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1. Introduction

To describe the dynamics of Nicholson’s blowflies model in [1], Gurney et al. [2] presented a mathematical model

N'(t) = —3N(t) + pN(t — T)e~ N0, (1.1)

Here, N(t) is the size of the population at time ¢, p is the maximum per capita daily egg production, 1 is the size at which the
population reproduces at its maximum rate, J is the per capita daily adult death rate, and 7 is the generation time. The model
and its modifications have been extensively and intensively studied and numerous results about its stability, persistence,
attractivity, periodic solution and so on (see [3-8]) have been obtained. However, the main focus of Nicholson’s blowflies
model is on the scalar equation and results about patch structure of this model are rarely gained. Due to the real world appli-
cation of patch structure in population dynamics, some population dynamic models with patch structure and delays have
been studied by several authors. We refer the reader to [9-12] and the references cited therein. In particular, Faria [13] con-
sidered the global dynamics for a Nicholson’s blowflies model with patch structure and multiple discrete delays:

n m
Xi(t) = —dixi(t) + > _ayxi(t) + > _fixi(t — Ty)e ), (1.2)
= I

whered; >0, a; > Oforj =i, Ty >0, fi = Owithf; =" fu > 0forallij=1,2,...,n, k=1,2,...,mand always assume
a;=0forall 1 <ign.
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On the other hand, according to the exploitation of biological resources and the harvest of population species are
commonly practiced in fishery, forestry and wildlife management, the study of population dynamics with harvesting is
an important subject in mathematical bioeconomics, which is related to the optimal management of renewable resources
(see [14-16]). Recently, assuming that a harvesting function is a function of the delayed estimate of the true population,
Berezansky et al. [17] gave the Nicholson’s blowflies model with a linear harvesting term:

X/(t) = 75}‘(’:) +px(t - T)eiaXt © Hx(t - )7 5>p7 T, avHv (UBS (07 +OO)> (13)

where Hx(t — o) is a linear harvesting term, x(t) is the size of the population at time t, p, a, ¢ and t have the same meaning as
in the Eq. (1.1). Moreover, Berezansky et al. [17] put forward an open problem: Find the dynamic behaviors of the Nicholson’s
blowflies model with a linear harvesting term.

Furthermore, Liu and Meng [18] proposed a class of non-autonomous Nicholson-type delay systems with linear
harvesting terms

X1 (t) = =0 (O)x1(t) + 1 (O)x2(t) + zmjc1j(t)xl (€ = Ty;(8))e O — Hy ()% (€ — 01(t)),
=

(1.4)
Xy(t) = —0a()x2(t) + B ()1 (F) + ZCZJ )Xz ( — Toi(£))e a0 — Hy (0)X, (€ — 02(8)),

where o, §;, Hi, 03, Cj, Yy, T : R' - Rl = [0, +o00) are almost periodic functions, and i = 1,2, j=1,2,...,m. Some criteria are
established to ensure the existence and exponential convergence of positive almost periodic solutions of this systems, which
partly answer the above open problem proposed by Berezansky et al. [17].

Motivated by [13,17,18], a corresponding question arises: Discover the existence and convergence of positive almost peri-
odic solutions of Nicholson’s blowflies model with patch structure and multiple linear harvesting terms. The main purpose of
this paper is to give the conditions to ensure the existence and convergence of positive almost periodic solutions of the fol-
lowing non-autonomous Nicholson’s blowflies model with patch structure and multiple linear harvesting terms:

n
Xi(t) = —ou(Oxi(t) + > _By()x;(8) + ZCU Ji(t — T(t))e WONETHO N THy(Oxi(t - oy(t)), i=1,2,...,n, (1.5)
j=1 j=1
where O, Bijs Ciky » Viky » Tiky » Ty » Hit - :R' — R1 are almost periodic functions, and i,j =1,2,...,n, k1 =1,2,...,m, ky = 1,2, ..
,L. To simplify the notation and without loss of generality, we will always assume ;(t) = 0 forall t e R] i =1,2,.
For convenience, we introduce some notations. Throughout this paper, given a bounded continuous functlon g deﬁned on
R', let g+ and g~ be defined as

= infg(t), g" =supg(t).

teR! teR!

