
Molecular Docking and QSAR Studies on
Substituted Acyl(thio)urea and Thiadiazolo [2,3-a]
Pyrimidine Derivatives as Potent Inhibitors of
Influenza Virus Neuraminidase

Jiaying Sun1,2,*, Shaoxi Cai1,2, Hu Mei1,2,*,
Jian Li2, Ning Yan2, Qin Wang2,
Zhihua Lin3 and Danqun Huo1,2

1College of Bioengineering, Chongqing University, Chongqing
400044, China
2Key Laboratory of biorheological science and technology of
Educational Ministry (Chongqing University), Chongqing 400044,
China
3College of Chemistry and Bioengineering, Chongqing Institute of
Technology, Chongqing 400050, China
*Corresponding authors: Jiaying Sun, wy7472@126.com; Hu Mei,
meihu@cqu.edu.cn

Surflex–Dock was employed to dock 36 thiourea
and thiadiazolo [2,3-a] pyrimidine derivatives into
neuraminidase 1a4g. Molecular docking results
showed that hydrogen bonding, electrostatic, and
hydrophobic features were important factors
affecting inhibitory activities of these neuramini-
dase inhibitors. Moreover, there was a significant
correlation between the predicted binding affinity
(total scores) and experimental pIC50 values with
correlation coefficient r = 0.846 and p < 0.0001.
Hologram quantitative structure–activity relation-
ship, comparative molecular field analysis, and
comparative molecular similarity indices analysis
were used to develop quantitative structure–
activity relationship models. Squared multiple
correlation coefficients (r 2) of hologram quantita-
tive structure–activity relationship, comparative
molecular field analysis, and comparative molecu-
lar similarity indices analysis models were 0.899,
0.878, and 0.865, respectively. Squared cross-vali-
dated correlation coefficient (q 2) of hologram
quantitative structure–activity relationship, com-
parative molecular field analysis, and comparative
molecular similarity indices analysis models was
in turn 0.628, 0.656, and 0.509. In addition,
squared multiple correlation coefficients for test
set (r 2

test) of hologram quantitative structure–
activity relationship, comparative molecular field
analysis, and comparative molecular similarity
indices analysis models were 0.558, 0.667, and
0.566, respectively. The most active sample ID 2
was taken as a template molecule to design new

molecules. Based on the comparative molecular
field analysis model, new compounds were
designed by LeapFrog. Seven new compounds
with improved binding energy and predicted activ-
ities were finally obtained.
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Neuraminidase (NA) is one of the two glycoproteins on the surface of
influenza virus, and NA is responsible for viral release from infected
cells and viral transport through the mucus in the respiratory tract (1).
Neuraminidase has been found to be a potential target to control
influenza virus (2). Neuraminidase inhibitors (NIs) form key compo-
nents of pandemic preparedness plans as treatment and prophylaxis
could reduce virus transmission (3). Sialic acid analogues are NIs that
reported most early. Then, different series of NIs were prepared, such
as cyclohexene (4), benzoic acid (5), pyrolidine derivates (6,7), and so
on. During the past decade, thiourea derivatives have been reported
to be effective against HIV and to have bactericidal action (8). But
few studies have been carried out concerning evaluations of substi-
tuted acyl(thio)urea and 2H-1,2,4-thiadiazolo [2,3-a] pyrimidine for
their antiviral activity (8). In 2006, a new class of substituted
acyl(thio)urea and 2H-1,2,4-thiadiazolo [2,3-a] pyrimidine derivatives
were prepared by Sun et al. (8). A highly specific anti-influenza virus
activity in cell culture was discovered. In vitro inhibitory activities of
influenza neuraminidase (H1N1) were also investigated and found to
correlate well with their antiviral efficacy in cell culture (8).

To develop potent antiviral agents, quantitative structure–activity
relationship (QSAR) studies of NIs have been carried out by many
researchers. For example, comparative molecular similarity indices
analysis (CoMSIA) studies of cyclohexene, cyclopentane, pyrolidine,
and benzoic acid derivatives were reported by Yi et al. (9). Based
on docking conformations, q 2 of four optimal QSAR models were
0.701 with nine optimal principal components (steric and electro-
static), 0.562 with 11 optimal principal components (steric, electro-
static and hydrophobic), 0.704 with 14 optimal principal components
(steric, electrostatic, and hydrogen bond), and 0.651 with ten opti-
mal principal components (steric, electrostatic, hydrophobic, and
hydrogen bond). In 2006, based on physicochemical and electronic
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Table 1: Structures, experimental activities, predicted activities, and docking scores of 36 NIs

