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This work is concerned with estimating the lower bound of rank for a given quaternion
square matrix, rectangular matrix or normal matrix, and estimating the upper bound for
the sum of the eigenvalue norms of a given quaternion matrix. A sufficient condition is
provided to confirm whether a given quaternion matrix is nonsingular. It sharpens some
results due to Tu Bo-xun and Semyon Aranovich Geršchgorin and Schur, respectively. Some
examples are provided to show the effectiveness of our results.
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1. Introduction

In recent years, the problems over quaternion division algebra have drawn the wide attention of researchers in
mathematics, physics and computer science. Many problems of quaternion algebra have been researched, such as the
polynomial, the determinant, the system of quaternionmatrix equations, etc. It is not only the property of non-commutative
multiplication of the quaternion, but also itswide-ranging connectionwithmany applied sciences, such asQuantumPhysics,
Geostatics, computer graphics, pattern recognition, and space telemetry and so forth. These technologies also need further
study of the quaternion algebra.
In algebra, the eigenvalue and rank are always two important aspects of matrix analysis. We found that it has been well

estimated for the lower bound of the rank and the upper bound of eigenvalues of a given complexmatrix in [1–4]. However,
on quaternion division algebra, these problems still need further study. So, in this paper, we try to discuss these problems.
This paper is organized as follows: In Section 2, we introduce some estimation methods for the rank and standard

eigenvalues (the standard eigenvalue is also called a right eigenvalue) of a given quaternion matrix. In Section 3, based
on the generalized Geršchgorin Theorem, we give three methods to estimate the left eigenvalues of a given quaternion
matrix.
Throughout this paper, we adopt following notations and terminologies: R and C are the sets of real and complex

numbers, respectively, H denotes the set of quaternions. Hn×n denotes the set of n× n quaternion matrices.
For any quaternion a, let N(a) =

√
aā =

√
āa = (a20 + a

2
1 + a

2
2 + a

2
3)
1/2 be called the norm of a. For any a quaternion

matrix A, r(A) denotes its rank and ‖A‖ denotes its determinant, tr(A) denotes its trace, A∗ denotes its conjugate-transpose.
Un×n denotes the set of all quaternion unitary matrices.

I Thiswork is supported by science research foundation of Chongqing city of China (Grant number: 2005CF9057) andnational natural science foundations
of China (Grant No. 70872123).
∗ Corresponding author.
E-mail address: jlwu678@tom.com (J. Wu).

0898-1221/$ – see front matter© 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2010.02.041



Author's personal copy

J. Wu, Y. Zhang / Computers and Mathematics with Applications 59 (2010) 3160–3166 3161

2. Estimate for the lower bound of rank and the upper bound of right eigenvalues norms’ sum of quaternion matrix

In this section, we first establish some theorems to estimate the lower bound of rank and the upper bound for the sum
of right eigenvalues norms of a given quaternion matrix by use of the partition matrix method.

Lemma 2.1. Let A, B ∈ Hn×n where A is a unitary similar matrix of B [5], then ‖A‖2 = ‖B‖2.

Proof. Since A is unitary similar to B, there exists a quaternion matrix U ∈ Un×n such that B = U∗AU , thus BB∗ =
U∗AUU∗A∗U = U∗AA∗U . It follows that tr AA∗ = tr BB∗.
Moreover, tr AA∗ = ‖A‖2 and tr BB∗ = ‖B‖2, so ‖A‖2 = ‖B‖2.
So, the lemma is proved. �

Theorem 2.1. Let M ∈ Hn×n. If M can be partitioned into
[
A B
C D

]
(where principal submatrix A is k × k (1 ≤ k ≤ n − 1),

submatrix D is (n− k)× (n− k) and B 6= 0, C 6= 0), and then let lk = tr(AA∗)+ tr(DD∗)+ 2
√
tr(BB∗)tr(CC∗) and l = mink lk,

then inequality r(M) ≥ 1
l (Re(trM))

2 holds.

Proof. SinceM ∈ Hn×n, then there exists a unitary matrix U such that

U∗MU =


λ1 q12 · · · q1n
0 λ2 · · · q2n
...