It will be assumed that

o >0, ¢ >0, B >0 (i#]), i :max{max{t 1, maxo } >0 i,j=1,2,...,n, k=1,2,....m. (1.6)

1<j<
Let R"(R}) be the set of all (nonnegative) real vectors, we will use x = (x1,x3, ... .X,)" € R" to denote a column vector, in which
the symbol (") denotes the transpose of a vector. we let |x| denote the absolute-value vector given by |x| = (|x1], [X2], ..., [Xa])"

and define ||x|| = max; i<, |x;|. For matrix A = (a;),,,, A" denotes the transpose of A, A"' denotes the inverse of A, |A| denotes
the absolute-value matrix given by |A| = (|a;|),., and p(A) denotes the spectral radius of A. A matrix or vector A > 0 means
that all entries of A are greater than or equal to zero. A > 0 can be defined similarly. For matrices or vectors Aand B, A > B
(resp. A > B) means that A— B > 0 (resp. A — B > 0). For V(t) € C((a, +c0),R"), let

D’V( ) — lLr(l)‘l Supw7

D_V(t)  lim inf 2L+ = V(O

lim inf === === Ve € (0, +00). (1.7)

'Denote C = [[",C([-r;,0,R") and C, = H?:]C([—r,-,O],RD as Banach space equipped with the supremum norm defined
by

1<i<n | _r<t<0

loll = max{ sup |<P,-(f)|} for all @(t) = (¢;(£), P(8),-... @, (t)" € Clor € C.).

If x;(t) is defined on [t, —r;,v) with to,veR' and i=1,2,...,n, then we define x, € C as x;, = (x},x2,.. x") where
xi(0) =x(t +0) forall 0 € [-r;,0) and i =1,2,...,n.
The initial conditions associated with system (1.5) are of the form:
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X, = @, go:((p17gz)2,...7q0,1)TeC+ and ¢;0)>0, i=1,2,...,n (1.8)

We write x.(to, @) (x(t; to, )) for a solution of the initial value problem (1.5) and (1.8) . Also, let [to,#(¢)) be the maximal
right-interval of existence of x;(to, @).

The remaining part of this paper is organized as follows. In Section 2, we shall give some notations and preliminary re-
sults. In Section 3, we shall derive new sufficient conditions for checking the existence, uniqueness and local exponential
convergence of the positive almost periodic solution of (1.5). In Section 4, we shall give some examples and numerical sim-
ulations to illustrate our results obtained in the previous section.

2. Preliminary results

In this section, some lemmas and definitions will be presented, which are of importance in proving our main results in
Section 3.

Definition 2.1 (see [19,20]). Let u(t) : R' — R" be continuous in t. u(t) is said to be almost periodic on R', if for any & > 0, the
set T(u,&) = {&: [u(t + &) — u(t)| < ¢ for all t € R'} is relatively dense, i.e., for any ¢ > 0, it is possible to find a real number
I=1(¢) >0, such that for any interval with length I(¢), there exists a number § =4(¢) in this interval such that
lu(t + ) —u(t)| < &, for all t € R.

Definition 2.2 (see [19,20]). Let x € R" and Q(t) be a n x n continuous matrix defined on R'. The linear system
X(t) = Q(t)x(t) (2.1)

is said to admit an exponential dichotomy on R! if there exist positive constants k, o, projection P and the fundamental solu-
tion matrix X(t) of (2.1) satisfying

IX(OPX ()| < ke™ ™ forall t > s,
IX()(I = P)X"(s)]| < ke ™™ forall t <s.

Definition 2.3. A real n x n matrix K = (k;) is said to be an M-matrix if k; <0, i,j=1,...,n, i#jand K" > 0.
Set
B={@|p = (¢,(t),...,,(t))" is an almost periodic vector function on R'}.

For any ¢ € B, we define induced module ||@||; = Sup,_; MaX;<i<n|@;(t)|, then B is a Banach space.

Lemma 2.1 (see [19,20]). If the linear system (2.1) admits an exponential dichotomy, then almost periodic system
X (t) = Q(t)x +g(t) (2.2)
has a unique almost periodic solution x(t), and

x(t) = / [‘X(t)PX’l(s)g(s)ds— +OCX(t)(I—P)X*1(s)g(s)ds. (2.3)

t

Lemma 2.2 (see [19,20]). Let ¢;(t) be an almost periodic function on R' and
N B
Mici] = Tllrgj /[ c(s)ds>0, i=1,2,...,n
Then the linear system
X (t) = diag(—c1(t), —C2(t), ..., —cn(t))x(t),

admits an exponential dichotomy on R'.

