
Nonlinear ballooning instability in the near-Earth magnetotail:

Growth, structure, and possible role in substorms

P. Zhu,1 C. R. Sovinec,1 C. C. Hegna,1 A. Bhattacharjee,2 and K. Germaschewski2

Received 28 July 2006; revised 6 February 2007; accepted 19 February 2007; published 14 June 2007.

[1] To examine the scenario that the onset of a substorm can be triggered by ballooning
instabilities in the near-Earth magnetotail, we have performed three-dimensional direct
magnetohydrodynamic simulations of the nonlinear evolution of the ideal ballooning
instability in two types of analytic Grad-Shafranov equilibria of the magnetotail. The
nonlinear growth and spatial structure (in both real and spectral spaces) of the instability
are obtained for both classes of equilibria, and its observable consequences are
explored. In particular, the linearly unstable ballooning mode is demonstrated to grow
exponentially in the early nonlinear phase, and it starts to slow down or saturate in
the intermediate nonlinear phase. The intermediate nonlinear phase is characterized by the
formation of fine-scale patterns determined by the dominant ky mode and spatially
discontinuous structures that tend to accumulate at the stagnation point of the sheared flow
profile spontaneously generated by the instability. It is proposed that, unlike the
predictions of a theory of explosive nonlinear growth, the nonlinear ballooning instability,
by itself, cannot produce a current disruption. However, the possibility remains open that
the ballooning instability, when coupled to current-driven instabilities and nonideal
mechanisms such as reconnection and turbulent transport, may produce current sheet
disruption in the near-Earth magnetotail.
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1. Introduction

[2] The purpose of this work is to examine the possible
role of the nonlinear ballooning instability in the near-Earth
magnetotail during the substorm onset process by means of
direct MHD simulations. We attempt to address the follo-
wing questions: Is the nonlinear growth of the ballooning
instability faster than the linear phase? Can the nonlinear
growth directly account for the timescale of the current
sheet disruption? How does the nonlinear ballooning insta-
bility reconfigure the current sheet prior to the onset of
disruption? What are the unique signatures and spatial
patterns of the nonlinear ballooning instability that can be
identified in observations?
[3] The idea that substorm onsets may be triggered by the

ballooning instability of the near-Earth magnetotail has been
mainly motivated by several pieces of suggestive observa-
tional evidence. Early ground ionospheric observations
[Atkinson, 1967; Kisabeth and Rostoker, 1971] and recent
conjunct satellite and ground observations [Lopez and Lui,
1990; Lopez et al., 1990; Samson et al., 1992a, 1992b;

Sergeev et al., 1993; Frank and Sigwarth, 2000; Friedrich
et al., 2001] of substorm auroral dynamics provide evidence
of near-Earth tail activities that are directly associated with
the onset of a substorm [for a recent review, see Lui, 2003].
In particular, Roux et al. [1991] suggested that the westward
traveling surge observed by the all-sky camera during a
substorm was the image of plasma sheet instability in the
magnetotail. Within the magnetotail, in situ satellite obser-
vations indicate that the near-Earth current sheet breakup
prior to substorm onset can take place in the absence of
Earthward fast flow that is often attributed to middle-
magnetotail reconnection, whereas the Earthward fast flow
from midtail reconnection does not necessarily trigger a
substorm onset [Erickson et al., 2000; Ohtani et al., 2002a,
2002b; Voronkov et al., 2004]. Analyses of several substorm
observations have related the occurrence of a low-frequency
instability in the near-Earth region (7–11 RE) during the
rapid growth phase of the cross-tail current sheet to the
onset of current disruption [Lui et al., 1992; Ohtani et al.,
1995; Cheng and Lui, 1998]. Recently, Chen et al. [2003]
reported Wind observations of energetic ion fluxes in the
near-Earth magnetotail, which bear signatures of local
pressure gradient reduction.
[4] The ballooning-trigger scenario is strongly supported

by linear studies of ballooning instability in the near-Earth
magnetotail. These studies have been carried out at various
levels of sophistication, focusing on fluid as well as kinetic
effects. A mathematical theory of the linear magnetohy-
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drodynamic (MHD) ballooning mode along open flux
tubes in magnetotail configuration was given by Hameiri
et al. [1991]. The ideal MHD formulation of the bal-
looning mode, using both the energy principle and the
eigenmode analyses, has yielded stability conditions for a
variety of magnetotail configurations in the context of
substorm onset [Miura et al., 1989; Lee and Wolf, 1992;
Ohtani and Tamao, 1993; Pu et al., 1992; Hurricane et
al., 1995, 1996, 1997; Bhattacharjee et al., 1998; Cheng
and Zaharia, 2004; Schindler and Birn, 2004]. Those
analyses used the approximation ky ! 1, in which limit
the ballooning mode aligns with field lines and therefore
is one-dimensional in nature. Linear, initial-value MHD
simulations were carried out [Wu et al., 1998; Zhu et al.,
2004] to study two-dimensional ballooning modes with
finite ky. Nonideal and kinetic effects on ballooning
instability were also considered within the framework of
drift and Hall MHD [Pu et al., 1997; Lee, 1999; Zhu et
al., 2003] as well as gyrokinetic models [Cheng and Lui,
1998; Wong et al., 2001; Crabtree et al., 2003]. While
the details of the stability picture do depend on the
particular equilibrium model used for the near-Earth
magnetotail as well as the nonideal effects included in
the analysis, a common and robust conclusion of all these
analyses is that the linear ballooning mode tends to be
most unstable at near-Earth distances, consistent with the
scenario of substorm onset at the near-Earth magnetotail.
Furthermore, linear analyses have shown that ballooning
instabilities are more favored for current sheets that are
thin rather than wide [Zhu et al., 2003, 2004] and at
intermediate values of b (�O(1)) [Ohtani and Tamao,
1993; Zhu et al., 2003, 2004]. For higher values of b, at
midtail distances and further away from Earth, the modes
tend to be stabilized by strong plasma compression.
[5] Despite the observational and theoretical indication

