3 (C11 − C12) + 4C44
(4)

GH = (GV + GR) /2 (5)

Then the Young’s modulus (E) and Poisson’s ratio (v)
are calculated by the following formulae:

E = 9BH GG/(3BH + GH ) (6)

ν = (3BH − 2GH ) / [2 (3BH + GH )] (7)

Usually, it is difficult to measure the elastic constants
by experiments because a single crystal is not available and
is difficult to prepare. However, the bulk modulus (B) and
shear modulus (G) can be measured to indicate their elastic
properties. Based on the works of Voigt [40], Reuss [41]
and Hill [42], the Voigt–Reuss–Hill arithmetic average is
frequently applied for estimating the mechanical moduli of
the polycrystalline materials.

The calculated elastic constants, bulk modulus (B),
shear modulus (G), Young’s modulus (E), Poisson’s ratio
(v) and B/G for stable group IVA ternary spinel nitrides,
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together with other available data previously reported, are
listed in Table 1. Our calculated elastic constants of γ -
CSi2N4, γ -CGe2N4, γ -SiGe2N4, γ -GeSi2N4, γ -SnGe2N4

and γ -Si3N4 agree well with other calculated results [14–
21,36,37]. In these stable crystals, the calculated bulk mod-
ulus (BH) and shear modulus (G) by the GGA–PBEsol
method are in good agreement with the previous results
[14–21,36,37]. The calculated Young’s modulus, Poisson’s
ratio (v), the ratio B/G and elastic anisotropy factor (A) of
γ -CSi2N4, γ -SiGe2N4 and γ -Si3N4 by the GGA–PBEsol
method agree with the previous results [10,15,21].

Moreover, the ratio B/G is also a simple relationship,
empirically linking the plastic properties of materials with
their elastic moduli. The ratio B/G is roughly considered
as a measurement to judge the brittleness [43]. A high B/G
value is associated with ductility, whereas a low value cor-
responds to brittleness and the critical value is around 1.75,
which separates ductile from brittle materials. The calcu-
lated B/G values are lesser than 1.75 by the GGA–PBEsol
method for these stable crystals. The calculated B/G val-
ues for the stable group IVA ternary spinel nitrides suggest
that they are brittle. The calculated B/G values, by both
GGA–PBEsol and GGA–PBE methods for γ -CSi2N4 [21],
are 1.04. For γ -Si3N4, the calculated B/G values are 1.17,
1.14 and 1.15 [10,21]. It suggests that γ -CSi2N4 is more
brittle than γ -Si3N4. For other stable group IVA ternary
spinel nitrides except γ -CSi2N4, the calculated B/G val-
ues are larger than 1.17, but all calculated B/G results are
smaller than 1.75. It suggests that other stable group IVA
ternary spinel nitrides, except γ -CSi2N4, are more ductile
than γ -Si3N4. Additionally, the brittleness and ductility can
be distinguished by the Frantsevich rule [44], which sug-
gests that the critical value of Poisson’s ratio of materials
is 1/3. For brittle materials such as ceramics, the Poisson’s
ratio is less than 1/3, whereas a higher value corresponds
to ductile nature. The calculated Poisson’s ratio (v) for all
stable group IVA ternary spinel nitrides is less than 1/3;
hence, they can be classified as brittle materials [10,21].
Therefore, all stable group IVA ternary spinel nitrides are
brittle materials. This conclusion agrees well with the result
of estimation from the ratio B/G.

The elastic anisotropy of crystals is of great importance
for both engineering science and crystal physics. There-
fore, it is significant to evaluate the elastic anisotropy. The
calculated anisotropic factor [21] is

A = (2C44 + C12)

C11
(8)

The calculated anisotropic factor (A) for γ -CSi2N4 and
γ -Si3N4 by the GGA–PBEsol method agrees with the pre-
vious results [10,21]. The results seem to indicate that our
results for mechanical moduli of these crystals are reliable.
For all stable group IVA ternary spinel nitrides, the cal-
culated anisotropic factor is about 1.21 for γ -CSi2N4 and

1.65 for γ -Si3N4. For an isotropic structure, we expect the
anisotropic factor to be close to unity. The value of 1 rep-
resents a completely elastic isotropy, while values smaller
or larger than 1 measure the degree of elastic anisotropy.
This indicates that the isotropy increases from γ -Si3N4 to
γ -CSi2N4. This conclusion is consistent with the predicted
result by Zhang et al. [21].

