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SUMMARY

A new optimal back-stepping robust adaptive control method for the military moving power station (MMPS)
excitation system is proposed in this paper. Through the extended Kalman filter estimates of the state vari-
ables, the tracking of the operating point, and the back-stepping technique, the proposed controller has been
shown to improve system robustness to disturbances and dynamic uncertainties and minimise the effect of
disturbances by solving the linear matrix inequality to obtain the optimal control law on all operating points.
The simulation and experimental results show that the proposed control strategy can enhance the transient
stability of the MMPS excitation system more effectively than other methods and can optimise the conver-
gence rates of the state variables by modifying the values of the weighting matrices. Moreover, the terminal
voltage of the MMPS can be sampled quickly by alternating current (AC) tracking comparison. Copyright
© 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The electrical network capacity of a large ship or a military moving power station (MMPS) is lim-
ited compared with that of the civil infinite power system. The instantaneity and randomness of the
weapon equipment, such as artillery and radar, can easily affect this electrical network. Thus, exci-
tation controller design has attracted considerable attention as an effective and economical method
to improve the dynamic performance and stability of electrical networks [1-6].

Several kinds of excitation systems (such as the phase compound excitation system and the
harmonic excitation system) are used in the ship power station (SPS) and the MMPS. However,
the PID excitation control method is usually adopted. The excitation system possesses nonlinear-
ity. Thus, the traditional PID control method cannot provide satisfactory performance. Advanced
nonlinear control methods have recently been used in excitation control, such as exact feedback lin-
earisation [7-9], intelligent control method [10, 11], direct feedback linearisation method [12, 13],
Hamilton [14, 15], sliding mode control [16] and nonlinear robust control [17].

Robust adaptive excitation control (RAEC) has attracted considerable attention because of the
numerous disturbances and uncertain parameters in the excitation system, such as electromagnetic
interference, torque interference, and immeasurable damping coefficient [18-23]. The RAEC, using
dynamic estimates of unknown parameters, is more appropriate for solving unknown-parameter
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problems. However, the controller is usually designed on the given operating point, and optimal
control is not considered in RAEC. The excitation control of the MMPS on all operating points is
required because of the random variation of loads. The bus voltage in the civil infinite power system
is constant, but the electrical network voltage of the SPS or the MMPS is easily affected by load
variation. Thus, in the RAEC of the SPS or the MMPS, the generator terminal voltage should be
rapidly sampled, and the sampling speed will affect the control speed.

Motivated by the aforementioned observation, the AC tracking optimal back-stepping robust
adaptive control (OBRAC) is presented and applied to the excitation control of MMPS in this study.
In the OBRAC method, the controller can adapt to uncertain parameters, is robust to disturbances
and can be applied to minimise the effect of disturbances by solving the LMI to obtain the optimal
control law against the worst disturbances. Optimal back-stepping robust adaptive excitation control
(OBRAEQ) is a type of state feedback control technique that requires the values of the state vari-
ables to be known. In this paper, the state variables of the excitation system on different operating
points are estimated by the extended Kalman filter (EKF) and then calculated synchronously. In the
calculation of the state variables, the terminal voltage of the MMPS is obtained through AC tracking
comparison.

The remainder of this paper is organised as follows. The excitation system model of the MMPS is
established in Section 2. Section 3 discusses the state EKF estimation and the AC tracking voltage
sampling method. Section 4 presents the OBRAEC design. Section 5 includes the simulation and
experiment results. The conclusions are summarised in Section 6.

2. MATHEMATICAL MODEL OF THE EXCITATION SYSTEM AND CONTROL ANALYSIS

The excitation system of the MMPS, with uncertain parameters and disturbances, can be expressed
by the following third-order model [12]:

5=a)—wo

. D w
w = —ﬁ(a)—wo)— ﬁ(Pe — Pm) + &1
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I, xa—xy
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where § is the power angle, w is the rotor speed of the generator, P,, is the mechanical input power,
’

P, is the active electrical power, H is the inertia constant, D is the damping constant, T{ = Tqo i—j is
the direct axis transient time constant, ¢; is the disturbance, Vy is the electromotive force (EMF) in
the excitation coil of the generator, u; is the terminal voltage of the MMPS and E (/1 is the transient
EMF in the orthogonal axis of the generator.

The coordinate transformation is defined as follows:

x=[x1 x X3]T=[8—80 ® — wo E;—E;O]T and u =Vy—Vyo

where [80 wy E ‘,IO Vf()] is the given operating point of the generator. The output of the system
is defined as y; = x; — x;o. The control object is to drive the output y; to a small neighbourhood of
the origin.

