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Abstract: A protecting group Ph2P(O) for terminal ethyne was
newly developed. This protecting group can be introduced readily
to terminal ethyne by CuI-catalyzed phosphination and subsequent
oxidation with H2O2. Ph2P(O)-protected ethynes remained intact in
Sonogashira coupling, and their high polarity enabled easy separa-
tion of the desired coupling product from by-products. By treatment
with t-BuOK, Ph2P(O)-protected ethynes were transformed to the
corresponding terminal ethynes.
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The protection/deprotection of functional group is one of
the fundamental technologies in organic synthesis.1 An
ideal protecting group needs to satisfy the following is-
sues: (i) facile introduction to the target functional group,
(ii) stability during the desired transformation such as C–
C bond formation and (iii) facile deprotection under mild
reaction conditions. Terminal acetylenes are usually pro-
tected by silyl and dimethyl(hydroxyl)methyl groups.2

We have been involved in the syntheses of acetylene
derivatives3 and their applications to organic materials
such as organic field-effect transistors (OFET)4 and or-
ganic light-emitting diodes (OLED).5 Although we take
advantage of Sonogashira coupling,6 we frequently expe-
rienced troublesome separation of the desired compound
from the remaining starting materials and by-products be-
cause of their similar polarities. We have established dou-
ble elimination protocols of b-substituted sulfones for
access to acetylenes3 and demonstrated the usefulness of
the vinylsulfone intermediates as arylethyne precursors,
which enabled facile isolation because of their high polar-
ity.3a–3c We therefore envisioned that a polar protecting
group for terminal ethynes would give rise to a new tech-
nology which effects facile isolation. We have now found
out that the diphenylphosphoryl group, Ph2P(O), serves as
a protecting group for terminal ethynes to realize facile
isolation.

The Ph2P(O) group was introduced to terminal ethynes by
treatment with Ph2PCl in the presence of a catalytic
amount of CuI followed by oxidation with H2O2

(Scheme 1).7 All phosphorylethynes could be purified by
column chromatography on silica gel.

In order to investigate stability of the Ph2P(O) protecting
group, phosphorylethynes are subjected to acid or base
treatment. Phosphorylethyne 1 remained unchanged in
MeOH–HCl aqueous solution, and 92% of 1 was recov-
ered (Scheme 2). In sharp contrast to this, treatment of 2
with t-BuOK followed by aqueous workup gave the termi-
nal ethyne 3 in 91% yield.

Scheme 1 Synthesis of ethynylphosphines

Scheme 2 Evaluation of stability of ethynylphosphines

The diphenylphosphoryl–ethyne bond remained intact in
Sonogashira coupling, and a coupling reaction of 1-bro-
mo-4-iodobenzene with phosphorylethyne 4 gave the de-
sired 4-bromophenylethynylphosphine oxide (5) in 76%
yield (Scheme 3). In Sonogashira coupling between 1,3-
diiodobenzene (6) and phosphorylethyne 4, a thin layer
chromatography (TLC) analysis indicated formation of
mono- and diadducts 7 and 8. As we expected, high polar-
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ity of phosphine oxide enables easy separation of 7 and 8
by a column chromatography on silica gel: Rf 0.56 for
monoadduct 7 and Rf 0.23 for diadduct 8 in EtOAc. For in-
stance, in 10-mmol scale of coupling reaction, 140 g of
silica gel, 30 times weight of the crude product, enabled
isolation of 7 in a pure form, while the same scale of cou-
pling reaction between 6 and trimethylsilylethyne re-
quired 260 g of silica gel, 70 times weight of the crude
product, for separation of mono- and di(silylethynyl)-
adducts which showed Rf 0.59 and Rf 0.41 in hexane, re-
spectively.

The polarity-assisted separation technology by using
Ph2P(O) group realized a straightforward synthesis of un-
symmetrically substituted phenyleneethynylenes which

we had prepared previously by taking advantage of highly
polar building blocks such as halo-3a or formyl-substituted
vinylsulfones.3a Treatment of 8 with 1.2 equivalents of
t-BuOK followed by column chromatography provided 9
in 43% yield, which served as a building block for unsym-
metrically substituted phenyleneethynylenes (Scheme 4).
When Sonogashira coupling of 9 with 1-iodo-4-methoxy-
benzene followed by t-BuOK-catalyzed dephosphoryla-
tion was carried out, 1-ethynyl-3-(4-methoxyphenyl-
ethynyl)benzene 10 was obtained in high yield (92% and
87% in each step). Subjection of 10 to coupling with 1-
bromo-4-cyanobenzene afforded unsymmetrically substi-
tuted phenyleneethynylene 11 in 71% yield.