The calculated anisotropic factor is 0.95 for γ -CGe2N4

and 1.07 for γ -SiSn2N4, suggesting that γ -CGe2N4 and
γ -SiSn2N4 are bigger isotropic structures. The next value
of anisotropic factor is 1.21 for γ -CSi2N4. The values of
anisotropic factor for γ -GeSi2N4 and γ -GeSn2N4 are 1.40
and 1.45, respectively, and the values of anisotropic factor
for γ -SnSi2N4 and γ -SnGe2N4 are 1.73 and 1.68, respec-
tively. These indicate that the anisotropy decreases from
γ -Si3N4 to γ -GeSi2N4 and γ -GeSn2N4 to γ -CSi2N4 to
γ -CGe2N4 γ -SiSn2N4 and the anisotropy increases from
γ -Si3N4 to γ -SnSi2N4 and γ -SnGe2N4.

The simplest way to illustrate the anisotropy of mechan-
ical moduli is to plot them the three-dimensional space as
a function of direction. Here, we plot the bulk modulus or
Young’s modulus at different directions using spherical co-
ordinates. The directional dependence of bulk or Young’s
modulus can be evaluated using the following relationships.
For orthorhombic crystal class, they are given as [45,46]

1

B
= (S11 + S12 + S13)l2

1 + (S12 + S22 + S23)l2
2

+ (S13 + S23 + S33)l2
3 (9)

1

E
= S11l

4
1 + 2S12l

2
1 l

2
2 + S22l

4
2 + 2S23l

2
2 l

2
3 + S33l

4
3

+ 2S13l
2
1 l

2
3 + S44l

2
2 l

2
3 + S55l

2
1 l

2
3 + S66l

2
1 l

2
2 (10)

For cubic crystal class, one can derive the corresponding
relationships from Equations (9) and (10) for orthorhombic
crystal class. In this work, they are written as

1

B
= (S11 + 2S12)(sin2 θ + cos2 ϕ) (11)

1

E
= S11[sin4 θ (cos4 ϕ + sin4 ϕ) + cos4 θ ] + (2S12 + S44)

× (sin4 θ cos2 ϕ sin2 ϕ + sin2 θ cos2 θ ) (12)

In the above equations, Sij represents the compliance
matrix, l1, l2 and l3 are the direction cosines, which are
given as l1 = sin θ cos ϕ, l2 = sin θ sin ϕ and l3 = cos ϕ

under spherical coordinates. For cubic crystal structure,
the mechanical anisotropy of them is approximated using
Equations (11) and (12).

In Figure 2, we show the plotted graphs for the me-
chanical stable structures of group IVA ternary spinel ni-
trides. The surface in each graph represents the magnitude
of bulk or Young’s modulus along different orientations.
From the graphs, we can clearly see that the bulk modulus
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Molecular Physics 3059

Figure 2. The surface constructions of bulk modulus (B) and Young’s modulus (E) for γ -CGe2N4 [(a) and (b)]; γ -SiSn2N4 [(c) and (d)];
γ -CSi2N4 [(e) and (f)]; γ -SiGe2N4 [(g) and (h)]; γ -GeSi2N4 [(i) and (j)]; γ -GeSn2N4 [(k) and (l)]; γ -Si3N4 [(m) and (n)]; γ -SnGe2N4

[(o) and (p)]; and γ -SnSi2N4 [(q) and (r)]. The magnitude of bulk or Young’s modulus in different directions is represented by the contour.
For all graphs, the units are in gigapascal. All graphs are plotted using MATHEMATICAL 5.0 software in spherical coordinates, and one
may obtain different views of these graphs by setting different box ratios and view points.
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Figure 2. Continued.
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Figure 2. Continued.
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3062 Y.-C. Ding and M. Chen

shows strong isotropy and the Young’s modulus shows some
anisotropy at different orientations. We can clearly see that
the Young’s modulus of each of γ -CSi2N4, γ -SiSn2N4, γ -
CSi2N4 and γ -GeSn2N4 shows slight anisotropy and the
Young’s modulus of γ -SiGe2N4 shows some anisotropy for
different orientations. The Young’s moduli of γ -GeSi2N4,
γ -Si3N4, γ -SnGe2N4 and γ -SnSi2N4 show significant
anisotropy for different orientations. The calculated elas-
tic anisotropic factor (A) is in agreement with the Young’s
modulus graphs of γ -CGe2N4 [Figure 2(b)], γ -SiSn2N4

[Figure 2(d)], γ -CSi2N4 [Figure 2(f)], γ -SiGe2N4 [Figure
2(h)], γ -GeSi2N4 [Figure 2(j)], γ -GeSn2N4 [Figure 2(l)],
γ -Si3N4 [Figure 2(n)], γ -SnGe2N4 [Figure 2(p)] and γ -
SnSi2N4 [Figure 2(r)] for these stable group IVA ternary
spinel nitrides and γ -Si3N4.