In the new coordinate, the nonlinear generator model is given by

).Cl = X2 (11)

D
X2 = ———x3 — Brugsin(8p + x1)x3 — Brusxzo [sin(So + x1) — sin(o)] + &1 (1.2)

2H
. 1
X3 = —Pax3 — Baus [cos(8o) — cos(o + x1)] + Toute (1.3)
do
_ _wo _ 1 _ X=X}
where 1 = 55, B2 = 77 B3 = Toors -
D cannot be measured accurately and is the unknown parameter.
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OBRAEC OF MMPS BASED ON EKF ESTIMATES OF STATE VARIABLE 793

In System (1), u; is obtained by the rectifier and filter circuit and often fluctuates when loads
suddenly increase. The excitation control speed will be affected because of the large time constant
of the rectifier and filter circuit. In this paper, u, is obtained using the AC tracking and comparing
method (introduced in Section 3). To stabilise System (1), the OBRAC is proposed (introduced in
Section 4). OBRAC is a state feedback control method that requires the state variable values to be
known. In this paper, the values of these state variables are calculated as follows:

Step 1: When the values of w, 0, @sq and @sq are obtained by EKF (introduced in Section 3), 4,
ig, iq, Pe, O and ¢ can be calculated by

pmern (). el ][ [
®sq Iq sinf  cosf ||Ig Uq
~[cos® —sin@] [up . .
o |:sin§ cos ] |:qu| » Pe=taia + tgly,

Q¢ = ugiq — uqiq and ¢ = artan &, respectively.

. rp 1 _17 (i

Ip| _ 2 2 2 .| . |Up

where[iQ]— 300 5B A5 I ’|:MQ]
|V 2 2 J |
r 1 17 [u

2|1 =3 —3 aof
= § /3 /3 Up | 5 las Ibs Loy Ug, Up and U

10 %5 =51 u

are the instantaneous voltage and current values of the generator; w is the rotor speed;
6 is the rotor position; @sq and ¢gq are the d-q axis stator flux linkages, respectively; iq
and iy are the d-q axis stator currents, respectively; Q. is the reactive power and ¢ is the
power factor angle.

Step 2: When u; is obtained by AC tracking comparison (introduced in Section 3), we obtain the

2(i—
value of E(/I by substituting &, i4, P and u; into P, = E)“C:S sind + %x:q) sin 2§ and

El’] =E;— (xd —x;l) ig.
Step 3: When the terminal voltage root mean square (RMS) value of the generator is U, the
current RMS value /, the direct axis current RMS value /; , 6o and E4o can be calcu-

= P = 1 — U cos ¢
lated by I = Weog: 14 I sin(p + &p), 6o = arccos Tt Usmgiing? and

Eq0 = U cos 8o + 14x4, respectively.
By substituting E, into Eéo = Eq — (xd - xé) 14, Eéo can be obtained.

Step 4: Substituting w, 6, E ,;, wy (represents the norm speed of the generator), o and E ;0 into
[x1 x2 x3]T =[-8 w-wo E}— E;O]T, we can obtain the value of the state

vector x = [x1 X3 X3]T.

3. VOLTAGE SAMPLING BASED ON FLUX LINKAGE ESTIMATION AND AC
TRACKING COMPARISON

3.1. Flux linkage estimation by extended Kalman filter
The relationship between the rotor speed @ and the rotor position 6 is given by
= ow. )

The rotor speed can be assumed to be constant in the sampling period because of the high
sampling frequency in the excitation control system, that is

»=0. 3)
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In the d, q reference coordinate system, the flux linkage equation of the synchronous generator
can be described as

@sa =Ud + Rig + wpsq “4)
Psq = Uq + Rig — wpsq (5)
¥8q = Pag = Lqig (6)

@8d = @ad + ¢r = Lala + ¢x (7)
@5 = @sd + Psq (8

where ug, ug, ig and i are the d-q axis stator voltages and currents, respectively; Lq and L are the d-
q axis stator inductances, respectively; ¢sq and @s are the d-q axis stator flux linkages, respectively;
R is the stator resistance; ¢y is the rotor flux linkage.

From (2) to (7), the synchronous generator can be described by state space equations as follows:

xX=f(x)+Bx)U ©)
y=lip ig]" =h(x)
X2 0050 — X% §in g
B T - T | Lg% Ly
where x = [x1 x> x3 x4] = [psa @5q 0 o], h(x) = Z—isiné—x‘L_d‘pf cosd
_ _ R R
cosf —sinf T TgX1 T XaXa — 7o ¢r
U=| T _ | sinf cos@ | =R, —xyx
=[up uql].B(x)= 0 0 and f(x)=| "I,%2 " Y1X4
x
0o 0 o

For the fully digital implementation, the system model (9) can be re-written in the following
discrete form:

{xk-H =F g(x) + D(xp)ur + Vi (10)

Vi =h(xp)+ Wi

where Vi and W are the zero-mean Gaussian random vectors describing the model disturbances
and the measurement disturbances with respective variance matrices of Q and R; F ;(xx) =
xp + T f (x(kT.)); D(xx) = TcB(x(kT.)) and T is the sampling period.