Lemma 2.3 (see [21,22]). Let A > 0 be an n x n matrix and p(A) < 1, then (I, — A)~' > 0, where I, denotes the identity matrix of
size n.

Lemma 2.4. Suppose that there exist positive constants E;, and Ej, such that
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Eqn > Ep —+ —— < Ey (2.4)
’ o o g '
ﬁ]] ]2 j —TE; ! HTEll 1
—E1e i N Y Sy (2.5)
wherei=1,2,...,n. Let

C°:={¢p|p € C,Ey < ¢;(t) <Ey, forallte[-r,0],i=1,2,...,n}.
Moreover, assume that x(t; to, ¢) is the solution of (1.5) with ¢ € C°. Then,

En < xi(t;to, @) < Ey, forallte[to,n(e)), i=1,2,...,n (2.6)
and n(@) = +oc.

Proof. Set x(t) = x(t; to, @) for all t € [to,n(¢)). Let [to,T) C [to, #(¢)) be an interval such that

0<xi(t) foralltet,T),i=1,2,...,n, (2.7)
we claim that

0<x(t)<Ey foralltelt,T),i=1,2,...,n (2.8)
Assume, by way of contradiction, that (2.8) does not hold. Then, it exist t* € (to,T) and k € {1,2,...,n} such that

X (t)=En and 0 <x(t)<Ey foralltelty—r,t), i=1,2,...,n (2.9)
Calculating the derivative of x,(t), together with (2.4) and the fact that sup,.,ue* =1, (1.5) and (2.9) imply that

0 < X (t") = —o ()X (t +Zﬁk] ()X, () + Z "’ y,q ()% (£ — Tig(£7) ) T (7))
- ZHk] Xk t - Gk](t )) OCka + Zﬁkj j1 + Z’)}
kJ
—E + Zﬁkj j1 Z k]
“ % Vi€
j=1 <]

=1

which is a contradiction and implies that (2.8) holds.
We next show that

Xi(t) > Ep, forallte (to,n(p)), i=1,2,...,n. (2.10)
Suppose, for the sake of contradiction, that (2.10) does not hold. Then, there exist s* € (to,7(¢)) and k € {1,2,...,n} such that

X (') =Ex, and x;(t) >Ep forallte[to—r,s),i=1,2,...,n (2.11)
From (2.5), (2.8) and (2.11), we get

1
<m /i

forall t e to—r1,8%), i=1,2,...,n, j=1,2...,m. Calculating the derivative of x,(t), together with (2.5) and the fact that
min; < < ce ™ = ke, (1.5), (2.11) and (2.12) imply that

0 > X,(s7) = —(s")Xi(s "’Zﬁkf +chl Xk (s — Tg(s7))e ) il mle) ZHKJ )Xk (s* — 015(s%))
Ciji( _y
= —o(s")x(s +Zﬁk, Z "y LS — Tig(s))e 7o (s s ZH,Q (s — ai5(s"))
=1k
Z = )+ Zﬁk} 2+ Z + 'J/]:;Xk — Tyi(s ))6 (s ZHk]Ekl

S +Zﬁzq ,2+2 mq e T —ZH:ZEM
BigE2 Ciy , HkEm
(E"HZ Za,‘i’f e Z f
=1 k

=1
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which is a contradiction and implies that (2.10) holds

2157
It follows from (2.8) and (2.10) that (2.6) is true. From Theorem 2.3.1 in [23], we easily obtain #(¢)
proof of Lemma 2.4. O

+o00. This ends the
3. Main results

Theorem 3.1. Let (2.4) and (2.5) hold. Moreover, suppose that
p(A'(B+C+H) <1,
where

A = diag(e;, 05,

(3.1)
m 1+ m zr m C+
,o0), C=diag Z—zl Z—zf Z ,
j=1 j=1 j=1
!
H= d1ag<ZHU,ZH2], . ~7ZH;]->, B— ( j)
j=1 j=1
Then, there exists a unique positive almost periodic solution of system (1.5) in the region B* = {@|p € B,E;» < @,(t) < Ex,
forallteR', i=1,2,....,n}.
Proof. For any ¢ € B, we consider an auxiliary system
!
Xj(t) = —oy(t +Zﬁu )o;(t —s—ZC,J i(t — T(t))e 7 OHE=T(0 ZH,] (t—oy5), i=1,2,....n (3.2)
j=1
Notice that M[oy] > 0(i = 1,2 ), it follows from Lemma 2.2 that the linear system
X;(t) = _ai(t)xi(t)7 i= 172a N,

solution x?(t) = (x‘{’(t), x0T

admits an exponential dichotomy on R'. Thus, by Lemma 2.1, we obtain that the system (3.2) has exactly one almost periodic
4 :