3.2. Intrinsic hardness

Considering that the dependence of hardness on bulk or
shear modulus is not monotonic, a quantitative estimate is
essential. The hardness of γ -Si3N4 and γ -CSi2N4 is eval-
uated using the microscopic hardness model [21,47], and
the detailed strategy for computation can be referred to in
the previous works [10,21,47–52], in which the theoretical
hardness of typical covalent and polar covalent crystals was
calculated with high accuracy. γ -CSi2N4 should be a poten-
tially superhard material [21]. Therefore, we calculated the
hardness of stable group IVA ternary spinel nitrides using
this method. In stable group IVA ternary spinel nitrides (γ -
AB2N4), there are two types of chemical bonds, i.e. A–N
and B–N. Therefore, these stable group IVA ternary spinel
nitrides are complex crystals according to the microscopic
model of hardness. The hardness calculation equation can
be written as follows:

HV = [(
HA−N

V

)n1
(
HB−N

V

)n2
] 1

n1+n2 (13)

where HA−N
V and HB−N

V are the hardness of the hypotheti-
cal binary compounds made of pure X–N and Y–N bonds,
respectively. They can be calculated as

H
A(B)−N
V = 350

(
NA(B)−N

e

)2/3
e−1.191f

A(B)−N
i

/(
dA(B)−N

)2.5

(14)
where N

A(B)−N
e is the valence electron density of the hy-

pothetical compounds composed of A–N and B–N bonds.
f

A(B)−N
i is the Phillips ionicity of A–N and B–N bonds.

dA(B)−N is the length of the A–N and B–N bonds. NA(B)−N
e

can be calculated by

NA(B)−N
e = (

nA(B)−N
e

)/
υ

A(B)−N
b (15)

In the above equation, n
A(B)−N
e is the total number of va-

lence electrons per A (B)−N bond, and υ
A(B)−N
b denotes the

bond volume. The two parameters n
A(B)−N
e and υ

A(B)−N
b are

calculated by

nA(B)−N
e = [(

ZA−N
A

)/
NCA + (

ZB−N
B

)/
NCB

]
(16)

υ
A(B)−N
b = (

dA(B)−N
)3

/ ∑
A(B)−N

[(
dA(B)−N

)3
N

A(B)−N
b

]
(17)

NCA and Z
A(B)−N
A are the coordinate number and the number

of valence electrons of atoms A and B, respectively.
The f

A(B)−N
i can be calculated as

f
A(B)−N
i = (

f
A(B)−N
h

)0.735
(18)

= [
1 − exp

(− ∣∣Pc − P A(B)−N
∣∣/P A(B)−N

)]0.735

where f
A(B)−N
i is the generalized ionicity scale of the A–N

and B–N bonds. P A(B)−N is the Mulliken overlap popula-
tion of the A–N and B–N bonds that can be derived from
first-principles calculations. Pc is the overlap population of
a pure covalent bond in a pure covalent crystal, containing
the same type of chemical bond. In the cubic spinel struc-
tures of A(t)B(o)2N4, Pc is 0.91 for the A(t)–N bond and
0.57 for the B(o)–N bond [19,52,53].

The calculated bond parameters and Vickers hardness
are listed in Table 2. For γ -Si3N4, the calculated Vickers
hardness is 32.45 GPa by the GGA–PBEsol method. This
value of γ -Si3N4 is in good agreement with its experimental
values (30 and 35 GPa) [53,54] and other estimated values
(35.6, 33.3 and 30.9 GPa) [10,22,47].

