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ABSTRACT
Background: The apolipoprotein A5 gene (APOA5) is a major gene
that regulates lipid metabolism and is modulated by dietary factors.
A novel variant rs964184 in APOA5 was identified to be associated
with lipids in genome-wide association studies.
Objective: We examined whether this variant modified changes in
lipid concentrations in response to a 2-y weight-loss diet interven-
tion in a randomized trial.
Design: The current analyses were secondary analyses of a data set
from the Pounds Lost Trial. We genotyped APOA5 rs964184 in 734
overweight or obese adults who were randomly assigned to one of 4
diets that differed in percentages of energy derived from fat, protein,
and carbohydrate for 2 y. We evaluated changes in fasting serum
concentrations of total cholesterol (TC), LDL cholesterol, HDL
cholesterol, and triglyceride from baseline to 2 y of follow-up.
Results: After a 2-y dietary intervention, we showed significant
interactions between the APOA5 rs964184 polymorphism and di-
etary fat intake (low compared with high) in the determination of
changes in TC, LDL cholesterol, and HDL cholesterol (P-interaction
= 0.007, 0.017, and 0.006, respectively). In the low-fat intake group
(20% of energy derived from fat), carriers of the risk allele (G
allele) exhibited greater reductions in TC and LDL cholesterol than
did noncarriers (P = 0.036 and 0.039, respectively), whereas in the
high-fat diet group (40% of energy derived from fat), participants
with the G allele had a greater increase in HDL cholesterol than did
participants without this allele (P = 0.038).
Conclusion: Our data showed better improvement in lipid profiles
from long-term low-fat diet intake in the APOA5 rs964184 risk
allele. The Pounds Lost Trial was registered at clinicaltrials.gov
as NCT00072995. Am J Clin Nutr 2012;96:917–22.

INTRODUCTION

Unfavorable blood lipid concentrations, including high tri-
glyceride, total cholesterol (TC), and LDL cholesterol and low
HDL cholesterol, have been associated with increased risk of
cardiovascular disease (1–3). Lipid profiles are determined by
interactions between genetic and environmental factors, such as
diet and lifestyle (4). Genetic variants in the apolipoprotein A5
gene (APOA5), which are located in the APOA1-APOC3-
APOA4-APOA5 gene cluster on human chromosome 11q23, are
widely studied in relation to lipid profiles in candidate gene
studies (5–8). In addition, observational studies and short-
term (,3 mo) intervention trials have shown that several com-
mon variants in the APOA5 gene interact with dietary factors,
especially dietary fat, in the determination of blood lipid

concentrations (5, 9–17). However, gene-diet interactions in
long-term randomized intervention settings have been rarely
explored.

In genome-wide association studies, a novel variant rs964184
in the APOA5 locus was identified to be associated with in-
creased triglyceride, TC, and LDL cholesterol and decreased
HDL cholesterol for the risk allele (18–21). Furthermore, this
variant showed the strongest associations with serum tri-
glyceride concentrations in a dyslipidemic population (22).
rs964184 resides 11 kb upstream of APOA5 and in the 5# un-
translated region of a zinc finger protein, which may be involved
in signal transduction and have multiple physiologic functions
(22). However, to our knowledge, no study has examined the
effect of rs964184 on protein function or availability. In the
current study, we aimed to investigate whether the APOA5
rs964184 genotype may interact with weight-loss diets that vary
in macronutrients on 2-y changes in lipid concentrations in the
randomized intervention study the Pounds Lost Trial (www.
clinicaltrials.gov; NCT00072995).
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SUBJECTS AND METHODS

Study population

The Pounds Lost Trial was conducted from October 2004
through December 2007 at the following 2 sites: the Harvard
School of Public Health and Brigham & Women’s Hospital
(Boston, MA) and the Pennington Biomedical Research Center
of the Louisiana State University System (Baton Rouge, LA).
The study design and sample collection have been previously
described in detail (23). Briefly, the study population was
composed of 811 overweight or obese participants who were
aged 30–70 y and had a BMI [in kg/m2 (weight in kilograms
divided by the square of the height in meters)] of 25–40. Major
criteria for exclusion were the presence of diabetes treated with
oral medications or insulin, unstable cardiovascular disease, the
use of medications that affect body weight, and insufficient
motivation as assessed by an interview and questionnaire. In-
dividuals with type 2 diabetes controlled with diet or with hy-
pertension or hyperlipidemia treated with diet or drugs were
eligible to participate. Participants were randomly assigned to
one of 4 diets that constituted a 2-by-2 factorial design; target
percentages of energy derived from fat, protein, and carbohy-
drate in the 4 diets were 20%, 15%, and 65%, respectively; 20%,
25%, and 55%, respectively; 40%, 15%, and 45%, respectively;
and 40%, 25%, and 35%, respectively. After 2 y, 645 partici-
pants (80% of the total population) completed the trial. The
study was approved by the human subjects committee at each
institution and by a data and safety monitoring board appointed
by the National Heart, Lung, and Blood Institute. All partici-
pants provided written informed consent.