ID R X Y Exp. pIC50 (M)

Pred. pIC50 (M)

Total Scores CScore
Hydrogen
bond numbersHQSAR CoMFA CoMSIA

1* 2-Cl OEt Me 5.78 6.03 6.45 6.14 4.11 3 6
2 2-Cl OEt OEt 7.10 6.80 6.85 7.03 8.33 4 9
3 2-Cl OH Me 6.49 6.38 6.74 6.70 4.80 3 6
4 2-Cl OMe OMe 5.75 5.92 5.76 5.74 4.81 3 6
5* 2-Cl Cl Cl 4.84 5.58 5.30 5.48 2.04 4 5
6 4-NO2 Cl Cl 5.78 5.90 5.95 6.02 3.22 4 3
7* 4-NO2 OEt Me 5.64 6.20 6.22 6.40 3.49 4 4
8 4-NO2 OH Me 6.44 6.35 6.26 6.21 3.82 3 6
9 5-(2-Cl-Ph)-2-furyl – – 5.85 6.01 5.77 5.72 5.09 5 7

10 5-(4-NO2-Ph)-2-furyl – – 5.89 5.98 5.78 5.67 4.32 3 7
11* Ph – – 5.75 6.28 5.48 5.71 3.92 4 5
12 OMe – – 5.74 5.89 5.95 5.86 4.78 3 7
13 (2,4-Cl2-Ph)-OCH2 – – 5.78 5.59 5.93 5.80 3.55 3 7
14 2,6-F2-Ph – – 5.84 5.59 5.75 5.85 3.89 5 7
15 S-(+)2-Me-1-(4-Cl-Ph)-Pr – – 5.87 5.94 5.95 5.83 4.80 3 6
16 cis-(-)CFPC – – 6.29 6.29 6.39 6.15 5.21 5 8
17* trans-(-)DCPC – – 6.59 6.30 6.96 6.16 5.47 4 7
18 5-(4-NO2-Ph)-2-furyl OMe Me 5.91 5.99 5.71 5.65 4.37 5 7
19 5-(2-Cl-Ph)-2-furyl OMe Cl 5.89 5.94 5.66 5.67 4.38 3 6
20 6-Cl-3-pyridyl Me OH 5.07 5.17 5.14 5.17 2.66 4 5
21 2-Cl-3-pyridyl Me Me 5.14 5.32 5.30 5.35 2.95 4 5
22 2-Cl-3-pyridyl OMe Cl 5.59 5.17 5.31 5.31 3.27 3 7
23 5,6-Cl2-3-pyridyl OMe OMe 4.73 4.92 5.05 4.96 2.10 4 6
24* Ph Me Me 5.68 5.71 5.69 5.55 3.66 3 4
25 2-Me-1-(4-Cl-Ph)-Pr OEt OEt 6.51 6.53 6.57 6.52 5.98 4 5
26 CFPC OMe OMe 6.01 5.97 5.73 5.90 4.16 4 5
27 CFPC Me Me 6.24 6.31 6.29 6.27 4.72 5 5
28 2-F-4-Cl-Ph Me Me 5.87 5.64 5.65 5.66 4.05 3 4
29 2-F-4-Cl-Ph OMe Cl 5.29 5.49 5.50 5.67 3.49 5 4
30* (2,4-Cl2-Ph)-OCH2 OMe OMe 5.72 5.32 6.18 6.17 4.49 3 3
31 5-(4-NO2–Ph)–2-Furyl Me OH 6.17 6.26 6.33 6.36 3.83 4 9
32* 5-(4-NO2–Ph)–2-Furyl OEt OEt 5.28 5.90 6.02 5.82 2.77 3 4
33 5-(2-Cl–Ph)–2-Furyl OEt Me 6.46 6.56 6.45 6.53 6.24 3 8
34 6-Cl-3-pyridyl OMe Cl 5.03 4.93 5.18 5.36 2.54 4 2
35* 6-Cl-3-pyridyl OEt OEt 7.04 6.83 6.82 6.73 4.92 5 6
36 2-Cl-3-pyridyl OMe OMe 5.62 5.54 5.41 5.40 4.03 4 3
37 zanamivir (GG167) – – – 5.71 5.96 5.91 7.73 5 9