(3.3)
X(/)(l') _ [ u)du |:Zﬁll ¢] + ZC’]

1
)) —Vij (S)pi(s— Tx](s) ZHU
j=1
i=1,2.....n

— 0ii(s)) | ds,
Define a mapping T : B — B by setting

T(4(t)) =x’(t), V¢ €B.

Since B* = {@|p € B,Epn

< @i(t) <E
i=1,2,...,

w, forallteRi=1,2,...,n}, it i
n and any ¢ € B, from (2.4) and (3.4) and the fact that sup, . jue-
t

n}, it is easy to see that B" is a closed subset of B. For
sole™ =1 we have
t d n m
o< [ e S gy

1 1 L
(S)—— | ds < — "
= p= (S)yﬁ(s)e} s<°‘f Lz;ﬁj 1+Z7’u }
= ZﬁuEﬂ Zm: < Ej,

% = % Ve

In view of the fact that min;<,<,ue

(3.5)
<t = ke ", from (2.5), (2.6) and (3.4), we obtain
2 / e f o (u)du

Zﬂu 2+ ZC‘J

for all t e R'.

1
+y1] le( )) /Ud)xs T,, ZHU Gl]( )):| dS
j=1
BijEp
Z OC+ |:Zﬁu 12 +ZCUE116 /uEn ZH+E11 - Z ps Z

!

i Ein Z 'S E, forallteR
j=1 o =1 Jj=1 o
This implies that the mapping T is a self-mapping from B* to B

(3.6)
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Let @,y € B*, fori=1,2,...,n, we get

t it n
— [ (uyd ()0 (S—Ti:
/ e b u{ Bi(S)(p;(s) =¥ +§ Cii(5) (s — Tyi(5) )@ T
o Zj:l

sup|(T(¢(t)) = T(¥(t)));| = sup

teR! teR!

—Yi(s —Ty(s))e T ZHU i(5—0i s))_l//i(s_o-ij(s))):|ds

e {Zﬁi,-(s)(q)j(s) U+ L )i~ Tle))e o )
—00 j=1 =1 /i

=sup
teR! —
!
—75(SWi(s —Ty(5))e TN N "Hiy(5) (s — 0 (5)) — '//i(s_o-ij(s)))]dsv i=1,2,....,n
j=1
(3.7)
Since
1 . )
Vi($)@i(s — Tyi(5)) = VEn = yijm >1, forallseR', i=1,2,....,n,j=1,2,....m,
Sm i
and
1 . .
Vi(S)Wi(s — Ty(s)) = yyEn = yijm >1, forallseR',i=1,2,...,n,j=1,2,....m.
Sm/jj
According to (1.6), (2.5), (3.5)-(3.7), from sup,..,|.5*| = % and the inequality
_ _ 1-(x+0y—x 1
|xe™* —ye Y| = ‘% x—y‘ ge—2|x—y| where x,y € [1,+00), 0<0<1, (3.8)
we have

n

sup|(T(¢(t)) = T(W(1));] < Zﬁ'ﬂ sup|e;(t) — ;(t)| +sup | e e “)d”ZCU 22 [ Pi(s = T (8)) = Wils — T(5))lds

teRr! j=1 % teR! ter! J -
1 +
+> —Lsuplo;(t) - Y (0)|
j=1 % ter!
n ﬁ+ m CJ 1 Hl-}—
<D ISPl (0 = (D] + { D=5+ > |supley(t) — i (0)l, (3.9)
j=1 i teR! j=1 i =1 i ) teR!
Hence
T
<sup(T(<0(t)) = TW(O)l,- - sup[(T(e(t) — T(t//(t)))n)
teR! teR!
n m_ ct !
<<Za”sup<p,<> -<t>+<2 - )supm)l ~ (D), Zj”lf; sup|gp;(£) — v (0)
j=1 71 teR! j=1 j=1 teR! n teRr!

m ¢t I H: T T
(Za e2+za—'”>sup|<0n !//n(t)|> —F<Supcol(f)—lﬁ1(t)l,---7supl<ﬂn(t)—tﬁn(t)|>

j=1 j=1 ’n ) teR! teR! teR!