Scheme 3 Sonogashira coupling with phosphorylethyne 4
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We established previously the syntheses of amino-/cyano-
substituted phenyleneethynylenes8 and succeeded in their
applications to sensitizers for dye-sensitized solar cells
(DSSCs).9 For access to a branched acetylenic dye having
two diphenylamino donor groups, we designed Ph2P(O)-
protected building block 12. When 1,3,5-triethynylben-
zene was subjected to the phosphoryl protection protocol,
monophosphorylethyne 12 was obtained in 57% yield
(two steps). In this reaction, 12 could be readily separated
from di- and triphosphorylated derivatives. Monophos-
phorylethyne 12 was transformed successfully to 13 by
Sonogashira coupling with 1-iodo-4-diphenylaminoben-
zene and subsequent t-BuOK-catalyzed dephosphoryla-
tion. Coupling of 13 with 4-bromophenylethynylbenzene
gave the desired branched phenyleneethynylene having
diphenylamino groups 14 in 53% yield (Scheme 5). Intro-
ducing carboxylic group to the branched acetylenic dye is
in progress in order to anchor the dye to TiO2 film.

Encouraged by usefulness of the Ph2P(O)-protection as
mentioned above, we investigated a new synthetic route
for enantiopure double-helical phenyleneethynylene 15
which had been prepared by utilizing monosilyl-protected
2,2¢-diethynyl-1,1¢-binaphthyl 16 as a key building block
(Scheme 6).10 Enantiopure organic molecules having
highly expanded p-systems have attracted great attention
as new type of optical materials because they exhibit
chiral information in electronic circular dichroism (ECD)
and circularly polarized luminescence (CPL).11 Prepara-
tion of 16 was not so easy because separation of 16 from
bissilylated product 17 was tedious due to their similar Rf

values. In sharp contrast, mono-Ph2P(O)-protected 2,2¢-
diethynyl-1,1¢-binaphthyl 19 could be easily isolated from
a mixture of crude products: Rf in EtOAc, 0.60 (19), 0.17
(by-product 20) and 0.97 (starting compound 18).12 Inter-
molecular Sonogashira coupling of 19 with 1,3-diiodo-
benzene proceeded smoothly to give 21 in 98% yield, and

Ph2P(O) groups of 21 were removed by treatment with
t-BuOK (76% yield). When 22 was subjected to Sono-
gashira coupling with 1,3-diiodobenzene, intermolecular
coupling and the subsequent cyclization proceeded suc-
cessfully to afford 15 in 22% yield.

In summary, we have established a new methodology for
protection of terminal ethynes by utilizing the Ph2P(O)
group. This protection group can be installed by treatment
of phenylethynes with Ph2PCl in the presence of CuI fol-
lowed by H2O2-oxidation. While Ph2P(O)-protected
ethynes remain intact in Sonogashira coupling, treatment
of them with strong base such as t-BuOK enables facile
deprotection to provide the corresponding ethynes. High-
ly polar features of Ph2P(O)-protected ethynes allow their
facile separation from by-products which are inseparable
or difficult-to-separate when the trimethylsilyl group is
used instead of  Ph2P(O). By taking advantage of this
highly polar protecting group, phenyleneethynylenes 14
having expanded p-system and enantiopure double-
helical phenyleneethynylene 15 have been synthesized
successfully. Further applications of Ph2P(O)-protected
ethynes to other C–C bond-forming reaction are under in-
vestigation to explore new aryleneethynylene materials.

Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synlett.
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Scheme 5 Synthesis of branched phenyleneethynylene 14
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(ii) Synthesis of 21: To a flask were added 19 (1.01 g, 2.0 
mmol), 1,3-dibromobenzene (300 mg, 0.91 mmol), 
Pd(PPh3)4 (104 mg, 0.09 mmol), CuI (17.1 mg, 0.09 mmol), 
diisopropylamine (5 mL) and toluene (25 mL), and the 
mixture was stirred under nitrogen at 80 °C for 20 h. After 
workup with EtOAc–H2O, the organic layer was washed 
with aq NH4Cl and brine, and dried over MgSO4. After 
filtration, the solvents were evaporated. The crude product 
was subjected to column chromatography on silica gel 
(EtOAc) to give 21 (0.96 g, 98% yield) in a pure form. 
Compound 21: 1H NMR (500 MHz, CDCl3): d = 6.48 (s, 1 
H), 6.53 (d, J = 7.9 Hz, 2 H), 6.84 (t, J = 7.9 Hz, 1 H), 7.03–
7.09 (m, 4 H), 7.11–7.15 (m, 4 H), 7.17–7.26 (m, 8 H), 7.31–
7.39 (m, 12 H), 7.45–7.56 (m, 4 H), 7.70 (d, J = 8.3 Hz, 2 H), 
7.80 (d, J = 8.6 Hz, 2 H), 7.90 (d, J = 8.3 Hz, 2 H), 7.94–7.97 
(m, 6 H). 13C NMR (75 MHz, CDCl3): d = 84.23, 86.49, 
91.00 (d, J = 306.0 Hz), 104.29 (d, J = 29.6 Hz), 118.25 (d, 
J = 4.0 Hz), 121.43, 122.59, 126.15, 126.40, 126.81, 127.17, 
127.64, 127.83, 128.11, 128.17 (d, J = 13.3, 13.6 Hz), 
128.39, 128.47, 130.17, 130.32 (d, J = 11.8, 11.4 Hz), 
130.84, 131.48, 131.65 (d, J = 2.5, 2.5 Hz), 131.77, 132.24, 
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138.90, 142.08. HRMS: m/z [M + H+] calcd for C78H49O2P2: 
1079.3208; found: 1079.3196.
(iii) Synthesis of 22: To a flask were added 21 (534 mg, 0.50 
mmol), t-BuOK (167 mg, 1.5 mmol) and THF (10 mL), and 
the mixture was stirred under nitrogen at r.t. for 15 h. After 
workup with CH2Cl2–H2O, the organic layer was washed 
with brine and dried over Na2SO4. After filtration, the 
solvents were evaporated, and the crude product was 
subjected to column chromatography on silica gel (hexane–
CH2Cl2, 1:1) to give 22 (246 mg, 73% yield) in a pure form. 
Compound 22: 1H NMR (300 MHz, CDCl3): d = 2.79 (s, 2 
H), 6.44 (s, 1 H), 6.50 (dd, J = 1.6, 7.8 Hz, 2 H), 6.84 (t, J = 
7.5 Hz, 1 H), 7.18–7.33 (m, 8 H), 7.44–7.53 (m, 4 H), 7.74 
(d, J = 9.3 Hz, 4 H), 7.94 (q, J = 7.9 Hz, 8 H). 13C NMR (75 
MHz, CDCl3): d = 80.79, 82.80, 89.51, 92.67, 120.44, 
121.26, 122.99, 126.26, 126.39, 126.55, 126.70, 126.81, 
127.70, 128.01, 128.03, 128.05, 128.12, 128.86, 130.73, 
132.34, 132.39, 132.90, 133.03, 133.62, 139.90, 140.60.
(iv) Synthesis of 15: To a flask were added 22 (68 mg, 0.1 
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amine (5 mL) and toluene (45 mL), and the mixture was 
stirred under nitrogen at 70 °C for 60 h. After workup with 
CH2Cl2–H2O, the organic layer was washed with aq NH4Cl 
and brine, and dried over MgSO4. After filtration, the 
solvents were evaporated. The crude product was subjected 
to column chromatography on silica gel (hexane–CH2Cl2, 
4:1) to give 15 (16 mg, 22% yield) in a pure form as a white 
powder. Compound 15: 1H NMR (500 MHz, CDCl3): d = 
6.89–6.95 (m, 6 H), 7.05 (d, J = 8.5 Hz, 4 H), 7.22 (t, J = 7.0 
Hz, 4 H), 7.42 (t, J = 7.0 Hz, 4 H), 7.76 (d, J = 8.5 Hz, 4 H), 
7.86 (d, J = 8.5 Hz, 4 H), 7.87 (d, J = 8.5 Hz, 4 H), 7.92 (s, 
2 H). 13C NMR (125 MHz, CDCl3): d = 90.4, 92.1, 121.8, 
123.6, 126.4, 126.7, 126.8, 128.1, 128.2, 129.2, 129.6, 
132.7, 133.0, 136.9, 138.6.
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