The calculated Vickers hardness of γ -CSi2N4 is
43.68 GPa by the GGA–PBEsol method. Our calculated
value of γ -CSi2N4 is remarkably smaller than the calcu-
lated value (52.07GPa) by Zhang et al. [21]. We can find
that f Si−N

i of γ -CSi2N4 calculated by the GGA–PBEsol
method is larger than the Zhang’s calculated value by the
GGA–PBE method, indicating that ionicity of Si–N bonds
for γ -CSi2N4 may be underestimated. For a superhard com-
pound, the Vickers hardness is assumed to be greater than
40 GPa. According to these calculated data, γ -CSi2N4 is
also predicted to be a superhard material.

Using the GGA–PBEsol function, the hardness for sta-
ble group IVA ternary spinel nitrides is calculated. We can
clearly see that the hardness of the stable group IVA ternary
spinel nitrides is smaller than γ -Si3N4 except γ -CSi2N4.
The hardness of γ -GeSi2N4 is 29.57 GPa, which is in agree-
ment with the calculated value (28 GPa) [20]. The hardness
of γ -Si3N4 is 32.45 GPa which is slightly smaller than the
experimental values (30 and 35 GPa) [53,54]. For γ -Si3N4,
the calculated value of hardness is 32.45 GPa, which is
in agreement with the other calculated values (35.6, 33.3
and 30.9 GPa) [10,22,47]. The hardness of γ -CGe2N4, γ -
SiGe2N4 and γ -SnSi2N4 is 25.17, 20.30 and 21.54 GPa,
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Table 2. Bond parameters, bond length (Å), cell volume (Å3) and calculated Vickers hardness (GPa) of group IVA ternary spinel nitrides.

Crystal Function Bond
Bond
length V Ne P Pc fi Hμ

v Hv Hv (G) HExp

γ -CSi2N4 This work GGA–PBEsol C(t)–N 1.57058 397.29 1.070 0.74 0.91 0.312 87.68 43.68 47.76
Si(o)–N 1.85007 397.29 0.558 0.45 0.57 0.344 34.63

Zhang et al. 21 GGA–PBE C(t)–N 1.564 384.82 1.190 0.78 0.91 0.252 95.17 52.07
Si(o)–N 1.825 384.82 0.578 0.51 0.57 0.199 42.59

γ -CGe2N4 This work GGA–PBEsol C(t)–N 1.58593 460.78 1.071 0.76 0.91 0.283 82.59 25.17 31.19
Ge(o)–N 1.98203 460.78 0.468 0.30 0.57 0.681 16.94

γ -SiGe2N4 This work GGA–PBEsol Si(t)–N 1.80023 530.54 0.691 0.74 0.91 0.312 43.38 20.30 29.69
Ge(o)–N 1.99679 530.49 0.432 0.30 0.57 0.681 15.76

Dong et al. 20 VASP–LDA Si(t)–N 1.7837
Ge(o)–N 1.9776

Bouhemadou
et al. 15

GGA–PBE Si(t)–N 1.772 498.39 0.79

Ge(o)–N 1.950 498.39 0.36
γ -SiSn2N4 This work GGA–PBEsol Si(t)–N 1.83794 673.18 0.677 0.71 0.91 0.356 38.55 16.34 20.81

Sn(o)-N 2.22595 673.18 0.325 0.38 0.57 0.504 12.27
γ -GeSi2N4 This work GGA–PBEsol Ge(t)–N 1.87612 496.34 0.590 0.55 0.91 0.580 25.61 29.57 33.16

Si(o)–N 1.89055 496.34 0.492 0.47 0.57 0.300 31.03
Dong et al. 20 VASP–LDA Ge(t)–N 1.8523 28

Si(o)–N 1.8768
γ -GeSn2N4 This work GGA–PBEsol Ge(t)–N 1.96342 718.49 0.538 0.53 0.91 0.610 20.72 14.59 17.13

Sn(o)–N 2.22521 718.49 0.315 0.41 0.57 0.440 12.98
γ -SnSi2N4 This work GGA–PBEsol Sn(t)–N 2.05713 564.49 0.510 0.56 0.91 0.570 18.67 21.54 23.38

Si(o)–N 2.05713 564.49 0.435 0.46 0.57 0.320 22.60
γ -SnGe2N4 This work GGA–PBEsol Sn(t)–N 2.09432 637.89 0.420 0.67 0.91 0.470 18.98 14.42 18.14

Ge(o)–N 2.027771 637.89 0.394 0.27 0.57 0.750 13.16
γ -Si3N4 This work GGA–PBEsol Si(t)–N 1.7774 465.80 0.71 0.71 0.91 0.3562 47.74 32.45 37.39 30[53],