= F(Supl(w(t) = y(O)yl;- -+, supl(ep(t) — !ﬂ(f))n> ; (3.10)

teR! teR!
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where F =A™ (B+ C + H). Let u be a positive integer. Then, from (3.10) we get

(SUDI(T"(@(I)) = TE(O)), -+ sup|(TH (e (1) — T“(lﬁ(ﬂ)h)

teR! teR!

T
= (SUP(T(T"l((P(t))) =TT WO, supl(T(T* (g(1))) — T(T'ul(l//(t))))n|>

teR! teR!

teR! teR!

F<SUP(T”1 (@(6)) = T (W (O))y .-+, sup|(T* (g (1)) = T (lﬁ(t)))n|>

<P (supl((p(t) —W(O); -+ supl(@(0) - w))n)

teR! teR!
T
=F* (Sup%(f) =Yy (B)],-- -, sup|e,(t) — I//n(f)> - (3.11)
teR! teR!
Since p(F) < 1, we obtain
lim F* =0,
U—~+0o0

which implies that there exist a positive integer and N and a positive constant r < 1 such that
FN= (A" (B+C+H)" = (g, and Zn:gij <r, i=1,...,n (3.12)
j=1
In view of (3.11) and (3.12), we have
(T(@(1)) - TN(lﬁ(t))),-‘ < sup|(T"(ep(t) = T"(w(t) Zgusup\%( ) = ¥;(0)] < Supmaxl% —y;(t Izg

teRr! j=1 teR Rl 1Usn
< rlle) =¥ (0l
forallteR, i=1,2,...,n. It follows that

IT"((£)) = T (W(t))ll5 = supmax|(T" (¢p(t)) — TN(l//(f))),-’ <1llo(t) = YD)l (3.13)

teR! 1<ign

This implies that the mapping T" : B* — B* is a contraction mapping.
By the fixed point theorem of Banach space, T possesses a unique fixed point ¢* € B* such that Te* = ¢*. By (3.2),
@* satisfies (1.5). So ¢* is an almost periodic solution of (1.5) in B*. The proof of Theorem 3.1 is now complete. O

Theorem 3.2. Let x*(t) be the positive almost periodic solution of Eq. (1.5) in the region B*. Suppose that (2.4), (2.5) and (3.1) hold.
Then, the solution x(t; to, ¢) of (1.5) with ¢ € C° converges exponentially to x*(t) as t — +oc.

Proof. Since p(A™'(B+C+H)) < 1, it follows Theorem 3.1 that system (1.5) has a unique almost periodic solution x*(t) =
(x;(t),...,x;(t))T in the region B'. Set x(t)=x(t;to,) and y;(t)=x(t)—x;(t), where ¢ eC’ teto—ri,+00),
i=1,2,...,n. Then

Yi(t) = - +Zﬁu i (t +Zcu (%i( — Ty(£))e OO (£ — Ty (£))e O RO

—Zl:Hy(t)yi(t—ij(f)% i=12,....n (3.14)
j=1

In view of (2.5) and (2.6), fori e {1,2,...,n} and j € {1,2,...,m}, we obtain

1
STy

and

1

“Ep >7v;————>1, forallteR,
D5 2 ming o

750 (t = 745())) =
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which, together with (3.8) and (3.14), imply that

Dly;(0)] < —ou(O)lyi(t |+Zﬁu )y;(t \+ZCU (£ — Ty (£))e ORI

l
+ > Hy(t)ly;(t — o3(t))]
=

C l’ .
— (it w+§jﬁu e |—+§j i) (O = y(e)e

=)

= (0 (€ = Ty())e O T ZHU(t) it = a5(0)] <
j=1
C
+Z it Iy, - Tt \+ZH i(t = a(0))]

—o; [yt |+Zﬁ y;(6) <Z”+ZH>

Jj=1

where y;(t) = sup; ;s lyi(s)l, i=1,2,....n

Again from p(A~'(B+ C + H)) < 1, it follows from Lemma 2.3 that I, — A~
there exist a constant j > 0 and a vector ¢ = (&1,¢&,...&,)" > (0,...,0)" such that

(In —A’l(B+C+H))é > (.. )"

Therefore,

1 m_ct 1 - )
G—o - B¢ (ZéJrZH;)ip,u, i=1,2,...,n,
% j=1 % j=1

1

which implies that

n m_ct l
—0 G+ BiG+ (Ze—%ZH;)é <-—offt, i=12....n
j=1 j=1 j=1
We can choose a positive constant # < 1 such that

néi +

j=1
Let ¢ > 1 be a positive constant such that
cée Mt > 1, forallte|to—rito], i=1,2,...,n

For all € > 0, let

et forallteR', i=1,2,...,n.