X1 can be estimated by EKF as follows:

Step 1: Prediction step
Xpv1 = Fa(xp) + D (xp)ug
.i’k+1 =h (-’z'k-i-l)
Pry=Fi P Fp+Q.
Step 2: Innovation step
~ ~ -1
Kii1=PrHy [Her1 Py Hp | + R]
Xir1 = Xp1 + Kivt [Yisr — Vit ]

Pri1=Pri1—Kip Hig 1 Py

where Fj = w and Hy = % are the Jacobian matrices.
x X=X x X=X

The values of ¢gq and ¢g4 are obtained by EKF estimation

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2015; 25:791-808
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Figure 1. Voltage sampling by the AC tracking comparison.
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Figure 2. Local relation between the speed sensor and the flywheel.

3.2. Voltage sampling by AC tracking comparison

As shown in Figure 1, the voltage reference where the amplitude of which is invariable, has the
same frequency and phase as the secondary voltage of the step-down transformer.
The RMS value of the generator terminal voltage u, can be calculated by

U
Ue = K—U (11)

Ure
where Uy, represents the RMS value of u,. and is constant, K = %—; is the voltage ratio of the
transformer and U is the RMS value of u.

Uy is usually obtained by the rectifier and filter circuit. The time constant of the filter circuit is
large, thus affecting the excitation control speed. In this paper, from (11), Ui is obtained by the
instantaneous values of the terminal voltage and the voltage reference. The sampling time constant
is small, thus enabling voltage sampling by AC tracking comparison (VS-ACTC) to improve the
excitation control speed.

In VS-ACTC, u,. must have the same frequency and phase as u,, which is realised as follows.

As shown in Figure 2, the electronic speed sensor is installed on MMPS. A wider tooth of the
flywheel ring gear can be taken as the marker tooth. The flywheel was fixed and connected to the
generator rotor, such that the positions of the marker tooth and ¢y are fixed. We suppose that ¢y lags
the marker tooth by y degree.

When the generator rotor rotates, we can obtain the voltage signal up..q using the speed sensor, as
shown in Figure 3. The phase diagram of the flux linkage and the voltage can be shown in Figure 4
based on (2) to (8).

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2015; 25:791-808
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Figure 4. Phase diagram of voltage and flux linkage.

Figure 4 shows that u,. lags gs by 90 degrees and gg lags ¢ by & degrees. u,. and u, have the
same frequency and phase. Thus, uy, lags the marker teeth by 90 4+ § + y degrees.

Supposing that the numbers of the flywheel gear ring teeth and the generator pole-pairs are Z and
P, we can obtain % = n. The sinusoidal tabular data 0XOFFFH x sin %(k = 1...n) can then be
obtained and stored into the read only memory (ROM) of the CPU.

Figure 3 shows that if the CPU extracts the sinusoidal tabular data from the ROM lagging
90 + y + & degrees at every rising edge of uyceq beginning with the voltage signal of the marker
tooth and then controls the D/A output, the voltage reference u,. can be obtained. u,. will have the
same phase and frequency as u.. When the loads of the MMPS change, the value of the power angle

§ also differs. In this paper, § is calculated using § = artan (z—gd). @sq, and @sq are estimated by

EKEF, which is introduced in Section 3.1. !
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4. AC TRACKING OPTIMAL BACK-STEPPING ROBUST ADAPTIVE
EXCITATION CONTROL

4.1. Optimal back-stepping robust adaptive control

We consider the following parametric strict-feedback system form:

¥1= fi(x1) + g1(x1)x2 + @] (x1)8 + ¢ (12.1)
%2 = fo(x1,X2) + g2(x1,%2)x3 + @5 (x1,%2)0 + &2 (12.2)
Xi= filxr, .. xi) Fgi(xn, . X)X 41 + (piT(xl, e Xi)0 + & (12.3)
Xn = fu(X1,...,Xn) + gn(X1, ..., Xp)u + <pZ(x1, e X))l + gy (12.4)

where x € R" is the state vector; u € R is the control input; f;, g; and i = 1,2,---n are smooth
functions; f;(0) = 0, gi(x1,...x;) # 0 and ¢;(x1,...x;) are smooth vector fields; § € R? (1 <
p < n) is the unknown constant vector; &; (i = 1,2,---n) is the unknown additive disturbance in
L, space.

