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SUMMARY

A network-coded cooperative relaying aided free-space optical (FSO) transmission scheme is designed. The
resultant multiple-source cooperation diversity is exploited by the relay to mitigate the strong turbulence-
induced fading experienced in FSO channels. At the destination, an iterative multiple source detection
algorithm is proposed in conjunction with a chip-level soft network decoding method. Our performance
evaluation results using simulation analysis demonstrate that the proposed FSO multiple source detection
is capable of approaching the single-user-bound for transmission over Gamma–Gamma turbulence chan-
nels. Also, the network-coded cooperative FSO scheme can achieve a significant BER improvement in
comparison with conventional noncooperation schemes. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Free-space optical (FSO) communications have been recognized as a potential future enabler of the
classic last-mile problem thanks to its combined advantages of providing a high data rate, requiring
no licensed spectrum and low deployment costs [1–4]. However, FSO systems are typically vul-
nerable to weather-dependent attenuation and atmospheric turbulence, which reduce the achievable
transmission reliability and throughput [5, 6].

The relay-aided transmission, extensively studied in radio-frequency (RF) communications [7–9],
has also been introduced to circumvent the above-mentioned limitations of FSO systems. Specifi-
cally, an in-depth analysis of multihop relaying over Gamma–Gamma fading channels was presented
in [10]. In addition, the outage performance of amplify-and-forward (AF) and decode-and-forward
(DF) aided relaying was presented in [11]. Building on the above advances, a novel cooperative
scheme, namely network-coded relaying, has drawn substantial research interest because of its capa-
bility of improving the system’s reliability and hence combating link failures in an efficient manner
[12–15]. As another extension, a photonic bitwise eXclusive OR (XOR) network coding technique
was proposed for fault-tolerant all-optical multicast networks [12]. Furthermore, Kamal [13] inves-
tigated a novel design capable of achieving protection against single-link failure with the aid of
network coding over p-cycles.

In this paper, we develop a network-coded iterative multisource cooperative FSO relaying trans-
mission scheme communicating over Gamma–Gamma turbulence channels. Our proposed scheme
exhibits several design merits:
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� Two time slots are sufficient for a round of multisource DF FSO relaying cooperation. A single
relay node (RN) is sufficient for simultaneously serving several source nodes (SNs) to benefit
from both a useful cooperation diversity gain and low deployment costs.
� We derive a soft MSC network-decoding method and an iterative FSO multisource detection

(MSD) algorithm.

The remainder of this paper is organized as follows. Section 2 discusses related works. Section 3
describes the proposed FSO network-coded MSC scheme and an iterative MSD method and a soft
MSC network decoding algorithm are also introduced. Section 4 presents our simulation results over
Gamma–Gamma fading channels. Finally, we conclude in Section 5.

2. RELATED WORKS

This section introduces the major related works [12–18]. Safari and Uysal [16] introduced the
concept of multihop relaying to FSO systems. The serial and parallel relaying techniques, each
operating in AF or DF modes, are investigated. The work shows that the distance-dependent fading
variance of FSO links constitutes the major difference between RF and FSO systems. The multihop
relaying can achieve great performance improvement against turbulence fading than the direct trans-
mission with shorter hop distance and lower scintillation index (SI). Moreover, the parallel relaying
can be a possible alternative to serial relaying with multiple transmitter apertures directed to relay
nodes, creating an artificial broadcasting.

Abou-Rjeily and Slim [17] studied the cooperative diversity for combating atmospheric
turbulence-induced fading. The example of a metropolitan area FSO mesh network is considered.
Simulation results prove that the cooperative diversity can achieve significant performance gains
over the noncooperative direct FSO links. Besides, a full transmit diversity order can be obtained in
the no-background radiation case.

A pulse-position modulation based multisource multirelay (MSMR) cooperative scheme was
designed in our previous work [18]. The results confirm that the proposed MSMR scheme can obtain
the obvious diversity gain with considering the effects of scintillation, thermal noise, background
noise, and multiuser interference, and the rapid convergence property has been demonstrated by
Extrinsic Information Transfer (EXIT) chart. Compared with the MSMR scheme requiring multiple
relay nodes [18], in this paper, one single relay node is sufficient for serving the multisource, saving
the equipment cost.

Currently, a new form of cooperative relay method, known as network coding, has attracted
tremendous interest [12–15]. It can increase the system throughput and transmission robustness.