Zi(t) = ¢ [ij(fo) +é

j=1

From (3.17) and (3.19), we obtain

D_Zi(t) = [Zyj to) + &

= —0; ¢ [Z;&}(to) +ele Tt 4 (Z}ﬁa é,-)g {Eﬂ(to) +é
j= = j=

+ (ZC” +ZHU>$5, Zyj to) + ¢

j=1 Jj=1 j=1

t) +Zn:ﬁgzj(t) + (Z b +ZH )
=

j=1

e'llie~ n(t—to)

—ai€i+iﬁ§€j+(z ”+ZH )éle”rl i=1,...,n
=

e -t {—oc é,+2ﬁ (Z ) +ZH ) ’7”] [zn:fj(to)+8
=

X; (£ — Ty(€))e O (T

—o; [y (t |+Zﬁ ly;(t)

(3.15)

1(B+ C + H) is an M-matrix, we obtain that

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)



L. Wang/Applied Mathematical Modelling 37 (2013) 2153-2165 2161

where Z;(t) = sup,_, .., Zi(s), teR', i=1,2,....n.
In view of (3.18) and (3.19), fori =1,2,...,n, we have

n n
Zi(t) = ¢&; {ij(to) +ele ) >N "y (to) + & > [y;(t)], (3.21)
=1 =
where t € [ty —1i,t0], i=1,2,...,n.
We claim that
y;(t)] < Zi(t) forallt>ty, i=1,2,...,n. (3.22)
Contrarily, there must exist i € {1,2,...,n} and r* > t, such that
lyi(r)| =Zi(r*) and y;(0)] < Zj(t), forall te[to—r,1*), j=1,2,. (3.23)
which implies that
y;i(r)| = Zi(r') =0 and |y;(t)| -Z(t) <0, forallte[to—r1;,1), j=1,2,. . (3.24)
It follows that
D7(|y,(r*)| 721(’,*)) _ hlll‘(l)l sup Hyl(r)< + h)| _Zi(r* +:)] B “yl(r )| _Zi(r )]
< }}1%1 sup |J’i(r* + h)”l — ‘yl(r*)l _ hlll,(l]_1 lnfw _ D7|y,(r*)\ _ D,Z,-(T*). (325)

From (3.15), (3.20) and (3.23), we obtain

D ()| <~ |+Zﬁ e |+<Zc”e(f +ZH>

Jj=1
=~ Zi(r +Zﬁ i (r)l + <Zc”e(f +ZH;> ()]
J =1
-7 (r*)+zﬁiyzj(r*)+ (Zcug* +ZH > )| < D_Zi(r"), (3.26)
J=1 j=1

which contradicts (3.25). Hence, (3.22) holds. Letting ¢ — 0" and M = nmax;<i<,{¢& + 1}, we obtain from (3.19) and (3.22)
that

n
[xi(6) =x; (£)| =[yi()] <C&)_Yj(to)e ") <céinl|p —x'[Je " <M[[p —x'|[e "), forallt>to,i=1,2,....,n. (3.27)

j=1

This completes the proof of Theorem 3.2. O

Remark 3.1. When n=2 and [ =1 in system (1.5), the existing results on almost periodic solutions for (1.5) have been
obtained under the assumption that the row norm of matrix A (B + C + H) is less than 1. Therefore, the related results in
[18] are direct corollaries of Theorems 3.1 and 3.2 of this paper.

Corollary 3.1. Let (2.4) and (2.5) hold. Suppose that I, — A™' (B + C + H) is an M-matrix. Then system (1.5) has exactly one almost
periodic solution x*(t). Moreover,the solution x(t; to, ) of (1.5) with ¢ € C° converges exponentially to x*(t) as t — +oc.