...
. . .

...
0 0 · · · λn

 , (2.1)

where λs = λ
(1)
s + λ

(2)
s i ∈ C, λ

(2)
s ≥ 0 (s = 1, 2, . . . , n) are the standard eigenvalues (right eigenvalues) ofM .

We suppose thatM has s nonzero standard eigenvalues, then s = r(U∗MP) = r(M) and

[Re(trM)]2 = [Re(trU∗MU)]2 =

(
Re

(
n∑
i=1

λi

))2
=

(
s∑
i=1

Re λi

)2
≤

(
s∑
i=1

|λi|

)2
, (2.2)

therefore,

[Re(trM)]2 ≤ s
s∑
i=1

|λi|
2
= r(M)

n∑
i=1

|λi|
2 . (2.3)

If we take µ21 = tr(BB
∗) > 0, µ22 = tr(CC

∗) > 0 and construct the following matrix

K =


A

(
µ2

µ1

)1/2
B(

µ1

µ2

)1/2
C D

 ,
then

KK ∗ =

AA∗ +
µ2

µ1
BB∗ ∗

∗
µ1

µ2
CC∗ + DD∗

 .
So

tr(KK ∗) = tr(AA∗)+ tr(DD∗)+ 2µ1µ2 = lk. (2.4)

For K =

((
µ2
µ1

)1/2
Ik 0

0 In−k

)(
A B
C D

)((µ1
µ2

)1/2
Ik 0

0 In−k

)
(where Ik (1 ≤ k ≤ n − 1) are k × k identity matrices), we can

easily find that M is unitary similar to K . Therefore λ1, λ2, . . . , λn are also the right eigenvalues of K . Then there exists a
unitary matrix U1 such that

U∗1KU1 =


λ1 a12 · · · a1n
0 λ2 · · · a2n
...

...
. . .

...
0 0 · · · λn

 .
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We have

U∗1K
∗U1 =


λ1 0 · · · 0
a12 λ2 · · · 0
...

...
. . .

...

a1n a2n · · · λn

 ,

U∗1KK
∗U1 = (U∗1KU1)(U

∗

1K
∗U1) =



|λ1|
2
+

n∑
j=2

∣∣a1j∣∣2 ∗ · · · ∗

∗ |λ2|
2
+

n∑
j=3

∣∣a2j∣∣2 · · · ∗

...
...

. . .
...

∗ ∗ · · · |λn|
2


. (2.5)

It follows that

tr(KK ∗) = tr(U∗KK ∗U) ≥
n∑
i=1

|λi|
2 . (2.6)

From (2.3) and (2.6), we have (2.7).

[Re(trM)]2 ≤ r(M)tr(KK ∗) = lkr(M) (1 ≤ k ≤ n− 1). (2.7)

So,

(Re(trM))2 ≤ lr(M). (2.8)

Thus, the theorem is proved. �

Corollary 2.1. Let M ∈ Hn×n and λ1, λ2, . . . , λn be standard eigenvalues (right eigenvalues) of M, then inequality
∑n
i=1 |λi|

2
≤

tr(MM∗) holds.

Proof. According to (2.6), it is obvious that
∑n
i=1 |λi|

2
≤ tr(KK ∗) ≤ tr(MM∗). �

Theorem 2.1 can be used to confirm whether or not one given quaternion matrix is nonsingular. We have

Corollary 2.2. Let M and l be defined as the Theorem 2.1, if (Re(trM))2 > (n−1)l, then we can be sure that M is a nonsingular
quaternion matrix.

Proof. From the Theorem 2.1, we have (Re(trM))2 ≤ lr(M), so r(M) > n − 1. Therefore M is a nonsingular quaternion
matrix. �

Example. Let A =

[3 1 i 0
0 3 j −1
k 0 2 1
0 1 0 3

]
, we know that l = mink lk = l2 = 21+4

√
7 and (Re(tr A))2 = 112 > 3(21+4

√
7) = 3l.