that supports the ballooning-trigger scenario, it remains to
be shown that the nonlinear development of a linearly
unstable ballooning mode would actually lead to the dis-
ruption of the current sheet. Two fundamental questions
need to be addressed regarding the dynamics and nonlinear
behavior of the mode once the configuration evolves
through marginal stability. Does the nonlinear growth intro-
duce a faster timescale than the linear phase? What is the
direct consequence of the nonlinear development of the
ballooning instability?
[6] Until recently, there has been no attempt to study the

nonlinear evolution of the ballooning instability by rigorous
analytical methods. It was assumed that this instability,
which is driven by the plasma pressure gradient, is
quenched at small amplitudes by the quasi-linear flattening
of the pressure gradient and that its net effect will be to
cause enhanced transport without a global disruption of the
plasma [see, for instance, Connor et al., 1984]. This
assumption was contradicted by a recent theory which
predicted the phenomenon of ‘‘detonation,’’ whereby the
ballooning instability grows explosively in the nonlinear
regime, in the manner of a finite-time singularity, destabi-
lizing neighboring metastable regions when the threshold
for the linear ballooning instability is crossed in a small
region of space [Cowley and Artun, 1997; Hurricane et al.,
1997; Fong, 1999]. The current disruption in a substorm
onset is thought to be directly triggered by this explosive

growth [Hurricane et al., 1999]. The scenario of explosive
nonlinear growth of ballooning modes continues to be
pursued actively in the context of the substorm onset
problem [Dobias et al., 2004]. The explosive growth phase,
however, has not been found in previous particle-in-cell
simulations of the nonlinear drift-ballooning instability by
Pritchett and Coroniti [1999] or in our recent direct MHD
simulations of the Rayleigh-Taylor-Parker (RTP) instability
in a line-tied low-b plasma system [Zhu et al., 2006a], to
which the analysis of [Cowley and Artun, 1997] was
applied.
[7] Two preconditions must be met in any numerical test

of the detonation theory. First, the system must be very
close to marginal stability. Second, the system should be
able to numerically resolve modes with large wave number
ky in their linear as well as nonlinear stages. We remark that
simulations that are not designed to meet these conditions
might make predictions that are too optimistic for macro-
scopic stability. Most previous simulations were not suffi-
ciently well designed to test the predictions of the
detonation theory either because of different physical focus
or because of the lack of sufficient computational capability.
[8] In the study of Zhu et al. [2006a], direct MHD

simulation results were reported for the nonlinear RTP
instability of line-tied flux tubes that are close to marginal
stability in the asymptotic ky regime. In the paper of Zhu et
al. [2006b], the limitation of the explosive nonlinear regime
was specified, and a new theory for the so-called ‘‘interme-
diate nonlinear regime’’ was developed. A recent numerical
solution of our new theory model and its comparison with
direct MHD simulations have shown good agreement [Zhu
et al., 2007]. In those studies, our focus was on the line-tied
RTP instability.
[9] In this paper, we report our initial results from a series

of direct MHD simulations of the nonlinear development of
ballooning instability in two model configurations of the
near-Earth magnetotail. The simulation results reported in
this paper are directly and quantitatively comparable to the
detonation theory for ballooning instability in the context of
substorm onset developed by Hurricane et al. [1997, 1999].
More importantly, these simulations have allowed us to
quantify the growth and to identify the structure of the
ballooning instability from the linear to the intermediate
nonlinear phase in the near-Earth magnetotail. The interme-
diate nonlinear phase is generally defined as the phase that
lies between the early nonlinear regime when the linear
phase ends and the late nonlinear regime when the ideal
MHD model needs to be modified to include the effects of
dissipation and transport. Contrary to the predictions from
previous models, the nonlinear growth of the ballooning
mode, up to the intermediate phase, does not seem to
introduce any faster timescale than the corresponding linear
phase. On the other hand, the predictions of the detonation
theory regarding the tendency to form finger-like structures
in the pressure contours are well supported by our simu-
lations. The observed nonlinear growth of the ballooning
instability in these simulations may be better understood
qualitatively in a newly developed theoretical framework
for the nonlinear line-tied RTP instability [Zhu et al., 2006b,
2007]. Instead of explosive growth, the nonlinear balloo-
ning instability tends to produce fine-scale spatial struc-
tures, correlated with the dominant ky mode in the linear
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phase, and spatial discontinuities induced by nonlinear con-
vection. These structures may produce their unique and
observable signatures of the nonlinear ballooning instability
in the magnetotail.
[10] The rest of the paper is organized as follows. In