Proof. Notice that I, — A" (B+ C + H) is an M-matrix, it follows that there exists a vector d = (d;,...,d,)" > (0,...,0)" such
that

(In—A'(B+C+H))d >0, (3.28)
this is,
—ad+2ﬁ+d+<z ”+ZH )di<0,i—172,...,n. (3.29)
j=1
For any matrix norm || - || and nonsingular matrix D. ||A||, = ||[D"'AD|| also defines a matrix norm. Let D = diag(d,...,d,).

Then (3.29) implies that the row norm of matrix D™'A' (B + C + H)D is less than 1. Hence p(A™' (B + C + H)) < 1. Corollary
3.1 follows immediately from Theorems 3.1 and 3.2. O



2162 L. Wang/Applied Mathematical Modelling 37 (2013) 2153-2165
4. Examples and numerical simulation

In this section, we give two examples and numerical simulation to demonstrate the results obtained in the previous
section.

Example 4.1. Consider the following Nicholson’s blowflies model with patch structure and multiple linear harvesting terms:
X, (t) = —(18+cos2t)x;(t) + (1 + 0.7 sin’ t)et~2x,(t)

+€°71(9.5 + 0.005] sin v/2t|)x; (t — e2sintl)e-xi (=€)

+e°71(9.5 + 0.005] sin v/5t[)x; (£ — e210s V3t (t-e )

—0.1e%2 cos? tx; (t — e2IcosV3tl)
Xy (t) = —(18+sin® t)xy(t) + (1 + 0.7 cos? t)ee~2x; ()

+€°71(9.5 + 0.005| cos v/2t|)x, (t — e2 sty (t-e* )

+e1(9.5 + 0.005| sin v/6t|)x, (t — €205 V7t grat=e> 7

—0.05e%2 sin’ txy (t — e2lcos \/§t|)’

Obviously, o =18, o =19, 75 =7y =1, ¢; =9.5¢7, ¢j = 9.505e°1(i,j = 1,2); frp = Py = €%, iy = fyy = 1.7,
Hj, =0.1e*2, Hy, =0.05¢° 2, r; =15 = €2,

( 18 0 ) 0 1.7e%2
A= , B= 7
0 18 1.7e¢2 0

19.01e¢3 0 0.1e°2 0
C= . H= .
0 19.01e3 0  0.05¢2

Let E; =e and E; =1 fori = 1,2, we obtain

i:ﬁgEnJr 2. ¢; 1.7 +19.01e*?

- — = , 1i=1,2 (4.2)

e oy Yge 18
ﬁl] 2 ] J, CEq HTlE“ 19 + 2 —0.1et!

Z] 2;7 Tk _ = 5 >1, (4.3)

i HiEy; 194 e%2—0.05¢!

Z ] i _ TT21%21 :
=1 ; = 3 ' o 19 > 1, 44
A" (B+C+H))~0.9991 < 1, 45

p

Then (4.2)-(4.5) imply that the Nicholson’s Blowflies model with patch structure and multiple linear harvesting terms sys-
tem (4.1) satisfies (2.4), (2.5) and (3.1). Hence, from Theorem 3.1 and Theorem 3.2, system (4.1) has a positive almost peri-
odic solution

x(t)eB ={p|lpeB, 1< @t)<e, forallteR, i=1,2}.

Moreover, if ¢ € C° = {¢|p € C,1 < @,(t) < e, for all t € [-e2,0], i = 1,2}, then x(t; to, ¢) converges exponentially to x*(t) as
t — +o0.

Remark 4.1. System (4.1) is a very simple form of Nicholson’s Blowflies model with patch structure and multiple linear har-
vesting terms. One can observe that [|A™" (B + C + H)||, = 18¢241901¢2 1 0019 > 1, where || - ||, is the row norm of matrix.

Therefore, all the results in [18] and the references therein can not be applicable to system (4.1). This implies that the results
of this paper are essentially new.