By using the Corollary 2.2, we can conclude that A is a nonsingular quaternion matrix. �

The condition of Corollary 2.2 is a sufficient condition for a given quaternion matrix to be nonsingular.
Theorem 2.1 shows the lower bound of the rank of a given square quaternion matrix over quaternion division algebra.

Next we will turn our attention to discussing the case for the quaternion matrix to be rectangular.

Theorem 2.2. Let M ∈ Hm×n (m 6= n), then r(M) ≥ (tr(MM∗))2

tr(MM∗)2
.

Proof. For any a given quaternion matrix A ∈ Hn×n, by using the inequality (2.7), we have

r(A) ≥
(Re tr(A))2

tr(AA∗)
. (2.9)

In (2.9), letMM∗ replace A, then it follows that

r(MM∗) ≥
(Re tr(MM∗))2

tr((MM∗)(MM∗)∗)
=
(tr(MM∗))2

tr(MM∗)2
. (2.10)
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Because r(M) = r(MM∗) [5], so,

r(M) ≥
(tr(MM∗))2

tr(MM∗)2
. (2.11)

Thus, the proof is complete. �

In the following, we will discuss the lower bound of the rank of the quaternion matrix in the normal case.

Theorem 2.3. Let M ∈ Hn×n be a given quaternion normal matrix, then r(M) ≥ (Re(trM))2

tr(MM∗) .

Proof. Let M =
[
A B
C D

]
(where A is the k × k principal submatrix of M), then MM∗ =

(
AA∗ + BB∗ ∗

∗ ∗

)
and M∗M =(

A∗A+ C∗C ∗

∗ ∗

)
. SinceM ∈ Hn×n is a quaternion normal matrix, that is,MM∗ = M∗M , we have

AA∗ + BB∗ = A∗A+ C∗C . (2.12)

And then,

tr(BB∗) = tr(C∗C) = tr(CC∗). (2.13)

Moreover,

lk = tr(AA∗)+ tr(DD∗)+ 2
√
tr(BB∗)tr(CC∗)

= tr(AA∗)+ tr(DD∗)+ 2tr(BB∗)
= tr(AA∗)+ tr(DD∗)+ tr(BB∗)+ tr(CC∗)

= tr(MM∗). (2.14)

Notice that the lk cannot be changed by that of k, that is l = tr(MM∗) always holds. So, according to Theorem 2.1,
Theorem 2.3 is proved. �

We now turn our attention to estimating the upper bounds of the sums of the absolute values of the real parts and the
imaginary parts of the right eigenvalues of the given quaternion matrix. We have the following fact.

Theorem 2.4. Let λs = λ
(1)
s + λ

(2)
s i ∈ C (s = 1, . . . , n) be the standard eigenvalues of a given quaternion matrix A, then∑n

s=1 |λ
(1)
s | ≤

∥∥∥ A+A∗2 ∥∥∥2 and∑n
s=1 |λ

(2)
s | ≤

∥∥∥ A−A∗2i ∥∥∥2.
Proof. According to the generalized Schur Theorem [1], there exists U ∈ Un×n such that

U∗AU =


λ1 q12 · · · q1n
0 λ2 · · · q2n
...

...
. . .

...
0 0 · · · λn


(where λs = λ

(1)
s + λ

(2)
s i ∈ C (s = 1, . . . , n) are the standard eigenvalues of A). So, we have

‖A‖2 =
∥∥U∗AU∥∥2 = n∑

s=1

|λs|
2
+

∑
2≤i<j≤n

∣∣qij∣∣2 . (2.15)

Moreover,

U∗
(
A+ A∗

2

)
U =



λ
(1)
1

1
2
q12 · · ·

1
2
q1n

1
2
q12 λ

(1)
2 · · ·

1
2
q2n

...
...

. . .
...