section 2, we briefly review the numerical schemes for the
two MHD codes used in the simulations. We then present
the simulation results for two different model configurations
of the near-Earth magnetotail in sections 3 and 4, respec-
tively. Finally, we summarize our findings and discuss
remaining issues in section 5.

2. Numerical Schemes

[11] Direct MHD simulations numerically solve the full
set of ideal MHD equations as a three-dimensional initial-
boundary value problem. The direct simulation of balloon-
ing instabilities of the near-Earth magnetotail has been a
challenge because of the disparate spatial scales of the mode
structure parallel and perpendicular to magnetic field lines.
Recent developments in simulation and computing resource
have made the problem tractable. We have performed the
simulations using two MHD codes, NIMROD and BIC,
which use different numerical schemes.
[12] NIMROD (Nonideal MHD with Rotation: Open Dis-

cussion Project) is a comprehensive three-dimensional MHD
code mostly developed for the study of long-wavelength,
low-frequency, nonlinear phenomena in realistic geometry
[Sovinec et al., 2004]. The NIMROD code numerically
solves nonideal, extended MHD equations

@B

@t
¼ �r� E ð1Þ

E ¼ �u� Bþ hJþH ð2Þ

J ¼ r� B ð3Þ

@n

@t
þr � ðnuÞ ¼ r � ðDrnÞ ð4Þ

r
@u

@t
þ u � ru

� �
¼ J� B�rpþr � nrru ð5Þ

n

g � 1

@T

@t
þ u � rT

� �
¼ � p

2
r � u�r � qþ Q; ð6Þ

where E is the electric field, B is the magnetic field, u is the
plasma flow velocity, n is the number density, r = n(mi + me)
is the mass density (mi and me are the proton and electron
masses, respectively), T is the temperature, p = nT is the
pressure, q is the heat flux vector, Q is the heat source
density, g is the ratio of specific heats, D is the density
diffusion coefficient, v is the viscosity, h is the resistivity, and
H is the Hall electric field. The NIMROD simulations
reported in this paper, however, were carried out in the ideal
MHD model by setting h = 0, D = 0, Q = 0, andH = 0. Since
the algorithm in NIMROD is not dissipative, a very small
amount of viscosity v is applied to resolve the boundary
layers at the foot points of line-tied flux tubes. The

simulation results converge with respect to the viscosity as
it approaches zero.
[13] The algorithms in NIMROD code are tailored for the

stiff and anisotropic conditions found in magnetic fusion
experiments. High-order finite elements are used to represent
the two-dimensional poloidal plane with arbitrarily shaped
boundaries. The third periodic direction is discretized using a
pseudo-spectral method. In the temporal domain, the solu-
tions are advanced with semi-implicit schemes. As a major
MHD code, NIMROD has been widely employed to study
nonlinear macroscopic processes in laboratory fusion plas-
mas. In recent years, the code has been applied to the
simulation of nonlinear processes in astrophysical and space
plasmas. In particular, the two-dimensional finite-element
discretization in NIMROD allows the natural domain
representation of various regions in magnetosphere from
mesoscopic to global scales. This work is one of the first
applications of NIMROD to magnetospheric physics.
[14] Another code, BIC (Ballooning-Interchange Code),

has been developed to study the nonlinear MHD ballooning-
interchange process in various prototypical plasma configu-
rations [Zhu et al., 2006a]. BIC solves the ideal MHD
equations [as in equations (1)–(6) with nonideal terms set
to zero] in a three-dimensional rectangular domain with
Cartesian coordinates. The code implements an explicit
fourth-order Runge-Kutta time-stepping scheme and a finite
second-order spatial difference scheme. It is embedded in
the PETSc (Portable Extensible Toolkit for Scientific com-
putation) framework [Balay et al., 2004], which enables us
to make use of PETSc’s optimized computational kernels and
integrated parallelization support in tackling the stiffness of
spatial scales involved in ballooning-interchange dynamics.