CoMFA, comparative molecular field analysis; CoMSIA, comparative molecular similarity indices analysis; HQSAR, hologram quantitative structure–activity rela-
tionship
*Samples in test set; Total Sores: Surflex–Dock scores are expressed in )log10(Kd) units to represent binding affinities.
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Scheme 1: Various molecular skeletons. 1�8 (polysubstituted pyrimidinyl acyl(thio)urea analogues); 9�17 (tert-butylaminocarbonyl
acyl(thio)urea analogue); 18�30 (aryl and chrysanthemoyl R groups); 31�36 (2H-1,2,4-thiadiazolo [2,3-a] pyrimidine ring); CFPC (3-(2-chloro-
3,3,3-trifluropropenyl)-2,2-dimethyl cyclopropyl); DCPC (3-(2,2-dichloro ethenyl)-2,2-dimethyl cyclopropyl); zanamivir (37: GG167).
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parameters, QSAR of benzoic acid, carbocyclic ring, cyclopentane,
and isoquinoline derivatives was investigated by Rajeshwar et al.
(2), and 17 QSAR models with good statistical results were
obtained. Quantitative structure–activity relationship models of 46
NIs consisting of cyclohexene, cyclopentane, pyrolidine, and benzoic
acid derivatives were established by heuristic method (HM) and
radial basis function network (RBFNN), reported by L� et al. (10).
The result of linear HM model indicated that hydrophobicity and
hydrogen bond interactions played important roles in the activities
of NIs. Non-linear RBFNN models produced better results with good
predictive capability than the linear HM model. Based on spatial,
topological, electronic, thermodynamic, and E-state indices, QSAR of
40 thiourea analogues was investigated by Nair et al. (11). A statis-
tically significant model with five variables was obtained using

genetic algorithms. The results revealed that the atom type logP
and shadow indices (spatial indices) were the dominant features
affecting NA inhibitory activities.

In this paper, molecular docking, hologram quantitative structure–
activity relationship (HQSAR), comparative molecular field analysis
(CoMFA), and CoMSIA were employed to investigate ligand–recep-
tor interactions and construct QSAR models of 48 thiourea and thi-
adiazolo [2,3-a] pyrimidine derivatives (8). Based on the CoMFA
model, new compounds with improved binding energy were
designed by LeapFrog. Designed compounds were further selected
by QSAR models and docking.

Methods and Materials

Surflex–Dock in SYBYL 7.3 (Tripos, Inc., St. Louis, MO, USA) that was
applied to study molecular docking uses an empirical scoring function
and a potent search engine to dock ligands into a protein's binding
site (12). A Protomol (13) that is used to guide molecular docking is a
computational representation of the receptor's binding cavity to
which putative ligands are aligned. A Protomol can be generated
automatically or defined based on a cognate ligand or known active
site. In this paper, a Protomol was automatically generated. Two
parameters determining the extent of a Protomol, threshold parame-
ter of 0.31, and bloat parameter of 1 � were established. The total
Surflex–Dock score was expressed as )log10(Kd) to represent binding
affinities. The strengths of individual scoring functions combine to
produce a consensus that is more robust and accurate than any single
function for evaluating ligand–receptor interactions. So, CScore (Con-
sensus Score) (14) was used for ranking the affinity of ligands bound
to the active site of a receptor. CScore integrates a number of popular
scoring functions and provides several functions: D_Score (15), Poten-
tial of Mean Force (PMF)_Score (16), G_Score (17), and CHEM Score
(18). CScore ranges from 1 to 5, and the best is 5.

A

B

Figure 1: Hydrogen bonding interactions (dashed line) between
samples ID 2 (A), ID 23 (B) and key amino acid residues in the
active site.

Figure 2: Hydrogen bonding interactions (dashed line) between
the position calculated of zanamivir crystal structure and key amino
acids in the active site.
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In this paper, crystal structure of NA with zanamivir (GG167) was
retrieved from Protein Data Bank (entry code: 1a4g) (19). 1a4g is a
dimer of two chains. Only the monomeric unit was used in docking
studies. Preparation of receptor (1a4g) is as follows: all the
water molecules were deleted; hydrogens (20,21) and AMBER7
FF99 charges were added. The protein structure was utilized in
subsequent docking experiments without energy minimization. In
addition, disposal of ligands (samples) is given later: the method of
energy minimization was Powell; force field and charge were Tripos
and MMFF94; max iterations, termination, and RMS displacement
were 1000, 0.001 kcal ⁄ (mol*�), and 0.001 �, respectively; other
parameters were established using default values.