The current analyses were secondary analyses of a data set
obtained from the Pounds Lost Trial, which was not designed for
testing the hypothesis in the current analysis. A total of 734
participants with APOA5 rs964184 genotype data available were
included in the current study (90.5% of participants in the Pounds
Lost Trial). Consistent with the entire Pounds Lost Trial, the
mean (6SD) age of participants in the current analysis was 50.9
6 9.2 y, and the mean BMI (6SD) was 32.7 6 3.9 kg/m2. There
was no significant difference in basic characteristics between
participants with and without APOA5 rs964184 genotype data.

Measurements

Body weight and waist circumference were measured in the
morning before breakfast on 2 d at baseline, 6 mo, and 2 y.
Dietary intake was assessed in a random sample of 50% of
participants by a review of the 5-d diet record at baseline and by
a 24-h recall during a telephone interview on 3 nonconsecutive
days at 6 mo and 2 y. Fasting blood samples, 24-h urine samples,
and measurement of the resting metabolic rate were obtained on
1 d, and blood pressure was measured on 2 d at baseline, 6 mo,
and 2 y. Analyses of serum lipids, glucose, and urinary nitrogen
were performed at the Clinical Laboratory at Pennington Bio-
medical Research Center of the Louisiana State University
System. The respiratory quotient was obtained by using the
DeltaTrac II metabolic cart (Datex-Ohmeda) (23). Triglyceride,
TC, LDL cholesterol, and HDL cholesterol were measured by
using the Beckman Synchron CX7 analyzer (Beckman Coulter).
LDL cholesterol was calculated for each participant according to
the following formula (24):

LDL cholesterol ¼ TC2HDL cholesterol

2 triglycerideO 5 ð1Þ

except when the triglyceride concentration was .400 mg/dL, in
which case LDL cholesterol was measured directly on all sam-
ples of the participant.

Genotyping

As indicated in the Introduction, we selected APOA5 single
nucleotide polymorphism (SNP) rs964184 because it was
identified to be associated with multiple lipid traits (18–21), and
previous evidence has shown potential interactions between this
locus and dietary intakes, especially of fat in relation to lipids
(11, 14, 16, 25). With consideration of genotyping cost, we
focused on this specific variant rather than all of the reported
lipid-associated SNPs. DNA was extracted from the buffy coat
fraction of centrifuged blood by using the QIAmp Blood Kit
(Qiagen). APOA5 rs964184 was genotyped successfully in 734
total participants, including 587 white subjects, with DNA
samples made available by using the OpenArray SNP Geno-
typing System (BioTrove). The genotype success rate was 99%.
Replicated quality-control samples (10%) were included in ev-
ery genotyping plate with .99% concordance (26). The geno-
type distribution was in Hardy-Weinberg equilibrium in all
participants or in white subjects (P . 0.05).

Statistical analysis

The primary outcomes were 2-y changes in blood lipids.
Because APOA5 is sensitive to dietary fat ingestion (17, 27–30),
we compared low-fat (20%) with high-fat (40%) diets in the
primary analysis and compared average-protein (15%) with
high-protein (25%) diets in the secondary analysis. Triglyceride
concentrations were log transformed to normalize the distribu-
tion of the data. The Hardy-Weinberg equilibrium and com-
parison of categorical variables were assessed by using the
chi-square test. Differences in continuous variables at baseline
by genotypes were tested by using general linear models, with
adjustment for age, sex, and ethnicity. The main effects of ge-
notype and diet intervention on 2-y changes of lipids were
analyzed by using multivariate linear regression models.
Moreover, to analyze potential interactions between genotype
and diet intervention, an interaction product term was included
in the model. Appropriate adjustments, such as age, sex, eth-
nicity, the baseline value for the respective outcome, baseline
BMI, lipid-lowing medication use, and weight loss, were used in
the analysis. With the use of time as a repeated variable, linear
mixed models were applied to test genetic associations with the
trajectory of changes in outcomes according to diet intervention
during the 2 y of follow-up by including genotype-time in-
teraction terms. Additive genetic models were used in the
analyses. A partial Pearson’s correlation was computed to ex-
amine the relation between weight loss and changes in lipid
profiles. Because the majority of the study population was white
(80%), similar analyses were repeated in white participants. All
reported P values were 2-sided, and a P = 0.05 was considered
statistically significant. All data were analyzed with SAS version
9.1 software (SAS Institute Inc).
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RESULTS