3. Simulations With the Voigt Model

[15] In the following discussion, we use geocentric solar
magnetospheric coordinates in which x points from Earth to
Sun, y points from dawn to dusk, and z points from south to
north. The magnetospheric noon-midnight meridian plane
lies in the x-z plane. For ballooning modes with large wave
numbers in the y direction, the near-Earth region of the
quiescent magnetotail can be modeled by two-dimensional
magnetostatic equilibria. One such equilibrium is the model
of Voigt [1986], which assumes that

pðYÞ ¼ k2

2
Y2; ByðYÞ ¼ �hY;

where Y is magnetic flux, p is pressure, By is the dusk-dawn
component of the equilibrium magnetic field, and k and h
are constant scaling factors. The Grad-Shafranov equation
for the two-dimensional equilibrium then becomes linear in
Y and can be solved analytically. For the nightside
magnetosphere (x < 0), the solution for the equilibrium
magnetic flux takes the form

Y ¼ �MD

2

X1
n¼1

cos ðhnzÞelnxð1þ e�2lnxbÞ þ Y�1;

where MD is the dipole moment of the Earth, l2
n ¼ h2n �

k2 � h2, hn = (p/2)(2n � 1)/zmp, zmp and xb are tail and
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dayside magnetopause locations, respectively, and Y�1 is
the flux function at x ! �1 which is simply chosen to
be zero. The model equilibrium is completely determined
by the parameter set (xb, zmp, k2, h). In order to focus
exclusively on the unstable modes driven by the pressure
gradient, we consider equilibria with zero field-aligned
current, i.e., Jk = 0. Equivalently, we set By = 0 by
choosing h = 0. The presence of nonzero Jk or By

introduces shear in the magnetic field, which tends to
enhance the ballooning instability of the magnetotail
[Hurricane et al., 1997]. They also tend to produce
coupling to kink modes, which is not included in the
present treatment.
[16] We consider a particular magnetotail equilibrium by

choosing xb = 6, zmp = 3 in the Voigt model, as done in
previous work by Zhu et al. [2003, 2004]. The pressure
scaling factor k2 is used to control the overall plasma b level
of the equilibrium, as well as the local be value, which
denotes the b value at the equatorial plane and is defined as
be � 2p(z = 0)/B2

z (z = 0). The field lines are dipole-like at
the low-b level and become more stretched and tail-like as b
increases. We choose a particular configuration that is
unstable to the linear ballooning instability and centered
near 10 RE in the equatorial plane, where be = 1.208 with
k2 = 0.15. The grid for the simulation is generated based on
this equilibrium, so that the equilibrium magnetic field lines
are aligned to one coordinate and are perpendicular to the
other. For the particular grid shown in Figure 1, the domain
spans the region from 6 to 14 RE in the equatorial plane, and
the flux surface that crosses the equatorial point at 14 RE

extends to the minimum x coordinate of the domain at 1 RE

from Earth. We simulate the development of the ballooning
instability initiated at the center of the domain with the
NIMROD code. The domain, defined by the equilibrium
flux, is well represented by the two-dimensional finite-
element discretization in NIMROD. We initialize the simu-
lation with a perturbation in the x component of velocity
field, localized around 10 RE and centered on the equatorial
plane. The evolution of the initial perturbation is subject to
the line-tying boundary conditions at the ends of each
equilibrium field line and to the no-slip wall boundary
conditions on both the Earth side and the tail side of the
simulation domain. Since ballooning modes are mostly

localized across magnetic field lines, the boundary condi-
tions on the flux surfaces at both sides of the domain are
expected to have little effect on the modes initiated on field
lines located near the center of the domain, as long as both
sides of the domain are sufficiently far away from the
domain center. The no-slip wall boundary conditions are
therefore a choice of convenience; also, they are the first
step toward more realistic boundary conditions. The value
of the adiabatic index g is chosen to be one for the evolution
of the perturbation. This choice is motivated by the fact that
a steady, adiabatic convection in near-Earth plasma sheet is
not realistic since it will lead to the unrealistic pressure
pileup (the so-called entropy catastrophe) in near-Earth
magnetotail [Erickson and Wolf, 1980]. Observations indi-
cate that the adiabatic index g is a function of both time and
locations in plasma sheet and ranges from 1.52 to less than 1
[Huang et al., 1989; Borovsky et al., 1998]. It is also
found numerically convenient to choose the isothermal
model for the temperature/pressure evolution by setting
g = 1. From the temperature equation in equation (6), it can
be seen that the temperature/pressure evolution only
involves convection when g = 1. The choice g = 1.67
would include the effects of compression in temperature/
pressure evolution equation. Linearly, this would bring in
additional stabilization due to enhanced compression, but
nonlinearly, it is not expected to change the growth and
structure of the ballooning modes qualitatively. Neverthe-
less, the effects of g on the nonlinear ballooning instability
of near-Earth plasma sheet is highly nontrivial both physi-
cally and numerically [Zhu et al., 2004]. Our simulation
study on the effects of the adiabatic index on nonlinear
ballooning instability, with g ranging from 0 to 1.67, is in
progress and will be reported later in a separate paper.
Below, we present and discuss the linear and the nonlinear
phases of the ballooning mode in the simulations.