Hologram quantitative structure–activity relationship (a–c), CoMFA
(22), and CoMSIA (23,24) were applied to establish QSAR models.
The premise of HQSAR is that the structure of a molecule is
encoded within its 2D fingerprint and structure is the key determi-
nant of all molecular properties. During HQSAR modeling, informa-
tion of fragments including atoms, bonds, connections, hydrogen
atoms, chirality, hydrogen bond donor, and acceptor was considered.
Fragment size of default 4-7 and default 12 hologram lengths (53,
59, 61, 71, 83, 97, 151, 199, 257, 307, 353, and 401) was used.
Based on the least standard error, the best HQSAR model was
selected by PLS.

Molecular conformations with the highest total scores were used in
CoMFA and CoMSIA (21) studies. Based on the receptor, all 36
samples were aligned. In addition, Clogp was used to represent
hydrophobic interaction during CoMFA modeling. Comparative
molecular field analysis and CoMSIA parameters were established
by default. Comparative molecular field analysis and CoMSIA mod-
els were generated by Sample-distance partial least squares

(SAMPLS) (25). All QSAR models were validated by leave-one-out
cross-validation (LOO CV) and external prediction by test set (r 2

test).

As a second generation de novo drug discovery method, LeapFrog
performs electrostatic screening, by repeatedly making some struc-
tural change and then either keeping or discarding the results,
depending on the evolution (26,27). LeapFrog can run in three alter-
native modes: (i) OPTIMIZE suggests improvements to existing
leads; (ii) DREAM proposes new molecules expected to have good
binding; and (iii) GUIDE supports interactive design by performing
and evaluating user modifications. In this paper, the most active
sample ID 2 was taken as a template to design new molecules
(28,29). Based on the optimal CoMFA model, new compounds with
high predicted inhibitory activities had been designed using OPTI-
MIZE mode. WEED and CROSSOVER modules were performed after
the initial run of 1000 moves, and the derived ligands with the best
binding energy were used for the repeating cycle of 1000 moves.
When a WEED occurs, if the number of ligands is greater than 10,
the ligands present are sorted by binding energy or score, and all
except the top 10 are deleted. CROSSOVER is a genetic move for
generating the best hybridizations among these diverse structural
changes. New compounds with the constraint of synthetic difficul-
ties were evaluated by the binding affinities during the seeking pro-
cedure. Calculation of binding energy in LeapFrog has three major
components: (i) steric and electrostatic enthalpies of binding pro-
cess calculated using the Tripos force field; (ii) cavity desolvation
energy; and (iii) ligand desolvation energy.

Dataset
pIC50 ()log IC50) values of 48 thiourea and thiadiazolo [2,3-a] pyrim-
idine derivatives were taken from reference (8). IC50 values were
measured spectrofluorometrically using 20-(4-methylumbelliferyl)-a-
D-acetylneuraminic acid as substrate for NA to yield a fluorescent
product which was quantified (8). Twelve samples (IC50 > 20 lM)
whose IC50 values were not quantitatively reported were deleted
during modeling procedure. The remaining 36 samples were ran-
domly divided into training set with 27 samples and test set with
nine samples (Table 1 and Scheme 1).
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Figure 4: The correlation between the total scores and the
experimental activities of neuraminidase inhibitors.

Figure 3: Receptor-based alignment plot of 36 samples in the
active site of neuraminidase.

Sun et al.

248 Chem Biol Drug Des 2010; 76: 245–254



Results and discussions

Molecular docking
According to Figures 1 and 2, it can be seen that the interaction
residues between samples and active pocket are consistent with
that between zanamivir crystal structure and active pocket.

Figure 1A illustrates hydrogen bonding (dashed line) interactions
between the most active sample ID 2 and residues ASP148,
TYR408, ARG149, ARG222, ARG291, and ARG373 in the active
pocket. Total nine hydrogen bonds of four types (including -NÆÆÆH-O-,
-OÆÆÆH-N, =OÆÆÆH-N and =OÆÆÆO-H) were formed. Figure 1B shows
hydrogen bonding (dashed line) interactions between the least
active sample ID 23 and residues ASP148, GLU116, ARG149,
ARG291, and ARG373 in the active pocket. Total six hydrogen bonds
of three types (-OÆÆÆH-N, =OÆÆÆH-N, and =OÆÆÆO-H) were observed.
Hydrogen bond numbers of other samples are given in Table 1.
From Table 1, it can be seen that hydrogen bond numbers of sam-
ples are correlated with their pIC50 values, with correlation coeffi-
cient r = 0.498 and p = 0.00199.