Menendez and Gannet [12] proposed a photonic XOR network coding technique for efficient and
fault-tolerant all-optical networks. The XOR hardware element is simple, but supplies a key func-
tionality. The analysis shows that the performance and efficiency of all-optical multicast networks
can be very beneficial by utilizing this functionality and the information spreading can be achieved.

Kamal [13] proposed a novel method for protecting against the single-link failure using p-cycle
network coding. Thanks to the (1+N/ protection, the scheme makes it possible to obtain a rapid
and graceful recovery from link failures and to simplify the management and control planes. The
evaluations show that the performance of the (1+N/ protection can be improved by increasing
the graph density. Moreover, such a scheme is more efficient than the (1+1) protection under the
same conditions.

Manley et al. [14] investigated the algorithmic problem for optical multicast protection and corre-
sponding infrastructural designs with all-optical network coding. A heuristic scheme is proposed for
solving the problem of how to set up the protected multicast connection by utilizing network coding.
Compared with the existing techniques for multicast protection, the performance of heuristic can be
near optimal and a significant improvement is obtained.

3. SYSTEM DESCRIPTION

The network coding aided multisource FSO relaying system considered in this paper consists of K
SNs, an RN, and a destination node (DN). The transmission procedure is separated into two phases:
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Figure 1. Illustration of network-coded MSC-aided relaying.

direct transmission and network coded relaying, as shown in Figure 1. More explicitly, in Phase I,
the SNs send their data directly to the DN. In Phase II, the SNs retransmit their message to the DN
through a full-duplex RN using network coding. The DN then combines the two signals to get a
cooperative diversity gain. Throughout the paper, we use superscripts to distinguish the Phase I
and II transmissions. Furthermore, we assume that the underlying optical transmission scheme
employs the intensity modulation and direct detection technique combined with on–off keying
(OOK) modulation.

3.1. Phase I: direct transmission

In Phase I, the bits sequence dDi ¹di Œn�,nD 1, � � � ,Ld º, 1 6 i 6 K, is encoded by a forward error
correction (FEC) code, generating the encoded stream cDi ¹ci Œm�,mD 1, � � � ,Lcº of Figure 2(a),
where Lddenotes the uncoded frame length,while Lcdenotes the FEC encoded frame length. The
FEC coded sequence is further interleaved by a unique, source-specific interleaver …S

i . Finally, the
sequence is OOK modulated, producing the symbol stream xi D ¹xi Œl �, l D 1, � � � ,Lsº, where Ls

is the symbol frame length. The symbols ¹xi Œl �ºmay also be referred to as ‘chips’ [19], which drive
an optical modulator for transmission over the FSO link, as shown in Figure 2.

The optical signals propagating in free space are subject to atmospheric turbulence-induced fading
and these effects are usually modeled by a block fading process [20]. At the receiver, the positive-
intrinsic-negative photodetector’s output signal is assumed to be further contaminated by zero-mean
AWGN. Thus, the received electrical signal is written as [21]

r .1/Œl �D<

KX
iD1

I
.1/
i xi Œl �C nŒl�, (1)

where< is the optical-to-electrical conversion coefficient, while ¹nŒl�º represents the samples of the
zero mean AWGN with variance of �21 DN0 = 2. N0 is the one-sided power spectral density. We let

I
.1/
i denote the real-valued fading gain between the i thSN and DN, which obeys a Gamma–Gamma

distribution and is formulated as in [22]

Pr.I /D
2 .˛ˇ/.˛Cˇ/= 2

�.˛/�.ˇ/
I .˛Cˇ/= 2�1K˛�ˇ

�
2
p
˛ˇI

�
, I > 0 , (2)

where �.�/ is the standard Gamma function and Kn.�/ is the modified Bessel function of the second
kind of order n. Furthermore, the scintillation parameters ˛ and ˇ, respectively, are defined as
in (3), (4) below.
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where the Rytov variance is given by�2 D 0.5C 2n �
7=6L11=6 and the geometry-related factor d is

defined as d D
�
�D2=.4L/

�1=2
, with L representing the link distance, D denoting the diameter

of the receiver lens aperture, C 2n represents the refractive index structure parameter and � D 2�=�
denotes the wave number associated with a wavelength of �. Finally, the scintillation index is defined
as SI D ˛�1C ˇ�1C .˛ˇ/�1[4].