Step 1: Let ey = x1, (12.1) can be used to obtain
é1= f1(x1) + g1(x1)x2 + @1 (x1)0 +&1. (13)
Designing the stabilising function

*: 1
27 gi(xy)

[—fl(xl)—ﬂ(m)é —mlel] (14)

where my > 0, 0 is the estimated parameter vector of 6 and x; is the virtual control.
When @ = 0 — 6 and ey = x, — x5, substituting (14) into (13), we can use (12.2)

to obtain
é1=—mier + @1 (x1)0 + g1 (x1)ez + &1 (15)
oxx oxy &
. . % T 2 . 2
=Xy — X, = 0 ——=x1——=40
€ =Xy —X; = fo+ g2x3+ ¢, o X1 % + &2
T 0x3 T 0x3 A
= fo2+g2X3 + 9,0 — o (fi +81x2+ 010 1) — 29 0 + 5. (16)
1
‘We then define
et
e o2
Vo= 4+ 2, 18
2= + > (18)
Taking the derivative of (17) and (18) along with (15) and (16) yields
Vi=-miel +e19](x1)0 +e1g1e2 + 161 (19)
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2015; 25:791-808
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Vz = —I’Vlle% + eltﬁ(xl)é

oxxy 0xx A
+ es |:g1e1+f2+g2)C3+(0;0— 2 (f1+g1X2+¢10) 8@20:| (20)

0x1
0x3
+e181 +exer—ep F

1.
X1

We design the virtual control x5 as

3 x Xy A
* __ _ ) T 29
X3 = s |: gie1— f»— @50 8 (fl +g1x2+(010) Y 0 mzez} (21)
where m, > 0.
When e3 = x3 — x3, substituting (21) into (16) and (20), we obtain
* *

Xy g 2
(7] — 22
8x1 1 T2 E)xl f1 ( )

ér = —myer + 30 + gre3 — grer —

*

2 2 2
- axX* ~ X
= — ije? + Z ej(p;0 + Z ejg;j —62#(0{0 + g2e2e3 — e 8x2 1. (23)
- ‘ , 1 1
— =1 j=1
Step i:
i 2
J
- 24
— 2 @4
j=1
S DCED SLES SRR PR
k=2j=1
i
+glelel+1+zzek_8l (25)
k=2j=1
} i—1 o 5 =1 g
6 =—mie; + @0 + gieiv1 —gi—1€i-1 — 12_:1 8le 90+ — 12_: Bxlj gj. (20)
Step n: We define
1 ~ ~
Vo= Voot + 563 + oro 27)
Taking the derivative of (27) yields
V=V, 1 +ené, +6 T8, (28)
Using (25) and (26), we can obtain
n—1 k-1 .
S DLCED MRS SOULE S S LR
k=2j=1
n—1k—1
i en | gno1en—1 + fo + gntt + 9,0 +&n (29)
k=2j=1
1 * 8 * R
Z n f, +giXj+1 +<p10 + &) — 89"0
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2015; 25:791-808
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The control input u and the adaptive law of 0 can be respectively designed as

1 N
U=—|—4n-16n-1— fn -
&n
(30)
n—1 * * .
X A x>k &
+Z . (fj +gjxj+l+¢}0)+ Ano_mnen_ufl
= 0x; a0
. n—1 n k—1 9x* T
o= [ Sewl- L T apie; an
j=1 k=2 j=1
where m, > 0 and u¢ is the additive control.
When substituting (30) and (31) into (29), we obtain
n n—1k—1
—Zm +Ze]s] — e, Uy . (32)
j=1 k=2 j=1
Remark 1
The following closed-loop error system can be obtained using the back-stepping method:
é1 =—m1€1+¢}‘6+g1€2+81 (33.1)
i—1 i—1
. ~ oxr L~ oxr
& =—mie; + 910 + giei1 —ginein — ) 3 L0 +ei—y e (33.2)
= Xj = ax]'
~ Uaxr s L gx
ép = —mpey, +ug + <P29 — &n-1€n-1 — Z 5 - (039 +én — Z = (33.3)
— Xj . — ij
j=1 j=1
R n—1 n k—1 ax T
=D e0]—> Kol (33.4)
j= k=2 j=1
The design of the OBRAC can be discussed in following two kinds of circumstances:
(a) & =0,i=1,2,--n
A n
When g; =0, we can obtain V;, = — ) m‘,-ef — ug ey, using (32).
=1
. n
When ug; = Ke, (K > 0), then V, = — > mjef — Ke? < 0. Substituting us; = Key,
j=1

into (30), we obtain the control input u.