Characteristics of study population

Baseline characteristics of participants according to the
APOA5 rs964184 genotype are shown in Table 1. Genotype
frequencies were similar in men and women but differed by
ethnicity (P , 0.0001). HDL cholesterol and triglyceride were
significantly different across the genotype after adjustment for
age, sex, and ethnicity, and the G allele of the rs964184 was
associated with lower HDL-cholesterol and higher triglyceride
concentrations; whereas other variables such as weight, BMI,
TC, LDL cholesterol, dietary intake, and biomarkers of adher-
ence (urinary nitrogen and respiratory quotient) were not asso-
ciated with genotype at baseline. In addition, we did not find any
significant difference in weight loss at 6 mo andw2 y across the
rs964184 genotype (all P . 0.05).

Interactions between APOA5 rs964184 genotype and
dietary fat on 2-y changes in lipids

No significant gene-diet interaction on weight loss was shown
during the intervention (data not shown). At 2 y, after adjustment
for age, sex, ethnicity, baseline BMI, baseline values for re-
spective outcomes, and lipid-lowing medication use, we showed

significant interactions between the APOA5 rs964184 genotype
and dietary fat intervention (low compared with high) on
changes in TC and LDL cholesterol (P-interaction = 0.007
and 0.017, respectively). In the low-fat diet group, participants
with the risk allele (G allele) had greater reductions in TC
and LDL-cholesterol concentrations than did noncarriers (b 6
SE = 29.3 6 4.4 for TC and 27.5 6 3.6 for LDL cholesterol;
P = 0.036 and 0.039, respectively) (Figure 1), but the genetic
variant was not related to changes in TC and LDL cholesterol
in the high-fat diet group. Because changes in TC and LDL
cholesterol were highly correlated in study samples (r2 w 0.90;
P , 0.0001), we further assessed the independence of the
genetic effects on these 2 markers. We showed that the genetic
effects on change in TC were attenuated to be nonsignificant
after additional adjustment for LDL cholesterol in the model
(P . 0.1).

In addition, we also observed the gene-diet interaction on the
change in HDL cholesterol (P-interaction = 0.006), and carriers
of risk allele had a greater increase in HDL cholesterol response
to the high-fat diet (b 6 SE = 1.7 6 0.8; P = 0.038). We did not
find significant interaction between diet fat and the APOA5
rs964184 genotype in relation to changes in serum concentra-
tions of triglyceride (Figure 1). Additional adjustment for
weight loss did not substantially change the results.

TABLE 1

Baseline characteristics of the study participants according to APOA5 rs964184 genotypes1

CC (n = 526) CG (n = 194) GG (n = 14) P

Age (y) 51.0 6 9.32 50.6 6 9.1 53.4 6 6.7 0.384

Sex [n (%)] 0.687

F 323 (71.9) 119 (21.5) 7 (1.6)

M 203 (71.2) 75 (26.3) 7 (2.5)

Race or ethnicity [n (%)] ,0.0001

White 439 (74.8) 134 (22.8) 14 (2.4)

Black 73 (65.8) 38 (34.2) 0 (0.0)

Hispanic or other 14 (38.9) 22 (61.1) 0 (0.0)