3.1. Linear Phase

[17] The Voigt equilibrium is symmetric in the y
direction, and each wave number ky is associated with a
linear eigenmode. To simulate the linear phase of a
ballooning instability, a single Fourier mode is excited
in the y direction. The initial perturbation settles into a
linearly growing mode after about 100 s. The ballooning

Figure 1. x-z plane of the grid generated based on Voigt model with (xb, zmp, k
2) = (6, 3, 0.15). Grid

size: 64 � 128.
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characteristics of the mode are evident in the ky scaling of
the growth rate, the mode polarization, and the perturba-
tion pattern in x-z plane.
[18] As the ky number becomes smaller, the linear growth

rate decreases; stability is indicated at sufficiently small ky.
As ky becomes larger, the linear growth rate increases and
approaches an asymptotic value when ky is sufficiently large
(Figure 2). In reality, the presence of resistivity and finite
Larmor radius (FLR) effects will produce a cutoff of the
linear growth rate at the high-ky end. The wave number kmax

y

where the growth rate is peaked can be possibly compared
with observations of precursors of a substorm onset. As
shown later in section 3.2, kmax

y is also a signature of the
nonlinear ballooning instability, which could be identified
from the fully developed fluctuations prior to substorm
onset.
[19] The spatial pattern of the linear ballooning instabil-

ity is characterized by the scale length along, across, and
perpendicular to the field line, which can be represented
typically by the inverse of the corresponding wave numbers
k�1
k , k�1

� , and k�1
? = k�1

y , respectively. The structure of a
ballooning mode is mostly aligned along a field line and is
localized in the cross and perpendicular directions, so that
kk/ky � 1, and kY �

ffiffiffiffiffiffiffiffiffi
kkky

p
. Shown in Figure 3 are two-

dimensional contours of each perturbed field in x-z plane
for a linearly growing ballooning mode with ky = 20p(R�1

E ).
The perturbed velocity and magnetic field are also plotted as
projected two-dimensional vector fields overlaid with the
perturbed density and pressure contours, respectively. In
addition to the spatial pattern, the contour plots of each
component of the perturbed velocity and magnetic field
in Figure 3 show theballooning mode polarizations as well;
that is, ux � uz � uy and ~Bx � ~Bz � ~By.
[20] The localization of the most unstable linear modes in

the x-z plane occurs near 10 RE in the magnetotail as shown
in Figure 3. Since plasma b increases monotonically tail-
ward from the Earth in the x direction in the near-Earth
plasma sheet, the 10 RE region maps to the intermediate
plasma b regime. The localization of the most unstable
linear ballooning mode in x direction is a manifestation of
the localization of the most unstable linear ballooning mode

in the intermediate plasma b regime [Ohtani and Tamao,
1993; Zhu et al., 2003, 2004].

3.2. Nonlinear Phase

[21] For the nonlinear phase of the simulations, five
Fourier modes in the y direction are allocated with wave
numbers ky = 20np[R�1

E ], n = 1, . . ., 5. We denote the ky
spectrum of the initial perturbed ux field as un, so that
uxjt = 0 = Sn un(x, z) cos(2npy/Ly), with Ly = 0.1 RE. We
discuss three simulation cases here. The initial conditions
of these cases differ only in the choice of un. The
maximum amplitude of the un is set to be 10�3 uA0,
where uA0 is the characteristic Alfvén speed of the
system. While the detailed evolution depends on the
initial spectrum un, some generic features are obtained
for both temporal growth and spatial (real and spectral)
patterns of the mode in the nonlinear phase.
3.2.1. Case 1: un /// ddddn,1
[22] In this case, only the n = 1 component of the initial

perturbed ux field is set to be nonzero. After an initial
transient phase from t = 0 to t = 100, the n = 1 mode enters a
linear growth phase, while the kinetic energies of all other
n 6¼ 1 modes grow mostly through nonlinear couplings.
During the linear phase of the n = 1 mode (t �100–200),
the kinetic energies of all the n 6¼ 1 modes remain much less
than the n = 1 mode (Figure 4). In the nonlinear phase, the
growth of all modes slows down, and all growth rates
approach the same value. However, even well into the
nonlinear phase, the n = 1 component remains dominant.
This is consistent with the nonlinear mode pattern discussed
below.
[23] The background fields are visibly reconfigured only

when the mode evolves beyond the early nonlinear phase.
As shown in Figure 4, the most prominent finger pattern
develops in the contour of total pressure field in the z =
±1.86 RE planes at t = 500 s rather than in the equatorial
plane at z = 0. This is consistent with the structure of the
linear mode for which the maximum perturbation resides on
a plane between the magnetopause and the equatorial plane
(Figure 3). Such a mode structure reflects the highly
compressible nature of the ballooning mode discussed here.
The width of the finger pattern corresponds to the half-
wavelength of the corresponding linear n = 1 mode. In
reality, the dominant n or ky component in the ballooning
mode spectrum of a linear perturbation is determined by
kinetic effects, especially the FLR effect, which constrains
the width of the finger pattern of the pressure field in y-z
plane that may be obtained from observations. It is also
worth mentioning here that the finger pattern shown in
Figure 4 is actually much narrower in the y direction than it
appears since the x-y aspect ratio in that plot is not drawn to
scale due to a limitation of the visualization program used
for those plots. The same remark applies to the two cases
below as well.
3.2.2. Case 2: un /// ddddn,2
[24] The finger pattern of the pressure field in the z =