In Figure 2, total nine hydrogen bonds of two types (including -
OÆÆÆH-N- and =OÆÆÆH-N-) can be seen between the position calcu-
lated of zanamivir (GG167) crystal structure and residues ARG115,
ARG149, TRP176, ARG291, and ARG373 in the active pocket.
Hydrogen bonds are mainly formed between carboxy group, acyl
group and guanidyl in zanamivir and residues in the active
pocket.

From Figures 1 and 2, it can be seen that there are hydrophobic
interactions, because there are hydrophobic residues in the active
pocket. In Figures 1 and 2, it can be observed that the residues in
the active pocket are main hydrophilic and polar residues. There-
fore, electrostatic interactions can be observed between NIs,
zanamivir, and residues in the active pocket.

Figure 3 depicts receptor-based alignment plot of all 36 samples. It
is evident that the docked samples align well, especially in the
region of the amide bond. It suggests that docking model of
samples may have some similarity. Moreover, there is a strong
correlation between binding affinity (total scores) and experimen-
tal pIC50 values with correlation coefficient r = 0.846, SD = 0.297,
and p < 0.0001 (Figure 4). This suggests that docking results can
characterize the mode of ligand–receptor interactions to some
extent.

HQSAR, CoMFA and CoMSIA
Statistical results of HQSAR, CoMFA, and CoMSIA models are given
in Table 2, and the predicted pIC50 values are shown in Table 1.
From Table 2, it can be seen that q 2 and r 2

test of three QSAR mod-
els are 0.628, 0.558, and 0.656 and 0.667, 0.509, and 0.566, respec-
tively (Figures 5 and 6). The results show that the QSAR models
are robust and have predictive capabilities.

From Figures 5 and 6, it can be seen that models have low predic-
tive ability, which predicted samples with low activities. In Figure 5,
all samples were uniformly distributed around diagonal except ID 5.
The reason might be lower activity of ID 5 in comparison with that
of other samples. But all samples were nearly uniformly distributed
around diagonal in Figure 6.

In the HQSAR model, the molecule is color coded to reflect the
individual atomic contributions to the activities. The colors at the
red end of the spectrum (red, red orange, and orange) reflect poor
(or negative) contributions, while colors at the green end (yellow,
green blue, and green) reflect favorable (positive) contributions.
Atoms with intermediate contributions are colored white. Figure 7
shows the individual atomic contributions of samples ID 1�5. The
numbers of green atoms in these five samples are 3, 4, 3, 0, and
0, respectively. From the results, it can be seen that the numbers

Table 2: Statistical results and contributions of the optimal HQSAR, CoMFA, and CoMSIA models

Methods r 2 SE q 2 SECV F A r 2
test Clogp Steric

Contributions

Donor AcceptorElectrostatic Hydrophobic

HQSAR 0.899 0.185 0.628 0.355 – 5 0.558 – – – – – –
CoMFA 0.878 0.194 0.656 0.333 55.139 3 0.667 0.085 0.437 0.478 – – –
CoMSIA 0.865 0.205 0.509 0.419 48.948 3 0.566 – 0.137 0.209 0.338 0.207 0.109

CoMFA, comparative molecular field analysis; CoMSIA, comparative molecular similarity indices analysis; HQSAR, hologram quantitative structure–activity rela-
tionship; r 2, squared multiple correlation coefficient; q 2, squared cross-validated correlation coefficient; r 2

test, r 2 of test set; SE, standard error; SECV, cross-vali-
dated standard error; A, the number of principal components.
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of green atoms in samples are correlated with their activities in
some degree. The green atoms of these five samples are mainly
distributed in X and Y substituent groups. So, the modification of X
and Y substituent groups should be especially focused on to
improve the inhibitory activities of NIs.