As depicted in Figure 3, the network-coded cooperative (NetCC) iterative receiver of DN consists
of two processing chains involving SN-DN and RN-DN pairs. The SN-DN chain is constituted by a
soft MSD module and K soft decoders (DECs). Note that the received electronic signal of Phase I

is written as r .1/Œl � D <
PK
iD1 I

.1/
i xi Œl �C nŒl�. We now rewrite it as r .1/Œl � D <I .1/i xi Œl �C 	i Œl �,

where 	i Œl � D <
P
Qi¤i I

.1/

Qi
xQi Œl � C nŒl� denotes the equivalent noise. To mitigate the multisource

(MS) interference, a soft network coded iterative MSD algorithm is proposed for mitigating the
effects of the turbulence channel and of the MS interference. Let us describe our MSD algorithm
conceptually, while providing the full analytical derivation in Appendix A. In the following, the
time index is omitted for notational simplicity. The extrinsic log-likelihood ratios (LLRs) about
x
.1/
i quantify the extra information gleaned at the output of the soft MSD of Figure 3, which can

be written as
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Figure 3. Structure of the iterative NetCC detector.
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Here, Var.�/ and E.�/ stand for the variance and mean of the random variable argument, respec-

tively. La
MSD

�
x
.1/
i

�
is the a priori LLR about x.1/i , which is set to zero at initial iteration and is

updated by the interleaved extrinsic information eDEC

�
c
.1/
i

�
of the soft DEC module. As shown in

Figure 3, the extrinsic information eMSD

�
x
.1/
i

�
,8i is forwarded to the deinterleaver. To achieve a

cooperative diversity gain, the deinterleaved extrinsic information LMSD

�
c
.1/
i

�
,8i and the LLR

outputs LMSD

�
c
.2/
i

�
,8i gleaned from the network coding decoders are combined. The related

chip-level soft network decoding algorithm will be discussed in the next subsection. After the

beneficial combining of the MSC signals, the resultant LLR information LNC
MSD

�
c
.1/
i

�
,8i is then

forwarded as a priori information to the soft DEC of Figure 3, which calculates both the a

posteriori LLRLDEC

�
c
.1/
i

�
,8i and the extrinsic LLR eDEC

�
c
.1/
i

�
,8i , yielding eDEC

�
c
.1/
i

�
D

LDEC

�
c
.1/
i

�
� LMSD

�
c
.1/
i

�
,8i . The extrinsic LLR eDEC

�
c
.1/
i

�
,8i is the re-interleaved and used

as a priori information fed to the soft MSD of Figure 3 for the next iteration. Following the
final iteration, the detected information bits Od i ,8i are output after a hard decision decoding of

LDEC

�
c
.1/
i

�
,8i , as seen in Figure 3.
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3.2. Phase II: network-coded relaying

In Phase II, the SNs retransmit their data to DN via the RN, as shown in Figure 2(c). The RN pro-
vides cooperation spatial diversity gain for each SN, hence beneficially combating the atmospheric
turbulence. Again, here we briefly describe our algorithm conceptually in tangible physical terms
and provide the related full mathematical derivation in Appendix A and B.

The RN detects the information bit sequence Qd i D
°
Qdi Œn�,nD 1, � � � ,Ld

±
for 1 6 i 6 K of

each SN with the aid of the proposed iterative MSD algorithm as detailed in Appendix A, because
the iterative receiver architecture of RN is similar to that of the DN without the involvement of
a network decoder. Hence, we will not discuss it for the sake of space economy. Employing the
DF technique, the RN’s recovered sequence Qd i is re-encoded, yielding the FEC-coded stream
Qci D ¹Qci Œm�,mD 1, � � � ,Lcº. More particularly, the RN applies linear network coding to the incom-
ing information creating the XOR function of each SN’s signal. As a result, we have the combined
stream c.2/ D

®
c.2/Œm�,mD 1, � � � ,Lc

¯
, which is written as c.2/ Œm� D Qc1Œm�˚ � � � ˚ Qci Œm� � � � ˚

QcK Œm�, where ˚ denotes the element-wise XOR operation. This is followed by further interleaving
and OOK modulation. Finally, the full-duplex RN transmits the modulated chips x.2/Œl � to the DN.

The DN’s received chip stream is written as r .2/Œl � D <I .2/x.2/Œl � C n0Œl �, 1 6 l 6 Ls ,
where x.2/Œl � denotes the l th chip received from RN and n0Œl � represent the samples of the zero
mean AWGN having a variance of �22 . Furthermore, I .2/ is the turbulence-induced fading intensity
between the RN and the DN.