35[54]
Si(o)–N 1.8823 465.80 0.51 0.44 0.57 0.3671 24.61

He et al. 10 GGA–PBE Si(t)–N 1.750 445.68 0.740 0.4 43.88 33.3
Si(o)–N 1.856 445.68 0.529 0.4 30.34

Guo et al. 47 GGA–PBE Si(t)–N 1.75 0.74 0.341 47.1 35.6
Si(o)–N 1.856 0.529 0.344 32.4

Gao et al. 22 GGA–PBE Si(t)–N 1.75 447.697 0.87 0.27 57.9 30.9
Si(o)–N 1.86 447.697 0.49 0.52 25.1

respectively. The hardness of γ -SiSn2N4 is 16.34 GPa,
which is slightly more than the hardness value (14.59 GPa)
of γ -GeSn2N4. The hardness (14.59 GPa) of γ -GeSn2N4 is
close to the hardness (14.42 GPa) of γ -SnGe2N4.

In Gao’s method, one can calculate the hardness for each
chemical bond type. From the results listed in Table 2, we
can conclude that the high hardness of γ -CSi2N4 is mainly
attributed to C(t)–N and Si(o)–N bonds. In γ -CSi2N4, C(t)–
N bond is stronger than Si(o)–N bond. In the stable group
IVA ternary spinel nitrides (γ -AB2N4), if atomic number
A is smaller than atomic number B, we can clearly see the
A–N bond is stronger than B–N bond.

In several previous works, Teter [55] and Brazhkin et al.
[56] have clearly noted that the bulk modulus has been
suggested as a possible indicator of the hardness values.
The correlation is very poor. However, the shear modu-
lus is a much better measure to correlate with predicted
hardness [55,56]. Recently, Jiang et al. [57] also proposed
some empirical relationships between mechanical moduli

(bulk modulus (B), shear modulus (G) and Young’s modulus
(E)) and Vickers hardness. The results clearly indicate that
hardness is highly correlated to shear modulus (G), but the
correlation of hardness to bulk or Young’s modulus is poor.
The following relationship is obtained for shear modulus
(G) and Vickers hardness:

G = 6.78HV (19)

The estimated microhardness HV using Equation (19) is
also listed in Table 2. We find that the calculated hardness of
the stable group IVA ternary spinel nitrides using Equation
(19) is larger than the calculated results by Gao’s method.
For γ -Si3N4, the calculated value is 37.39 GPa using Equa-
tion (19), which is significantly larger than the experimental
values (30 and 35 GPa) [53,54]. The calculated hardness of
the stable group IVA ternary spinel nitrides by Gao’s and
Jiang’s methods indicates that the group’s ternary spinel
nitrides, except γ -CSi2N4, are not superhard materials.
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Table 3. Calculated Debye temperature (	D, K), the calculated theoretical density
(
ρ, g/cm3

)
, and the longitudinal, shear and average

sound wave velocities (vl, vt and vm; m/s).

Species Function ρ vl vt vm 	D

γ -CSi2N4 GGA–PBEsol 4.153 13590.21 8829.93 9683.89 1501.14
γ -CGe2N4 GGA–PBEsol 6.147 9450.95 5865.54 6466.36 953.79
γ -SiGe2N4 GGA–PBEsol 5.741 9569.64 5921.59 6530.22 919.13

GGA–PBE 15 6.32 9604 6005 7584 1090
GGA–PBE 16 6.347 3501 1962 2559 356

γ -SiSn2N4 GGA–PBEsol 6.344 7765.73 4715.48 5210.29 677.48
γ -GeSi2N4 GGA–PBEsol 4.946 10901.98 6742.63 7436.04 1070.36
γ -GeSn2N4 GGA–PBEsol 6.767 6783.58 4142.43 4574.49 582.01
γ -SnSi2N4 GGA–PBEsol 5.432 9128.42 5402.62 5984.44 825.08
γ -SnGe2N4 GGA–PBEsol 6.662 7390.88 4297.23 4767.77 631.11
γ -Si3N4 GGA–PBEsol 4.001 12672.72 8016.17 8818.85 1296.44

Other calc. 36 4.180 1050–1100
Expt. 37 1150

3.3. Debye temperature

Mechanical properties can be related to a thermodynamic
parameter, such as Debye temperature, specific heat, ther-
mal expansion and melting point. [58] We have calcu-
lated the Debye temperature (	D) for the stable group IVA
ternary spinel nitrides. By the relation between the mean
sound velocity (vm) and Debye temperature (	D), we have
[59,60]