Remark 2 - ~

Whenm; > 0(j =1,2,---n)and K > 0, V;, = V1 + %6,2, + %0 I ' =0and V, <0.The
controller is adaptive to uncertain parameter # and can stabilise the system, but cannot realise the
optimal control. m; and K, standing for any positive constants, are the lack of the optimal restraint.
The adaptive law is expressed by (33.4).

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2015; 25:791-808
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When ¢; = 0 and direct feedback linearization (DFL) is used in (33), we obtain

ti=zy=¢é=—mie; + 910 + gie; (34.1)
Z'2=Z3=—m1é1+¢{é +¢T9+g1e2+g1é2 (34.2)
Zn=f(z1,...,20) + bV (34.3)

or
Z=AZ + Bv (35)

where f(z1,...zy) is the linear function, A is a constant matrix, B = [0 0---0 1]T and v = f(ug).
For the linear system (35), the quadratic performance index can be expressed as

J:%/OO(ZTQZ-FUTRU) dt (36)
0

where Q is the semi-positive weighting matrix and R is the positive weighting matrix.
Based on the linear quadratic regulation principle, the optimal control inputis v = R"!BTPZ,
where P is the solution of the Riccati equation ATP + PA —PBR™'BTP + Q0 =0.
Substituting v = R"'BTP Z into us; = £~ (v) and (30), we obtain the value of u (the OBRAC
input).

Remark 3

If an optimal solution of the linear system (35) exists, the system should be stable, and V, <0 and
e; > 0,i =1,2,---n. The control input u can stabilise the system and realise the optimal control of
the uncertain system. The adaptive law is expressed by (33.4).

(b) & #0,i =1,2,--n
When ¢; # 0 and DFL is used in (33), we obtain

él=Zl=Z2+81=—ml€1+¢Té+g1€2+81 (37.1)

Zy=—mié1+ @10 + 910 +g1es+ gréa=—mi1z1+ @10 + 010 + g1es

- oxx ~ oxx
+ &1 (—m2€2 + 930 — g1e1 — 3 2‘P¥9 + g2e3 + &2 — 281)

X1 0x1

0x3
=23+ & — €1 (37.2)

8x1
Zn=f(Z1,--2n)+ f(€1,....8n) + bv. (37.3)

Or

Z=AZ+ Bw+ By (38)
where A is the constant matrix, B; = I, w = [w; wy --—-wy]T, w; = &, wy =

x3 n=l gy
€2 = €1y e Wn = En — Zl %q,Bz:[OOmO 1T and v = f(ug).
]:

When y = C Z, considering that y > 0 and if the system satisfies fOT(||y||2 + v|PHdr <

y? fOT(||s||2)dt, we can confirm that system (38) has an L2 gain less than or equal to y, and
the optimal control law and the worst disturbance are as follows:

v=WP! (39)

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2015; 25:791-808
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1
w = —PB¥PZ (40)

where W and P are the solutions of the following LMI (41):

AP +B,W + (AP +B,W)" B, PCT
B -1 0 <0. 41)
cpP 0 —y2I

Substituting (39) into ug = f~!(v) and (30), we can obtain u (the optimal back-stepping
robust adaptive L2 gain attenuation control input). The adaptive law is expressed by (33.4).

Remark 4

For the parametric strict-feedback nonlinear system with uncertain parameters and disturbances, the
OBRAC controller is adaptive to uncertain parameters and robust to w; (unknown additive distur-
bance). Moreover, the OBRAC controller can be applied to minimise the effect of disturbance by
solving the LMI to obtain the optimal control law against the worst disturbance.

4.2. Optimal back-stepping robust adaptive excitation control

For the excitation system (1), the deduction of OBRAEC can be described as follows:

Step 1: Let ey = x1, x; = —me; and e, = x» — x5, we use (1.1) and (1.2) to obtain

é1=X1 =Xy =—mie; +e 42)

éy = )'62—)'65 = —9—,31 Sin(50+xl))€3—,81)(3()[Sin(8()+X1)—Si1’1(80)]+82+M1X2 43)

where m; > 0, 6 is the unknown parameter and é is the estimate of 6.
2 2 2
Step 2: We define V; = %‘ and V, = %‘ + 672 We take the derivative of V;, V, along (42), (43)
to obtain
V= e1é1 + e2éy = —mye] + ez {e1 — P sin(So + x1)x3 + m1xz — Brx3o
x [sin(8o + x1) —sin(8o)] — 0} + e2e1.  (44)

We design the stabilising function x3 as follows:

1 A . )
X3 = By sin(Bo + x1) {61 — 0 +myxy —maez — Brx30[sin(8o + x1) — Slﬂ(50)]} (45)

where m, > 0.
When e3 = x3 — x7, substituting (45) into (43), we obtain

é2=)'C2—)'6; = —mMpyep — €1 —é—ﬂl Sin(50+)€1)€3+81. (46)