±1.86 RE planes at t = 500 s is more pronounced in the case
where only the n = 2 component is present in the initial
perturbation of ux field (Figure 5). The width of the finger
pattern in y direction corresponds to the half-wavelength of
the n = 2 Fourier component. At t = 500 s, the pressure

Figure 2. ky scaling of the linear growth rate of the
ballooning instability centered at x = �10 RE.
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Figure 3. Two-dimensional patterns of the linear ballooning mode in x-z plane. Left column: Contour of
ux (row 1); uz (row 2); uy (row 3); ~n (row 4); ~n and ux x̂ + uz ẑ vector field (row 5); zoomed view of panel
in row 5 (row 6). Right column: Contour of ~Bx (row 1); ~Bz (row 2); ~By (row 3); ~p (row 4); ~p and ~Bxx̂þ ~Bzẑ
vector field (row 5); zoomed view of panel in row 5 (row 6). Note that the negative sign (�) in the x-axis
label (�x) is dropped here (also in Figures 4–6) for convenience.
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Figure 4. Case 1: Growth of kinetic energy of total
perturbation and of each Fourier component in the y direction
(top panel); pressure contours in y = 0.5RE, z = 0, and z = 1.86
RE planes at t = 500 s (middle panel); zoomed view of the
finger formation region of the pressure contour in z = 1.86 RE

plane at t = 500 s (bottom panel).

Figure 5. Case 2: Growth of kinetic energy of total
perturbation and of each Fourier component in the y direction
(top panel); pressure contours in y = 0.5RE, z = 0, and z = 1.86
RE planes at t = 500 s (middle panel); zoomed view of the
finger formation region of the pressure contour in z = 1.86 RE

plane at t = 500 s (bottom panel).
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contour in the equatorial plane (z = 0) remains close to that
of the initial equilibrium.
[25] The distribution of energy in the different ky compo-

nents is different from the previous case when only the n = 1
mode is present in the initial perturbation. As shown in
Figure 5, only the even-n modes are excited and grow with
time, whereas the energy of all the odd-n modes remains
zero throughout the linear and nonlinear phases. That
behavior indicates the quadratic nature of the dominant
nonlinear interaction of ballooning instability. The growth
of the total energy as well as that of each (odd-) n mode
slows down in the nonlinear phase, similar to the case
discussed in section 3.2.1.
3.2.3. Case 3: un Independent of n
[26] In this case, all Fourier components of the ux field are

initiated with the same amplitude. There is a clear linear
phase (t �100–200 s) during which the ky scaling of the
linear ballooning instability is evident (Figure 6). Entering
the nonlinear phase (t > 200 s), energy starts to flow among
modes and mostly to the n = 0 mode. The growth of the
total kinetic energy slows down. There is no one dominant
Fourier component in the power spectrum in this phase.
Correspondingly, during the intermediate phase (t = 500 s),
there is no distinct mode number associated with the
pressure contours in z = ±1.86 RE planes (Figure 6). The
finger pattern is more complex than is seen in previous two
cases.
[27] One feature that is common to all three cases

discussed above is that the total perturbation energy of the
system continues to grow exponentially in the early non-
linear phase, followed by a slower growth in the interme-
diate nonlinear phase. This indicates that the timescale of a
pressure gradient-driven instability in an ideal MHD model
is bounded from above by its linear growth rate. The
nonlinear development, up to the intermediate nonlinear
phase, does not seem to introduce a faster timescale.
[28] Another common feature in the intermediate non-

linear phase is the formation in the pressure field of two-
dimensional finger-like patterns in y-z off-equatorial planes.
The width of the finger pattern in the y direction is
proportional to the wavelength of the dominant Fourier
component in that direction. The maximum length of the
finger pattern in the x direction is about the size of the
pressure gradient scale length [(dln p/dx)�1]. As discussed
earlier, the dominant wave number ky of the linear balloo-
ning mode spectrum can be determined by the equilibrium
properties of plasma sheet during the growth phase. This
prediction can be compared with observations of the pre-
cursor pulsation and the spatial structure of the ensuing
nonlinear pressure fluctuation prior to substorm onset.