Comparative molecular field analysis steric and electrostatic contour
maps are given in Figure 8 (reference molecule: ID 2). Favored and

disfavored levels fixed at 80% and 20%, respectively. In CoMFA
steric contour map (Figure 8A), the favorable large bulk regions are
green, whereas the unfavorable large bulk regions are yellow. From
contour maps, there are large green regions around R and Y substi-
tuent groups. For example, activity of sample ID 2 is higher than
that of sample ID 1, because bulk of Y substituent group of sample
ID 2 is larger than that of sample ID 1. Similar conclusions can be
drawn from ID 5 to 6, ID 9–10, ID 34–36, and so on. There are yel-
low regions around X substituent groups, which suggest that X sub-
stituent group with a small bulk can enhance activity; for example,
activity of sample ID 3 is higher than that of sample ID 1. Similar
conclusions can be drawn from ID 3 to 4, ID 7–8, and so forth.

In CoMFA electrostatic contour map Figure 8B, red and blue regions
are favorable to improve activity when substituent groups are more
electropositive and more electronegative, respectively. For example,
there is a large of blue regions around R and Y substituent groups,
which indicate that electronegativity can increase activity. It is con-
sistent with electrostatic interactions that are formed between elec-
tronegative atom (chlorine atom) in R and amide nitrogen in ARG
373 and MET374, between oxygen atom of furan in sample and
nitrogen of indolyl in TRP 407, between electronegative atom (oxy-
gen atom) in Y substituent group and guanidyl of residues (ARG149,
ARG115). There are two red regions around acyl group and oxygen
of X substituent group, which are consistent with the docking
results. It can be observed that carboxy of ASP148 around amide
nitrogen in sample is electronegative, carbonyl in TRP407 round
amide oxygen in samples and carboxy of GLU275 around oxygen in
X substituent are electronegative. It is obvious that electrostatic
interactions involve in high polar ⁄ charged regions.

Comparative molecular similarity indices analysis contour maps of
hydrogen bond donors and acceptors, and hydrophobicity are given
in Figure 9 (reference molecule: ID 2). In Figure 9A, red regions indi-
cate that hydrogen bond donor is of advantage to improve activity,
whereas green regions are disadvantageous. The favorable hydro-
gen bond receptors regions are cyan; however, the unfavorable
hydrogen bond receptors regions are yellow. For example, in cyan
regions, Y substituent group of sample ID 2 is ethoxy, but Y substi-
tuent group of sample ID 1 is methyl. However, ethoxy oxygen is
helpful to form hydrogen bond acceptor. Consequently, activity of
sample ID 2 is higher than that of sample ID 1. Similar conclusions
can be drawn from ID 4 to 5, ID 9–10, ID 34–36, and so on.

In Figure 9B, the favorable hydrophobic regions are red, for
instance, activity increases were seen from ID 1 to 2, ID 11–12, ID
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Figure 6: The linear regression plots of experimental versus
predicted pIC50 values of samples in test set through origin (A,
comparative molecular field analysis; B, comparative molecular simi-
larity indices analysis).

Figure 7: The individual atomic contributions to the bioactivity of 5 samples (ID: 1~5; 1, 2 and 3 represent green, yellow and red atoms,
respectively).
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20–21, and so on, whereas the unfavorable hydrophobic regions are
green, for example, activity decreases were observed from ID 4 to
5, ID 6–5, and so forth. Red regions are mainly distributed around
R substituent group, and a small of red region is distributed around
Y substituent group. It is obvious that results of CoMSIA hydropho-
bic contour maps are consistent with hydrophobic interactions that
are formed between residues (TRP176 and ILE220) and Y substitu-
ent group, between residues (MET374 and TRP407) and R substitu-

ent group. However, there are two green regions around residues
ARG291, ASN219, TYR408, GLU275, ARG222, and GLU147, which
are mainly distributed around X substituent group and partially R
substituent group. Comparative molecular similarity indices analysis
steric and electrostatic contour maps are similar to that of CoMFA.

In conclusion, R and Y substituent groups with large bulk, hydropho-
bicity and electronegativity increase inhibition NA. X substituent

A

B

Figure 8: Comparative molecular field analysis steric (A) and
electrostatic (B) contour maps (The contours of the steric map are
shown in yellow and green, and those of the electrostatic map are
shown in red and blue. Greater activity values are correlated with:
more bulk near green, less bulk near yellow, more positive charge
near blue, and more negative charge near red. Reference molecule:
ID 2).