2 ~
Step 3: Let V3 = V5 + %3 + ﬁ@z, e3 = x3 — X3, the derivative of V3 is taken along (42) and
(46). Using (1.3), we obtain

2
V3=—ij€]2-—|—9€2—
j=1

§é+ (my 4+ ma)x;

1 -
G 4 AT M2 Gy
o BrsinSo +x1) > 2!

u

+ e3 {—,31 sin(§p+x1)ez — Baxz — B3 [cos(Sp) — cos(Bo+x1)] + T +ex— X3¢
do
(47)
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The control input and the adaptive law are designed as (48) and (49), respectively.

B1sin(8o + x1)ez + Baxs + B3[cos(8o) — cos(do + x1)] — m3zes + ug—
| X3 — B1X30 €08(8o + X1)X2 4+ mmaxs—

14 —0 — By sin(8 + x1)x3— +
u:TdO IBI SIH(SO + X1) 0 + (ml + m2) {/31)(3()[Sin(80 + -xl) _ sin(80)]

X3 cos(8g + x1) {—é + e1 — B1x3o[sin(8g 4+ x1) —sin(8p)] + m1x2 + mzez}
B1 sin®(8o + x1)

(48)
A (my +my) i|
0=p|—ey+ - . 49
,0|: 2 Brussin(o + x1) “9
Substituting (48) and (49) into (47) yields
3
. e3(my + my)
V3 =— mie? + uges + erep +e360 + ———— = ¢, 50
3 ]2::1 j€j Funes + e Fesert grg m e (50)
By the back-stepping method, we obtain the following closed-loop error system:
61 =X1 =Xo =—me; + e (50.1)
éz = —Mpey — €1 — é — ﬁl sin(So + X1)€3 + &1 (502)
) . (my+mz) = (m1 +my)
é3 = B1sin(8g+x1)er—mzes+upy+—----"—04++———""—¢;. (50.3
3 = B1sin(8o+x1)er—mses+ug By sinGo + 1) 2t B G+ ap) ! (50.3)
When DFL is used in (50), we obtain
Z1=2Zp=¢€61 =—mie1 + ey (51.1)

Zo=—mié]+éy = (mf - 1) e1—(my 4+ my) ez — B sin(So +x1)e3—§+81 =2Z3+¢€;

(51.2)
23 =—0+ (m} —1)é1 — (my + ma)és — By cos(8 + x1)x2 — By sin(So + x1)é3
2my + 2m;,
2
=mi—1)zo+vy,——F—"7F——¢€1—¢€
( ! ) 2 ' B1sin(8o + x1) ! 2
2my + 2m;,
2
=—m(mi—1)z1+vy————7F———&1 — &5.
1( ! ) ' 2 B1sin(So + x1) b
(51.3)
(@) g=0,i=1,2,--n
From (51), we can obtain the state equation
. Z.l 0 1 0 21 0
Z Z.z = O 0 1 72 -|— 0 UleZ+BU1 (52)
23 0 m%—l 0 23 1
where
- —v1 + (my + ma)(maez + ey) iy

B1sin(8o + x1)
+ (my + my)es — By sin(8g + x1)ex + maes —ctan(§g + xq1)xze3. (53)

Using optimisation control, the quadratic performance index is J = % fooo (Z Toz
+v] Rvy) dt, and the optimal control input is vy = R~'B" P Z. Substituting v;

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2015; 25:791-808
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into (53), we can obtain u¢;. Substituting uy into (48), we obtain the control input
u. The adaptive law is expressed by (49).

From (51), we can obtain 21 = e; = x1 = §—08¢, 22 = —mie1+ex = Xxo = w—wy
and 73 = —m €1 + é; = X = .

The OBRAEC controller is adaptive to uncertain parameters and can improve the convergence

speed of § — §p, w — wp and @ by modifying the values of @ and R. In OBRAEC, J

% 157 (q1(8 = 80)% + q2(@w — w0)? + q3@* + v2) dt = J in will be realised.

(b) & #0,i =1,2,---n
From (51), we obtain the following state equation:

Z1 0 1 0]z
Z2| =10 0 1 22
23 —my (m3—1) 0 0| |z3
0 07, 0 .
+11 0 [w‘}r O|lvoorZ=AZ +Biw+ Bv, (54)
0 -1 2 1

where w; = &1, wy = ésl + B1 sin(8g + x1)ez and

—vy + (m? —1) ex + (my + ma)maer

Ug =

B1sin(8p + x1)

4+ (my + mp)es — By sin(8g + x1)ex + maes + 0 — B1cos(8y + x1)x1€3.