Example 4.2. Consider the following Nicholson’s blowflies model with patch structure and multiple linear harvesting terms:
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X, (t) = —(19+ cos? t)x;(t) + (0.5 + 0.05 sin® t)e*2x, ()
+(0.5 4 0.05 cos? v2t)et2x3(t)
+e¢-1(10 + 0.005| sin v/3t|)x; (& — e2I5in V2t g (=521
+e°1(10 + 0.005| sin v/3t|)x; (£ — e20s V5t )g—xi (e=e 1)
—(0.1e%2 cos? v/2t)x; (t — e stl) — (0.1e°2 sin® v/2t)x; (t — e?/sintl)
—(19 + sin® £)x,(t) + (0.5 4 0.05 cos? t)e*~2x; (t)
+(0.5 4 0.05 cos? v/3t)et2x3(t)
+€°71(10 + 0.005| cos 2t|)x, (t — e2Isintl)e-xx(t-e?") (4.6)
+e21(10 + 0.005| cos 5t|)x, (t — e2sin7t)exx(t-e2 ™)
—(0.1€*2sin” v/2t)x, (t — e2<0sV3tl) _ (0.1e2-2 cos? v/2t)x, (t — e2sinv3t)
Xy(t) = —(19+sin* v2t)x3(t) + (0.5 + 0.05 sin” v/5t)e¢~2x; ()
+(0.5 + 0.05 cos? V/5t)e®2x, (t)
+e°71(10 + 0.005| cos 3t|)x3(t — e2/sin3t)g-xs(t-e?*")
+e°71(10 + 0.005] sin 5¢t|)x; (t — e2lcos3tl)pxs(t-e?*3t)
—(0.1e* 2 sin” v/5t)x3 (t — e2sinV5tl) — (0.1e% 2 cos? v/5t)x (t — e2lcos V5t

=
1S
—

—
N

I

Obviously, o =19, o =20, r;=max{maxij<>{7; }, MaXij«20; =e? (i=1,2,3); Vi=vi=1,¢= 10e*1, i = 10.005e% 1,
Hj =0.1e? (i=1,2,3, j=1,2); pj =0.5e°2, f; =0.55e2 (i,j =1,2,3, i #]).

19 0 O 0 0.55e¢72  (0.55e¢2
A= 0 19 0 |, B=] 0.55¢7? 0 0.55e°2 |,

0 0 19 0.55e¢72  0.55e°2 0

20.01e*3 0 0 0.2e°2 0 0
C= 0 20.01e3 0 , H= 0 0.2e°2 0

0 0 20.01e3 0 0 0.2¢°2

Let E;; =e and E; =1 fori=1,2,3, we obtain

3_BYE 2 ¢t e—1 e—2
Z[}U i Z G _11e +1§0.01e <e i=123, (4.7)
=1 % j=1 % V€
3 BiEn : 2 HyEn 20 +e°2 —0.2e*! .
Z u+1 +Z “E e ViEn _Z U,+l — 50 >1, i=1,2,3 (4.8)
j=1 % = j=1 %
and
A(B+C+ H)) ~ 09349 < 1. 49
o

Then, (4.7)-(4.9) imply that the Nicholson’s blowflies model with patch structure and multiple linear harvesting terms sys-
tem (4.6) satisfies (2.4), (2.5) and (3.1). Hence, from Theorem 3.1 and Theorem 3.2, system (4.6) has a positive almost peri-
odic solution

x'(t)e B ={plp B, 1< pt)<e, forallteR' i=1,23}.

Moreover, if ¢ € C° = {@|p € C,1 < @,(t) <e, for all t € [-e2,0], i = 1,2,3}, then x(t; to, @) converges exponentially to x*(t)
as t — +oo. The fact is verified by the numerical simulation in Fig. 1 with numerical solution x(t) = (x; (t), X2(t), x3(t))" of sys-
tem (4.7) for initial value ¢(t) = (1.5,1.5,1.5)".

Remark 4.2. To the best of our knowledge, few authors have considered the problems of positive almost periodic solution of
Nicholson’s blowflies model with patch structure and multiple linear harvesting terms. Therefore, the main results in
[13,18,24-32] and the references therein can not be applicable to prove that all the solutions of (4.6) with initial value
¢ € C° converge exponentially to the positive almost periodic solution. This implies that the results of this paper are new
and they complement previously known results.
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25 T T

Solution z1(t)

0 20 40 60 80 100 120 140 160
22
2 F -
1.8 - T
16 - Solution xo(t) 7]
14 ! ! ! ! ! ! !
0 20 40 60 80 100 120 140 160
2.2
2 F -
1.8 - T
16 i i
Solution x3(t)
14 ! ! ! ! !
0 20 40 60 80 100 120 140 160

Fig. 1. Numerical solution x(t) = (x; (t), X3 (t),x3(t))" of system (4.7) for initial value ¢(t) = (1.5,1.5,1.5)".
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