1
2
q1n

1
2
q2n · · · λ(1)n


. (2.16)

By the Lemma 2.1, we obtain∥∥∥∥A+ A∗2
∥∥∥∥2 = n∑

s=1

∣∣λ(1)s ∣∣2 + 12 ∑
2≤i<j≤n

∣∣qij∣∣2 . (2.17)
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Similarly, we have∥∥∥∥A− A∗2i

∥∥∥∥2 = n∑
s=1

∣∣λ(2)s ∣∣2 + 12 ∑
2≤i<j≤n

∣∣qij∣∣2 . (2.18)

Hence

n∑
s=1

∣∣λ(1)s ∣∣2 = ∥∥∥∥A+ A∗2
∥∥∥∥2 − 12 ∑

2≤i<j≤n

∣∣qij∣∣2 = ∥∥∥∥A+ A∗2
∥∥∥∥2 + 12

(
n∑
s=1

|λs|
2
− ‖A‖2

)
, (2.19)

n∑
s=1

∣∣λ(2)s ∣∣2 = ∥∥∥∥A− A∗2i

∥∥∥∥2 − 12 ∑
2≤i<j≤n

∣∣qij∣∣2 = ∥∥∥∥A− A∗2i

∥∥∥∥2 + 12
(

n∑
s=1

|λs|
2
− ‖A‖2

)
. (2.20)

By using the Corollary 2.1, it follows that
n∑
i=1

|λ(1)s | ≤

∥∥∥∥A+ A∗2
∥∥∥∥2 and

n∑
i=1

|λ(2)s | ≤

∥∥∥∥A− A∗2i

∥∥∥∥2 .
So, the proof is complete. �

3. Estimate for the upper bound of the sum of the left eigenvalue norms for a given quaternion matrix

The discussion above shows the upper bound estimation of the right eigenvalues’ real parts and imaginary parts for a
given quaternionmatrix. In the following, wewill give some estimations of the upper bounds of the other type of eigenvalue.
Notice that the Geršchgorin theorem has been generalized from the complex field to quaternion division algebra [6,7].

The primary role of the Geršchgorin theorem on a complex field and the generalized Geršchgorin theorem over quaternion
algebra is applied to locate eigenvalues. However, we find that it also has many other important roles for the estimation of
eigenvalues. So, in the next section, we will use the generalized Geršchgorin theorem to discuss some estimation methods
for left eigenvalues of quaternion matrices.
First of all, it is worthy of note that we only consider the estimation problems of left eigenvalues under the condition

that no left eigenvalues of a given quaternion matrix are repeated. If in a quaternion matrix there are repeated eigenvalues,
either we do not know which eigenvalue is appropriate to be repeated, or we know the fact in advance, in which case we
know each eigenvalue exactly and would not be interested in estimating it. In addition, our results will show that, if in a
given quaternion matrix there are repeated eigenvalues, then this case can be discussed on a similar plan also.

Definition 3.1. Let A ∈ Hn×n. A quaternion λ is called a left eigenvalue of A if there exists a n-dimensional nonzero
quaternion column vector X = {x1, x2, . . . , xn}T such that AX = λX .

Definition 3.2. Let a be a given quaternion and ε be a positive number. Then the set Ω = {z|N(z − a) ≤ ε} is called a
generalized spherical neighbourhood with centre a and radius ε.

Article [6] has proved the generalized Geršchgorin theorem over quaternion algebra, to use it here, we give it as a lemma.

Lemma 3.1 ([6]). Let A = (aij) ∈ Hn×n. Any left eigenvalue λ of A has to lie within at least one of n spherical neighbourhoods
Ωi = {z|N(z − aii) ≤ Pi, (i = 1, 2, . . . , n)}. That is λ ∈

⋃n
i=1Ωi(A) =

⋃n
i=1{z|N(z − aii)} ≤ Pi. Where Pi =

∑n
j=1
j6=i
N(aij).

Through this proof of the generalized Geršchgorin theorem, we can turn it into following form. It will be used in this
paper.

Lemma 3.2. Let A = (aij) ∈ Hn×n. Then the left eigenvalues of A have to lie within at least one of n generalized spherical

neighbourhoodsΩi(A) = {z : N(z − aii) ≤
√
n− 1Ri} (i = 1, 2, . . . , n), where Ri =

√∑n
j6=i N2(aij).

The proof of Lemma 3.2 can be found in the literature [6] and hence it is omitted here.
It can be seen that all the left eigenvalues of A liewithin the union of n generalized spherical neighbourhoodswith centres

aii and radii
√
n− 1Ri (i = 1, 2, . . . , n), respectively.