Weight (kg) 93.4 6 15.6 93.4 6 15.4 91.4 6 15.9 0.669

BMI (kg/m2) 32.7 6 3.9 32.9 6 3.8 31.4 6 3.9 0.941

Waist circumference (cm) 103.8 6 13.2 103.6 6 12.8 101.3 6 11.6 0.471

Glucose (mg/dL) 91.8 6 11.1 92.3 6 13.9 90.4 6 7.4 0.977

SBP (mm Hg) 119.4 6 13.1 119.9 6 14.5 122.0 6 11.0 0.674

DBP (mm Hg) 75.4 6 9.3 76.2 6 9.5 77.1 6 9.9 0.253

TC (mg/dL) 201.5 6 36.7 204.9 6 37.5 204.2 6 39.3 0.131

HDL cholesterol (mg/dL) 49.6 6 14.3 46.9 6 13.8 46.5 6 11.3 0.028

LDL cholesterol (mg/dL) 125.3 6 31.1 126.7 6 34.0 127.3 6 39.5 0.380

Triglyceride (mg/dL)3 136.9 6 85.5 160.4 6 84.6 152.3 6 78.0 0.002

Dietary intake per day

Energy (kcal) 1806 6 790 1742 6 833 2187 6 965 0.949

Carbohydrate (%) 41 6 8 41 6 7 39 6 6 0.189

Fat (%) 39 6 8 40 6 7 41 6 7 0.090

Protein (%) 18 6 3 18 6 3 18 6 2 0.160

Dietary fiber (g) 12.9 6 6.3 12.1 6 5.9 14.5 6 6.1 0.309

Saturated fat (%) 13.8 6 3.2 13.8 6 3.0 14.9 6 3.0 0.283

Biomarkers of adherence

Urinary nitrogen (g) 12.1 6 4.4 12.3 6 4.3 13.1 6 4.6 0.448

Respiratory quotient 0.84 6 0.04 0.84 6 0.04 0.83 6 0.04 0.054

Weight loss at 6 mo (kg) 26.9 6 5.8 25.8 6 5.4 28.7 6 5.7 0.351

Weight loss at 2 y (kg) 24.3 6 7.7 23.0 6 6.9 27.6 6 8.2 0.768

1 P values were calculated by using the chi-square test for categorical variables and general linear models for continuous variables after adjustment for

age, sex, and ethnicity. DBP, diastolic blood pressure; SBP, systolic blood pressure; TC, total cholesterol.
2Mean 6 SD (all such values).
3Log transformed before analysis.
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We did not find significant interactions between the APOA5
rs964184 genotype and protein intake on changes in lipid con-
centrations (all P . 0.05). Similar interactions were observed
when the analysis was restricted to the white participants.

Trajectory of changes in lipids by the APOA5
rs964184 genotype

We further examined the dynamic pattern of changes in lipid
by APOA5 genotypes through the 2-y intervention period. We
observed significant genotype-time interactions on changes in
TC and LDL cholesterol in the low-fat diet group (P-interaction
= 0.0005 and 0.002, respectively). Differences in reductions of
TC and LDL cholesterol by APOA5 genotypes displayed a con-
tinued, cumulative pattern throughout the intervention and
reached maximum values at 2 y (Figure 2). A similar pattern
was shown in the white population.

DISCUSSION

In this 2-y randomized, weight-loss intervention trial, we
observed a significant interaction between the APOA5 rs964184
polymorphism and dietary fat intake in relation to changes in
TC, LDL-cholesterol, and HDL-cholesterol concentrations.
Compared with noncarriers, individuals with the G allele ex-
hibited a greater reduction in TC and LDL-cholesterol responses
to a low-fat diet but had a greater increase in HDL cholesterol
when assigned a high-fat diet. These findings suggest that the
genetic variation of APOA5 may modulate the effect of long-
term dietary fat intake on blood cholesterol concentrations.

Evidence for an APOA5-diet interaction on lipids in previous
studies was focused on the 2 most common tag SNPs T-1131.C
(rs662799) and Ser19.Trp (rs3135506) (11, 14, 16, 25), which

are related to translation efficiency or gene expression, that
contribute to the production and function of apolipoprotein AV
(31–33). The Ser19.Trp variant in the APOA5 gene was shown
to modulate changes in plasma TC in men with a low-fat and
-cholesterol and high-fruit and -vegetable diet for 8 y (11, 25),
which is in partial agreement with our results. However, several
short-term trials generated inconsistent results regarding
APOA5-diet fat interactions on cholesterol (14, 16). In a 3-mo
intervention trial with a low-fat diet, reductions of TC and LDL
cholesterol concentrations were not associated with the T-
1131.C polymorphism in hyperlipemic and overweight in-
dividuals (n = 606) (14). Conversely, in another study, APOA5
variants (Ser19.Trp and T-1131.C) had a decrease in plasma
LDL cholesterol concentrations in 98 overweight and obese
women with 9 wk of lifestyle modification that consisted of
a reduction of fat and cholesterol intakes and physical activity
changes (16). In the current study, we showed that the genotype
difference of TC and LDC cholesterol in response to a low-fat
diet showed a continued, cumulative pattern throughout the in-
tervention and reached maximum values at 2 y. These findings
suggest that the gene-diet interactions on the changes of cho-
lesterol concentrations are more likely to be detected after
a long-term intervention. In addition, it is known that about two-
thirds of circulating TC is attributable to LDL cholesterol (34).
After additional adjustment for the change in LDL cholesterol,
the genetic effect on the change in TC was abolished, suggesting
that the effect of the variant on change in TC might be mainly
driven by change in LDL cholesterol.