(55)

When y = CZ and system (54) has an L2 gain less than or equal to y, the optimal
control law and the worst disturbance can be calculated by (39), (40) and (41).

Remark 6

When disturbances and uncertain parameters are present in the nonlinear excitation system, the
OBRAEC controller is adaptive to the uncertain parameters and can realise L2 gain disturbance

attenuation and the optimal control.

A B C N
Flux observer and voltage AC tracking

Fr—————_—————— - u,

! dq/DQ transformation J " ZD DO 7N

1 1 D5y Py 1 Q U,

1 0 = [ (54> Psq) - _gJI Lo | iy Lo

1 TN 9 g 10 I = abc 1y Q)

1 (ld7lq) —f(l[le’g) - a1 o_bs_er:el; i L9 L 7. ) o

! (ud’uq) =f(umuqa9) Isi dal tab data

L-- '-(u_ _u_)T AN "'___I -4 -] 0.0 e § e

| 1 _
S R .!(id’_lq_).t_ Y O S o e\
! 1
E u uz X;— X, u Synchronous
: P =—"5sind + M sin2d 1 [} . Generator
S X, XX, 1 T | Speed Sensor Signal

: P, q, SN B Dy 12

@ = artan— E,= E +(x,—xp)i)) =X 24 [+ -3
1 q q d d/% 1 1|5-9, IGBT Rectifier

e OBRAEC

', =Isin(p+6,) O, =ugi, —ugig"y ! Ho -, —> Auxiliary
1 1a P+, e = Uglq = Ugly u, ixitia
; P Lkid vs | calculation Wingding

I= . E,=Ucosd, + I;x,} 1 acrc g g @
: 3U cosp 1 1 e

Ucos [

1 8, = arccos = P =1
1 \/(Ucosw) +(Using + Ix,)"
: Sate parameter calculation :
b o o o o - - ——

Figure 5. Block diagram of the AC tracking optimal back-stepping robust adaptive excitation control based
on the state variable extended Kalman filter estimation.
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4.3. AC tracking OBRAEC based on the state tracing estimation by EKF

The block diagram of the AC tracking OBRAEC is shown in Figure 5.

Using the flux linkage observer, the values of @54, ¢5q and 6 can be EKF estimated (introduced
in Section 3.1). up, uq, ip and ig are the inputs of the flux linkage observer and can be calculated
by the transformation of stator voltage and stator current (introduced in Section 2). ug, g, iq and
iq can be calculated by the DQ/dq transformation of up, uq, ip and ig, respectively (introduced in
Section 2). The terminal voltage ug can be obtained using VS-ACTC (introduced in Section 3.2).

T
The state vector [x; x5 x3]T = |8 — 8o w —wo E (’1 —F éo] on all operating points can be obtained

with the estimates and calculations of ¢gq, @sq, Ud, Uq, Ia and iy (introduced in Section 2). The
OBRAEC can be realised using the value of the state vector (introduced in Section 4.2).

5. SIMULATION AND EXPERIMENT

Simulations and experiments were performed using the following parameters: x4 = 1.25p.u.,
x) = 0221pu., M = 2055, T; = 1.05s, 6o = 25.2°, wg = lp.u, E(’l0 = 1.0p.u. and
D = 1p.u. —5p.u. In the PID control, D = 3 p.u.

5.1. Flux linkage observation by extended Kalman filter

When the load of the MMPS is suddenly increased at 0.53 s, the actual and EKF estimated values
of ¢sq and g4 are shown in Figure 6(a) and (b), respectively.

The errors between the actual and estimated values of ¢g are shown in Figure 7.

Figures 6 and 7 show that the error between the actual and estimated values is small. Thus, the
location and the value of the flux linkage g can be correctly estimated by EKF.

Practical Position Practical Position
Tracking Position +  Tracking Position

R
b4

Figure 6. Comparison between the actual value and the estimated value.

0.005
0 P o at
“ oY

-0.005
-0.01
-0.015
-0.02
-0.025
-0.03 @dd error
-0.035 e @dq error

-0.04 :
0.45 0.5 0.55

Vs

error(p.u)

Figure 7. Error between the actual and estimated values of ¢s.
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Pra=sees
Wid

CHiv 50008

Figure 9. Voltage reference and the terminal voltage.

5.2. Measurement of the AC tracking voltage reference

To determine whether the voltage reference and the terminal voltage have the same frequency and
phase, we test the waveforms of the generator terminal voltage and the voltage reference shown in
Figures 8 and 9. The voltage reference is outputted from the D/A pin of the STM32F103ZET.