We next state and prove our main results.

Theorem 3.1. Let A = (aij) ∈ Hn×n. If λi (i = 1, 2, . . . , n) are left eigenvalues of A which lie within n distinct generalized
spherical neighbourhoods, respectively, then

∑n
i=1 N(λi) ≤

∑n
i=1
∑n
j=1 N(aij).
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Proof. Since λi (i = 1, . . . , n) are left eigenvalues of A which lie within n distinct generalized spherical neighbourhoods,
respectively, without loss of generality, we assume that λi ∈ Ωi = {z | N(z − aii) ≤ Ri}, where Ri =

∑n
j=1
j6=i
N(aij),

Ωi(A) 6= Ωj(A), i, j = 1, . . . , n, i 6= j.
By virtue of Lemma 3.1, we have N(λi − aii) ≤

∑n
j=1
j6=i
N(aij) (i = 1, 2, . . . , n). Hence, we can derive that, N(λi) ≤

N(aii)+
∑n

j=1
j6=i
N(aij), (i = 1, 2, . . . , n). Therefore,

∑n
i=1 N(λi) ≤

∑n
i=1
∑n
j=1 N(aij).

Thus, the proof is complete. �

Note that the Theorem 3.1 is similar to Schur’s well-known inequality [8] which is used to describe the relation of the
absolute values of the eigenvalues and the absolute values of entries of a given complex matrix. However, whether it is
the form and content or the method of proof, Theorem 3.1 doesn’t repeat Schur’s inequality. (Schur’s inequality is that∑n
i=1 |λi|

2
≤
∑n

i=1
j=1
|aij|2, where, (aij) ∈ Cn×n denotes a given complex matrix).

Next, we give the second form of the upper bounds of all norms’ sum of n left eigenvalues of a given quaternionmatrix A.

Theorem 3.2. Let A = (aij) ∈ Hn×n. If λi (i = 1, 2, . . . , n) are n left eigenvalues of A which lie within n distinct generalized

spherical neighbourhoods, respectively, then the inequality
∑n
i=1 N(λi) ≤

√
n− 1

∑n
i=1

(√∑n
j=1
j6=i
N2(aij)

)
+
∑n
i=1 N(aii) holds.

Proof. Sinceλi (i = 1, 2, . . . , n) are n left eigenvalues of Awhich liewithin n distinct generalized spherical neighbourhoods,
respectively, we can suppose that λi ∈ Ωi(A) = {z : N(z − aii) ≤

√
n− 1Ri}, where Ri =

√∑n
j=1
j6=i
N2(aij) and

Ωi(A) 6= Ωj(A), i = 1, 2, . . . , n, j = 1, 2, . . . , n, i 6= j.
Then, by Lemma3.2,N(λi−aii) ≤

√
(n− 1)

∑n
j=1
j6=i
N2(aij) (i = 1, 2, . . . , n). So,we haveN(λi) = N(λi−aii+aii) ≤ N(λi−

aii) + N(aii) ≤
√
n− 1

(√∑n
j=1
j6=i
N2(aij)

)
+ N(aii), i = 1, 2, . . . , n. So,

∑n
i=1 N(λi) ≤

√
n− 1

∑n
i=1

(√∑n
j=1
j6=i
N2(aij)

)
+∑n

i=1 N(aii).
Thus, the proof is complete. �

Theorems 3.1 and 3.2 show the fact that the upper bound of the sum of all the norms of n left eigenvalues of a given
quaternion matrix can be bounded by the norms of all entries’ of the given quaternion matrix.
In the following, we shall give the third form of the upper bounds of all norm’s sum of n left eigenvalues of a given

quaternion matrix by the particle and centre gravity theorem.

Theorem 3.3. Let A = (aij) ∈ Hn×n. If λi (i = 1, 2, . . . , n) are n left eigenvalues of A which lie within n distinct generalized
spherical neighbourhoods, respectively, then

n∑
i=1

N(λi) ≤
n∑
i=1

n∑
j=1
j6=i

N(aij)+
n∑
i=1

[
N
(
aii −

tr A
n

)]
+ N(tr A).