In this study, a significant gene-diet interaction was observed
in the change in HDL cholesterol. Different from TC and LDL
cholesterol, the changes in HDL cholesterol were more likely to
be modulated by the high-fat diet in which individuals carrying
the risk allele had a greater increase in HDL cholesterol. Several
previous studies have shown that changes in HDL cholesterol
concentrations in response to high-fat diets varied across different
samples (35–38). Our data suggest that APOA5 genotype may
partly account for the interindividual heterogeneity in high-fat-
diet induced HDL cholesterol changes, although the underlying
mechanisms remain to be determined.

Although a large number of studies have shown strong relation
between APOA5 genetic variants and triglyceride concentrations
(19, 20, 39–43), the genetic effects on long-term change in tri-
glyceride were NS and not modified by dietary intakes in our
study. Of note, a similar result was also shown in an 8-y follow-
up study (11, 25) in which changes in plasma triglyceride
concentrations in response to dietary composition changes were
not affected by APOA5 genetic variation. In contrast, several
short-term studies observed that genetic variants at the APOA5
locus could affect the triglyceride concentration response to
a dietary intervention. For example, 2 trials in small samples
showed that APOA5 21131 C-allele carriers had higher tri-
glyceride concentrations in response to a 6-d high-carbohydrate
and low-fat diet and high-fat experimental meal (12, 27). In
contrast, Suchanek et al (16) showed that the reduction of tri-
glyceride concentrations by the 3-mo low-fat intervention was
not associated with the APOA5 T-1131.C. The reasons for the
differential genetic effects on various lipid components are not
clear. rs964184 is independent (22) and is not strongly corre-
lated with T-1131.C and Ser19.Trp (linkage disequilibrium
r2 = 0.339 and 0.246, respectively). It is currently unknown

FIGURE 1. Effects of APOA5 rs964184 genotype and fat intervention on
mean (6SE) changes in lipid profile at 2 y. Data included 219 and 176 (CC),
50 and 77 (CG), and 3 and 9 (GG) participants in low- and high-fat groups,
respectively, at 2 y (total n = 534). P values were calculated by using general
linear models with adjustment for age, sex, ethnicity, baseline BMI, baseline
values for respective outcomes, and lipid-lowing medication use. HDL-C,
HDL cholesterol; LDL-C, LDL cholesterol; TC, total cholesterol; TG,
triglyceride.
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whether rs964184 is a functional variant or a marker in linkage
disequilibrium with other possible functional variants that causally
affect lipid homeostasis. Our results suggest that some serum lipid
variables were partly affected by the interactions of the APOA5
genetic variant and fat intake; therefore, we assume that different
mechanisms might drive the observed gene-diet interactions for
various lipid phenotypes.

In this study, we did not find parallel gene-diet interactions on
weight loss and changes in lipids profiles. After additional ad-
justment for weight loss, the interaction and genetic effect had no
substantial change on lipid profiles. The findings suggest that these
effects on changes in lipid profiles might be independent of weight
loss, and weight loss was not involved in the genotype-lipid in-
teraction. Although weight loss was shown to have long-term
beneficial effects on lipids, especially on LDL and TC concen-
trations (44), in our study samples and different subgroups, weight
loss was significantly correlated only with triglyceride and HDL
cholesterol and not with TC and LDL cholesterol at the 2-y
intervention. Thus, to some extent, it is not surprising that we did
not observe a statistically meaningful effect of weight loss on
interaction and genetic effects.

This study had several limitations. First, although our study
was, to our knowledge, the largest and longest diet intervention
trial in which the genetic effects on changes in lipid profiles were
tested, the analyses were based on secondary analyses, and the
sample size in certain genotype such as GG was relatively small.
An original design and larger samples are required to confirm our
findings. Second, our analyses were restricted to only the APOA5
rs964184 variant; however, as indicated, the selected rs964184
has been most consistently reported in several genome-wide
association studies and is related to all of the lipid traits (18–21).
Third, we did not adjust for multiple testing because of a high
correlation between outcomes and the repeated measurements.
Overadjustment for multiple comparisons may increase the type
II error, which reduces the power to detect significant differ-
ences. Furthermore, because the participants were all overweight
or obese, our results may not be generalized to the general
population with a normal range of body weight. Finally, because
the majority of our study samples were from white participants,
and all of the 14 homozygous variant cases were white, future
studies are warranted to verify the gene-diet interactions in other
minority groups.

In conclusion, we showed that APOA5 polymorphism might
modify dietary fat–induced changes of lipid profiles, especially
of LDL cholesterol and TC, in overweight or obese subjects.

These findings may provide information to the development of
an effective diet intervention in prevention and treatment of
obesity-related disorders. However, these findings need to be
verified in future intervention studies with large sample sizes.
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