4. Simulations With the Box Model

[29] The nonlinear dynamics of the ballooning instability
may be understood at a more fundamental level by consi-
dering the Rayleigh-Taylor-Parker (RTP) instability in the
box model of the near-Earth magnetotail configuration. The
box model employs a one-dimensional MHD equilibrium (a
reduced two-dimensional Grad-Shafranov equilibrium) with
line-tied magnetic field lines to approximate the local
configuration of the near-Earth plasma sheet. A virtual
gravity �gx̂ is introduced to simulate the tension force

Figure 6. Case 3: Growth of kinetic energy of total
perturbation and of each Fourier component in the y
direction (top panel); pressure contours in y = 0.5 RE, z = 0,
and z = 1.86 RE planes at t = 500 s (middle panel); zoomed
view of the finger formation region of the pressure contour
in z = 1.86 RE plane at t = 500 s (bottom panel).
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from the curved magnetic field of the magnetotail. The
magnetic field lines in the box model are straight and
support plasma pressure against gravity. The equilibrium
obeys the one-dimensional force balance equation:

d

dx
p0 þ

B2
0

2

� �
¼ r0g � x̂; g ¼ �gx̂:

The field lines are tied to perfectly conducting plates placed
at two boundaries of z, emulating the Earth’s ionosphere.
[30] Using BIC, we integrate numerically the full set of

three-dimensional, compressible ideal MHD equations di-
rectly in a rectangular domain of dimensions Lx, Ly, and Lz
in the x, y, and z directions, respectively. We begin with
tangential hyperbolic profiles for the initial equilibrium
configuration

r0ðxÞ ¼ rc þ rh tanh½ðxþ LcÞ=Lr�; ð8Þ

B0 ¼ B0ðxÞẑ; ð9Þ

B2
0ðxÞ¼B2

0ð0Þþ2g rhLrln
cosh ðLc=LrÞ
cosh½ðxþLcÞ=Lr�

�rcx
� �

� 2½p0ðxÞ � p0ð0Þ� ð10Þ

where rc is the mass density at the center of the density
slope x = �Lc, and Lr is the scale length of the equilibrium
density gradient. We have assumed that p0(x) = r0(x); that
is, the temperature is taken to be unity initially at t = 0. We
define p�1 � p0(x ! �1) = rc � rh. All length scales are
normalized by Lr/5, velocities by the Alfvén speed
computed with the magnetic field B�1 � ffiffiffiffiffiffiffiffiffi

p�1
p

, time by
the Alfvén timescale computed with the characteristic
length scale and Alfvén speed, and pressure (and density)
by p�1. The computational domain is Lx = 64, Ly = 0.1, and
Lz = 128. We choose the length Ly to be the wavelength of a
linear unstable mode of large perpendicular wave number
ky = 2p/Ly = 20p. The initial perturbation at this fundamental
wave number is chosen to be sufficiently large that it attains
the intermediate nonlinear regime before the modes of higher
wave number can grow to dominate the fundamental. The
most unstable linear eigenmode is characterized by a
displacement that is perpendicular to the equilibrium
magnetic field and is even in z. For the simulation parameters
chosen, the growth rate of the instability is weak and sub-
Alfvénic, and its spatial structure is consistent with linear
theory. The three-dimensional nonlinear simulations are
performed on a Cartesian grid with a typical resolution of
256 � 32 � 256 along x, y, and z, respectively. The number
of grid points along y may seem relatively small, but it is
worth noting that Lx:Ly:Lz = 640:1:1280, that is, Lx � Lz �
Ly, so fewer grid points are needed along y to achieve the
same quality of resolution as along x and z. We impose line-
tied boundary conditions in z, no-slip, solid wall boundary
conditions in x, and periodic boundary conditions in y.
While there is no physical dissipation in the underlying
equations, numerical diffusion is unavoidable but can be
made small by running the simulations at high resolution.
We have carried out simulations at various levels of

resolution to test the robustness and convergence of our
results.
[31] Prescribed by the parameter set B0(0) = 0.1, g = 0.1,

Lr = 5, the high-b equilibrium we choose yields an initial
value of b �30% in the pressure slope region, relevant to
the near-Earth magnetotail condition. We perturb the initial
equilibrium by an initial flow field uxjt = 0, with the peak
value of 0.001, in the direction of gravity and localized in
the pressure slope region. The imposed perturbation splits
and propagates along field lines, is reflected at the bound-
aries, and, after a transient phase, evolves into an exponen-
tially growing eigenmode of the line-tied equilibrium.
Figure 7 (upper panel) shows the growth of the maximum
values of each velocity component. As shown, the instabi-
lity continues to grow exponentially in the early and inter-
mediate nonlinear regimes. This exponential nonlinear
growth eventually slows down and shows no tendency to
develop a finite-time singularity. The lower left column of
Figure 7 shows the pressure profile p(x, y = 0, z = 0), which is
a cut of the three-dimensional pressure field along the x axis,
at three typical times representing linear, early nonlinear, and
intermediate nonlinear phases of the instability. The lower
right column in Figure 7 shows pressure contours in the x-y
plane at exactly the same time as the cut on the lower left of
Figure 7 in each row, showing clear evidence of the formation
of fingers protruding in the direction of (virtual) gravity. The
prototypical finger, which grows exponentially in the early
nonlinear regime as it penetrates into neighboring spatial
regions, eventually develops a flat mushroom-type structure
at its head. As the frames in the lower left column indicate,
while the pressure profile (left column, top row) becomes flat
(left column,middle and bottom rows) overmost of the slope,
the pressure gradient tends to accumulate near the lower edge
of the slope (left column, bottom row), leading to the
formation of a spatial discontinuity. Once formed, this
coherent structure continues to propagate into neighboring
regions without changing its shape much. We note that the
location of the discontinuity formation is also the stagnation
point of plasma flow, where all components of the velocity
field reduce to zero.
[32] The RTP instability in the box model resembles the