A

B

Figure 9: Comparative molecular similarity indices analysis con-
tour maps for hydrogen bond donor and acceptor (A), hydrophobicity
(B). (A: the favorable hydrogen bond donor areas are red, and the
unfavorable hydrogen bond donor areas are green; the favorable
hydrogen bond receptors regions are cyan, the unfavorable hydro-
gen bond receptors regions are yellow. B: the favorable hydrophobic
areas are red, and the unfavorable hydrophobic areas are green.
Reference molecule: ID 2).
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groups with small bulk and hydrophilicity also favor strong inhibition
NA. Comparative molecular field analysis and CoMSIA results are
internally consistent, showing usefulness of the docking. So, these
groups and atoms can be modified to obtain new compounds.

Molecular design
Based on the CoMFA model, the most active sample ID 2 was
taken as a template to design new compounds. New compounds
with improved binding energy were obtained. The designed com-

Table 3: Structures, predicted activities, and docking scores of designed compounds

ID Structures Experimental pIC50

Predicted pIC50

LeapFrog binding energy (kcal ⁄ mol) Total Scores CScoreHQSAR CoMFA CoMSIA

2

O
O

N
H

HN

S

N

N O

O

Cl

7.10 6.80 6.85 7.03 )1010.06 8.33 4

2a

O

O

HN
HN

S

N

N
O

O

Cl

– 6.93 7.22 7.19 )1242.22 8.15 3

2b
O

O

NH

N

S

N

NO

O

Cl

N
H

– 7.13 7.05 7.00 )1008.05 8.80 4

2c

O O

HN
HN

S

N

N
O

O
Cl

H
N – 6.79 6.95 7.18 )1102.31 8.56 5

2d

O

O

HN
HN

S

N

N
O

O

Cl

NHO
HN

– 7.08 6.95 7.02 )1014.57 4.66 5

2e
O O

N

NH

S

N

NO

O

Cl
N

– 6.83 6.92 7.09 )1024.91 8.91 3

2f

O

O

HN

H
N

S

N

N
O

O

Cl

– 7.38 6.88 7.54 )1016.48 9.10 4

2g

O

O

N
N

NH

O

NH

O

S

Cl
N

N N

– 7.26 6.88 7.21 )1018.02 7.95 3

CoMFA, comparative molecular field analysis; CoMSIA, comparative molecular similarity indices analysis; HQSAR, hologram quantitative structure–activity rela-
tionship
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pounds were further selected by QSAR models and docking. So,
total seven new compounds had been finally chosen (Table 3). From
Table 3, it could be observed that increase in hydrophobic, hydrogen
bonding, electrostatic, and steric interactions results in enhance-
ment of predicted inhibitory activities of designed compounds. For
example, Y substituent group of the compound 2a was -O (CH2)3CH3,
but the template molecule ID 2 was -OCH2CH3. Activity of the com-
pound 2a was enhanced along with increase in hydrophobic and
steric interactions. Except the compound 2d, total scores of 4 new
designed compounds (namely 2b, 2c, 2e, and 2f) were higher than
that of the template molecule, and total scores of the compounds
2a and 2g were close to that of the template molecule. The struc-
tures of these seven compounds along with their binding energies,
docking scores and predicted activities are given in Table 3.

Conclusions

Docking results of 36 polysubstitution thiourea and thiadiazolo [2,3-
a] pyrimidine derivatives show that hydrogen bonding, electrostatic,
and hydrophobic interactions are important features affecting activi-
ties of these inhibitors. Moreover, there is a significant correlation
between docking total scores and experimental pIC50 values, with
coefficient correlation r = 0.846 and p < 0.0001. Hologram quantita-
tive structure–activity relationship is applied to develop QSAR
model. r 2 and q 2 of the HQSAR model are 0.899 and 0.628, respec-
tively. Based on receptor alignment, CoMFA and CoMSIA models
were obtained. r 2 and q 2 of two models are in turn 0.878 and
0.656, 0.865 and 0.509. In addition, r 2

test of the HQSAR, CoMFA,
and CoMSIA models are 0.558, 0.667, and 0.566, respectively. Com-
parative molecular field analysis and CoMSIA results show R and Y
substituent groups with large bulk, electronegativity and hydropho-
bicity increase NA inhibition. X substituent groups with small bulk
and hydrophilicity can enhance inhibitory activity. Furthermore,
QSAR results were consistent with the docking results. Based on
the CoMFA model, seven new compounds with improved binding
energy and predicted inhibitory activity were finally obtained. Except
one new compound, total scores of four new compounds are higher
than that of the template molecules, and total scores of two new
compounds are close to that of the template molecules.
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