Proof. We assume that λi is the ith left eigenvalue of Awhich lies within ith generalized spherical neighbourhoodΩi(A) =
{z : N(z − aii) ≤ Ri}, where Ri =

∑n
j=1
j6=i
N(aij), then according to Lemma 3.1, we have N(λi − aii) ≤ Ri (where

Ri =
∑n

j=1
j6=i
N(aij) (i = 1, 2, . . . , n), aii is the centre of ith generalized spherical neighbourhood). Based on the particle

and centre gravity theorem, eachΩi(A) (i = 1, 2, . . . , n) can be treated as a particle or a rigid body. Then the centre of all
particles or rigid bodies is 1n

∑n
i=1 aii =

tr A
n . We have

N
(
λi −

tr A
n

)
= N

(
λi − aii + aii −

tr A
n

)
≤ N(λi − aii)+ N

(
aii −

tr A
n

)
≤ Ri + N

(
aii −

tr A
n

)
and

N (λi) = N
(
λi −

tr A
n
+
tr A
n

)
≤ N

(
λi −

tr A
n

)
+ N

(
tr A
n

)
≤ Ri + N

(
aii −

tr A
n

)
+ N

(
tr A
n

)
, (i = 1, 2, . . . , n).

So,
n∑
i=1

N(λi) ≤
n∑
i=1

[
Ri + N

(
aii −

tr A
n

)
+ N

(
tr A
n

)]
=

n∑
i=1

n∑
j=1
j6=i

N(aij)+
n∑
i=1

[
N
(
aii −

tr A
n

)]
+ N(trA).

Thus, the proof is complete. �



Author's personal copy

3166 J. Wu, Y. Zhang / Computers and Mathematics with Applications 59 (2010) 3160–3166

Next, we give an example to show the correctness of our conclusions.

Example. Let A =
[
1 k 0
0 i 0
0 0 j

]
. It is clear that 1, i and j are three left eigenvalues of A andwe can easily see that

∑3
i=1 N(λi) =

3 ≤
∑3
i=1
∑3
j=1 N(aij) = 4. So, the Theorem 3.1 is verified.

Similarly, we have

3∑
i=1

N(λi) = 3 ≤
√
3− 1(1+ 0+ 0)+ 3 = 3+

√
2 =
√
3− 1

3∑
i=1


√√√√√ 3∑

j=1
j6=i

N2(aij)

+ 3∑
i=1

N(aii)

and
∑3
i=1 N(λi) = 3 ≤ 1+

√
3+
√
6 =

∑3
i=1
∑3
j6=i N(aij)+

∑3
i=1 N(aii−

trA
3 )+N(trA), so, Theorems 3.2 and 3.3 also hold.

References

[1] Bo-xun Tu, Dicrimination on non-singularity for a square matrix over the quaternion division algebra, Journal of Fudan University 2 (1988) 14–19.
[2] Bo-xun Tu, The lower bound of the rank and the non-singularity of complex matrix (I), Journal of Fudan University 4 (1982) 59–65.
[3] Bo-xun Tu, The lower bound of the rank and the non-singularity of complex matrix (II), Journal of Fudan University (Natural Science) 2 (1984) 62–71.
[4] Bo-xun Tu, The lower bound of the rank and the non-singularity of complex matrix (III), Journal of Fudan University 3 (1985) 84–94.
[5] Wen-liang Li, Quaternion Matrices, National Defense Science and Technology Press, 2002, pp. 33–89.
[6] J.L. Wu, Distribution and estimation for eigenvalues of real quaternion matrices, Computers and Mathematics with Applications 55 (2008) 1998–2004.
[7] JunliangWu, Limin Zhou, Xianping Chen, Shengjie Li, The estimation of eigenvalues of sum, difference, and tensor product of matrices over quaternion
division algebra, Linear Algebra and its Applications 428 (2008) 3023–3033.

[8] R.A. Horn, R.C. Johnson, Matrix Analysis, Cambridge University Press, 1985, pp. 67–99.