	D = h

kB

[
3n

4π

(
NAρ

M

)]1/3

vm (20)

vm =
[

1

3

(
2

v3
t

+ 1

v3
l

)]−1/3

(21)

vl =
√

B + (
4
3

)
G

ρ
(22)

vt =
√

G

ρ
(23)

where 	D is the Debye temperature, h is the Planck’s con-
stant, kB is the Boltzmann constant, NA is the Avagadro’s
constant, n is the number of atoms per formula, M is the
molecular weight, vl and vt are the longitudinal and trans-
verse velocities, respectively; ρ is the theoretical density of
the compound, and B and G are bulk modulus and shear
modulus, respectively.

In this paper, the Debye temperature of the stable group
IVA ternary spinel nitrides is calculated by the GGA–
PBEsol method, as per Equation (20) and is shown in
Table 3. The Debye temperature (	D) for γ -Si3N4 by the
GGA–PBEsol method is slightly larger than the other cal-
culated result [36] and experimental value [37]. The De-
bye temperature (	D) of γ -SiGe2N4 is 919.13 K, which is
slightly smaller than the value calculated by Bouhemadou

et al. (1090 K) [15]. However, we can see that the Debye
temperature (	D) of γ -SiGe2N4 is 356 K by Moakafi et al.
[16]. This value is significantly smaller than the value cal-
culated by Bouhemadou et al. [15]. As can be seen from
Table 3, the computed sound velocities of γ -CSi2N4 and γ -
CSi2N4 are very large, especially for longitudinal sound ve-
locity, because γ -CSi2N4 has the largest mechanical mod-
uli. Therefore, the calculated Debye temperature and the av-
erage sound velocity of γ -CSi2N4 are larger than the other
stable structures. The Debye temperatures for most crystals
are around 200–400 K. The calculated Debye temperature
of γ -CSi2N4 is 1501.14 K, indicating that γ -CSi2N4 is the
hardest of these stable group IVA ternary spinel nitrides.
For γ -GeSi2N4, the calculated Debye temperature is about
1070.36 K, suggesting that γ -GeSi2N4 is just as hard as
γ -Si3N4. This conclusion supports the calculated hardness
of γ -GeSi2N4 and γ -Si3N4. In Table 3, the other stable
structures have larger Debye temperature, suggesting that
these materials have higher hardness.

4. Conclusions

In summary, we study theoretically the elastic properties,
intrinsic hardness and Debye temperature of ternary cu-
bic spinel nitrides. The new cubic spinel structures are de-
signed by the substitutional method. The results indicate
that eight ternary cubic spinel structures – γ -CSi2N4, γ -
CGe2N4, γ -SiGe2N4, γ -SiSn2N4, γ -GeSi2N4, γ -SiSn2N4,
γ -SnSi2N4 and γ -SnGe2N4 – are mechanically stable. γ -
CSn2N4, γ -SiC2N4, γ -GeC2N4 and γ -SnC2N4 are not me-
chanically stable. The elastic constants of the eight sta-
ble ternary nitrides are calculated using the stress–strain
method in the CASTEP code. We found that these spinel
ternary nitrides have relatively larger elastic constants. De-
rived elastic constants, such as bulk modulus, shear modu-
lus, Young’s modulus, Poisson coefficient and brittle/ductile
behaviour, are estimated with the polycrystalline approach
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using Voigt–Reuss–Hill theories. The calculated B/G val-
ues and the Poisson’s ratio for γ -CSi2N4 suggest that γ -
CSi2N4 is the most brittle of these eight crystals. The calcu-
lated anisotropic factors for the stable ternary cubic spinel
structures show that γ -CGe2N4, γ -SiSn2N4 and γ -CSi2N4

have higher isotropy, and γ -SnSi2N4 and γ -SnGe2N4 have
higher anisotropy than γ -Si3N4. The intrinsic hardness and
the Debye temperature are predicted by the semi-empirical
theory. In terms of the results, γ -CSi2N4 should be viewed
as a superhard material, with some peculiar mechanical
properties. γ -CSi2N4 and γ -GeSi2N4 have large Debye
temperatures. It is expected that greater attention will be
paid on synthesizing these materials in the future.
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