ballooning mode in the Voigt model, in both growth and
structure, for initial perturbations with the same Fourier
spectrum in y direction. In the above case and in case 1 in
section 3.2, only the n = 1 Fourier component is nonzero in
initial perturbation. In both cases, the perturbation grows
exponentially in linear to early nonlinear phases and slows
down in the intermediate nonlinear phase (Figures 4 and 7).
In addition, the similarity in the formation of the finger
pattern in the x-y plane is evident. However, the locations of
the x-y planes where the finger patterns in pressure contours
are most distinct are different in two cases. In the box
model, the most prominent finger forms in the z = 0 plane,
which is located at the middle of the line-tied field lines.
These are the sites where the pressure perturbation, as well
as the plasma displacement and field line bending across
flux surface (or in x direction), is maximum along field
lines. In the case of the Voigt model, the locations of the
maximum plasma displacement and field line curvature
across flux surface, which are in the z = 0 plane, are
different from the locations of maximum pressure perturba-
tion, which are in off-equatorial planes (z = ±1.86 RE, for
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example). Therefore the most prominent finger patterns in
pressure contour are formed not in the z = 0 plane but in the
off-equatorial planes. These similarities and differences
between the RTP instability in the box model and the
ballooning mode in the Voigt model of the near-Earth
magnetotail can also be found in other cases where the
initial perturbations have different spectral content.

5. Summary and Discussion

[33] In summary, we have carried out three-dimensional
direct MHD simulations for the early to intermediate
nonlinear development of the ballooning instability in two
model configurations of the near-Earth magnetotail. In light
of recent theory development on the nonlinear RTP insta-
bility [Zhu et al., 2006b, 2007], we show that finite-time
singularities (also referred to as faster-than-exponential
growth) are generally absent in the nonlinear phase of
ballooning instability, and nonlinear growth of the instabi-
lity itself does not seem to introduce faster timescales than
the corresponding linear phase. The direct consequence of a
growing ballooning instability, in its intermediate nonlinear
phase, is the formation of fine-scale finger patterns in the y
(dusk-dawn) direction and of spatial discontinuities in the x

direction (or normal to a flux surface). The spatial scale of
the finger pattern in the y direction, which is the width of
each ‘‘finger,’’ is related to the wavelength of the dominant
Fourier component in that direction. The size of the finger
pattern in the x direction (or the length of each finger) is
determined by gradient scale length of the pressure or
density profile in equilibrium. These characteristic nonlinear
structures of the ballooning instability may be used to
identify the presence of such a mode in the near-Earth
magnetotail prior to the onset of a substorm.
[34] A faster timescale may come about from the cou-

pling of the ballooning instability to other processes in the
near-Earth magnetotail, such as the kink instability due to
field-aligned currents, in both linear and nonlinear stages. In
order to focus on the nonlinear behavior of the ballooning
instability, we have deliberately considered equilibria where
this coupling does not occur.
[35] The formations of the fine-scale coherent structures

such as fingers and spatial discontinuities indicate the start
of a regime where ideal MHD model may no longer apply
and nonideal, kinetic, dissipative process and mechanisms
become essential. The coupling of ballooning instability and
the kinetic dissipation mechanisms within those fine struc-
tures may introduce faster timescales. In addition, the

Figure 7. Case with only n = 1 Fourier component in the y direction being nonzero in initial
perturbation: Growth of the maximum of each velocity component (top panel); pressure profile p(x, y = 0,
z = 0), which is a cut of the three-dimensional pressure field along x, at three instants of time (lower left
column); pressure contours in the x-y plane (z = 0) at the same instants as in the same row (lower right
column).
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coherent mode structure may turn turbulent with increasing
nonlinearity as the instability evolves beyond intermediate
phase. The enhanced turbulent transport could lead to the
destruction of flux surfaces on a rapid timescale. The
simulations of the late nonlinear phase of the ballooning
instability are beyond the scope of the current paper and are
left to future work.
[36] Another possible consequences of the nonlinear

development of ballooning instability are the enhanced
thinning of current sheet and the ensuing fast reconnection
in the near-Earth magnetotail in the intermediate and late
nonlinear phases. In our simulations, reductions in Bz

around the equatorial plane have been observed in both
linear and nonlinear phases, a tendency leading to further
thinning of the current sheet. However, the absolute mag-
nitude of such reduction remains relatively weak in the
intermediate nonlinear phase. This suggests that the parti-
cular model configurations we choose may not be realistic
enough for the study of the process of enhanced thinning of
the current sheet. A more stretched current sheet configu-
ration will be the subject of our study in the future.
Furthermore, as suggested above, these simulations need
to be extended to the late nonlinear regime, including other
nonideal physical effects.
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