Figure 8 shows that the frequency of the speed sensor signal is 180 times that of the terminal
voltage. Figure 9 shows that, under load conditions, by extracting the sinusoidal tabular data in
the ROM, the CPU controls the DA converter to output the voltage reference, which has the same
frequency and phase as the generator terminal voltage.

5.3. Optimal back-stepping robust adaptive excitation control simulation of the military moving
power station

Case I (when ¢; =0)
The 50% rated load is increased at 0.53 s. When the PID control is adopted, the curves of the state
variables of the MMPS are shown in Figure 10(a).

Whenmy =my=m3=3,p=1, 0 =1, R =1 and the OBRAEC is adopted, the curves of the
state variables of the generator are shown in Figure 10(b).

As shown in Figure 10(a) and (b), when the load is increased suddenly, OBRAEC can improve
the convergence rate of the state variables compared with PID control. Because the damp constant
D is uncertain, the OBRAEC can increase the robust performance of the uncertain excitation system
effectively, as shown in Figure 10(b).

Whenmy =4, my, =5,m3 =3, p=1, Q = diag[9,2,1], R = 1 and the OBRAEC is adopted,
the curves of the state variables are shown in Figure 11.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2015; 25:791-808
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——— Vr-Excitation Voltage —— Vi-Excitation Voltage
U-Generator terminal voltage 25 U-Generator terminal voltage!
5-Power angle . &-Power angle

—— Eq-Transient EMF ——  Eq-Transient EMF

-
(6]

Eq\U\VAS(p.u.)

0.5
0
-0.5
0 015 1 1:5 2 25 0 O‘.5 1 1‘.5 2 25
Time[s] Time([s]
(a) PID control (b) OBRAEC control

Figure 10. Comparison between the proportional integral derivative control and the optimal back-stepping
robust adaptive excitation control.

3 T T
Vif-Excitation Voltage
U-Generator terminal voltage
25 H
8-Power angle
— - Eq-Transient EMF

Eq\U\VAG(p.u.)

0 0.5 1 1.5 2 25
Time[s]

Figure 11. Curves of the generator state variables by optimal back-stepping robust adaptive excitation
control.

As shown in Figures 10(b) and 11, when the values of Q and R change, the convergence rate of
the state variables can be improved. The J = 1 [° (¢1(8 — 80)? + g2(® — wo)? + q3&* + v?) dt =
J min can be realised in the OBRAEC.

Case 2 (when g; #0)

When torque and electromagnetic interferences are present in system (1), y = CZ, C =

diag[1,0.5,0.2], m; = 2, y = 1 and the LMI (54) can be resolved by the function feasp in
1.7707  —0.9579 0.2963

the MATLAB LMI toolbox. We can obtain P = | —0.9579 2.1581 0.1932 | and W =
0.2963  0.1932 2.7826

[17.5164 —2.4073 —1.9690].

From (39) and (40), the optimal robust control law v, and the worst disturbances w are
respectively presented as follows:

vy = 12.9103z; + 4.83132, —2.417923 = 12.9103(8 — §p) + 4.8313(w — wp) —2.4179% (56)

102395 —05395 004837 | 2 % o)
0.0741 0.0483  0.6956 || <~ ®0 |
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Vf-Excitation Voltage
U-Generator terminal voltage I

— d-Power angle
— - Eq’-Transient EMF

Eq\U\VAs(p.u.)

Time[s]

Figure 12. The curves of the state variables by optimal back-stepping robust adaptive excitation control.

Substituting (56) into (55) and (48), we can obtain the control input u. The adaptive law is expressed
by (49). The curves of the state variables are shown in Figure 12.

As shown in Figure 12, the OBRAEC can suppress the disturbance, stabilise the excitation sys-
tem and is adaptive to uncertain parameters. In Figure 12, the curve of V; is unstable because the
excitation input is composed of the noise.

6. CONCLUSION

A new recursive method for nonlinear robust adaptive control design is proposed in this paper for a
class of nonlinear systems that can be transformed into parametric feedback form. Compared with
the conventional back-stepping robust adaptive control, the new method is robust to external distur-
bance and adaptive to uncertain parameters. Moreover, the method can realise optimal control and
optimal L2 gain disturbance attenuation. Based on this new method, the AC tracking OBRAEC of
the MMPS is investigated. To realise the OBRAEC on all operating points, the values of the state
variables on different operating points are obtained using EKF tracking estimation and synchronous
calculation. The electrical network of the MMPS has limited capacity and is easily affected by the
weapon equipment, such that the generator terminal voltage (GTV) fluctuates strongly. The sam-
pling speed of the GTV affects the control speed. In this paper, the GTV is sampled by the AC
tracking comparison with voltage reference. The simulation results show that the controller can
effectively stabilise the system, be adaptive to uncertain parameters and realise optimal disturbance
attenuation.
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