In the following, we discuss the RN-DN chain of the NetCC iterative receiver, which is consti-
tuted by the maximum likelihood detection and network coding decoder and we omit the time index
for notational simplicity. Assuming the availability of perfect channel state information, the second
phase detector first retrieves the LLRs of c.2/ with the aid of maximum likelihood detection, which
may be written as

L
�
c.2/

�
D log

Pr
�
r .2/ = c.2/ D 1

�
Pr
�
r .2/ = c.2/ D 0

� D <2
2�22

�
2r .2/I .2/ �

�
I .2/

�2	
.

Then the decomposition into each individual LLR of LMSD

�
c
.2/
i

�
for each SN is performed at the

network coding decoder, which takes into account the observations from two phases. When using
the full mathematical derivation provided in Appendix B, we have

LMSD

�
c
.2/
i

�
D log

Pr
h
c
.2/
i D 1

ˇ̌
r .1/, r .2/

i
Pr
h
c
.2/
i D 0

ˇ̌
r .1/, r .2/

i
D log

! C exp
�
L
�
c.2/

��
1C! � exp

�
L
�
c.2/

�� ,

(6)

where ! D G1CG3C���CGkC���CGK�1
1CG2C���CGk�1C���CGK�2

, when K is even, and

Gk D
X

l1<l2<���<lk2‚

exp

"
kX

mD1

LMSD

�
c
.1/

lm

�#
. (7)

In conjunction with k D ¹1, 2, � � � , .K � 1/º, ‚ D ¹1, 2, � � � , .i � 1/, .i C 1/ , � � � ,Kº, and
G0 D 0. Then, these LLRs are beneficially combined with first phase LLRs from SN-DN chain
and participate in the iterative chain as seen in Figure 3.

4. SIMULATION RESULTS

In this section, we evaluated the performance of the proposed NetCC FSO scheme for transmis-
sion over Gamma–Gamma turbulence channels using simulation analysis. The simulation scenario
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is depicted in Figure 1, where the source–destination (SD) and relay–destination (RD) channels are
assumed to experience independent Gamma–Gamma fading. The SN and RN are in close prox-
imity of each other. We also assume that the source–relay (SR) channels are perfectly error-free
[9]. We first investigate the BER performance metric of the noncooperative (NonC) direct transmis-
sion as a benchmarker scheme, which will serve as the comparative basis of the proposed NetCC
scheme. For the sake of a fair comparison, the total power PT of both schemes is the same [9].
More explicitly, in the NonC system, the power PT is equally shared among all SNs, that is,
we have PNonC D PT=K. On the other hand, the power allocation in the NetCC system obeys
P S

Coop D 2PT=2K C 1, PR
Coop D PT=2K C 1, where P S

Coop is the power of a single information bit
at an SN, while PR

Coop is that at the RN. The repetition-based FEC code and OOK modulation are
employed. In the following, the x-axis Eb = N0 denotes the signal-to-noise ratio per bit.

4.1. Simulation Experiment 1

We first evaluate the BER performance and convergence behavior of the iterative MSD algorithm
relying on the NonC scheme havingK D 4 SNs and employing a repetition code of rateRc D 1 = 8.

Figure 4 illustrates the BER performance of the proposed MSD algorithm for transmission over
Gamma–Gamma fading channels. The scintillation parameters are set to ˛ D 3.1and ˇ D 2.0.
Observe in Figure 4 that the MSD algorithm exhibits a rapid convergence in I t D 4 iterations to the
single-user-bound.

4.2. Simulation Experiment 2

Here we investigate the MSD algorithm under different Gamma–Gamma fading conditions for the
NonC scheme having K D 4SNs and employing a repetition code of rate Rc D 1 = 8.

Figure 5 characterizes the BER performance of our proposed MSD algorithm under different
turbulence conditions. The optical scintillation parameters are set to values of ˛ D 2.1, 3.1, 4.1 and
ˇ D 2.0. The related scintillation indexes are set to SI =1.2143, 0.9839, and 0.8659, respectively.

As shown in Figure 5, the higher SI values result in stronger Gamma–Gamma turbulence-induced
fading, which degrades the BER performance. At a BER of 10�3, there is a 6.5 dB performance
difference between the scenarios having SI=1.2143 and SI=0.8659. These results imply that to
mitigate the turbulence-induced fading and to enhance the achievable transmission reliability, both
cooperation and diversity combining should be considered.
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4.3. Simulation Experiment 3

This investigation characterizes the BER performance of our proposed NetCC relaying scheme in
comparison with the direct NonC scheme having K D 4 SNs and one RN. The repetition coding
rate of the NetCC scheme is set to Rc D 1 = 4. To maintain the same effective spectral efficiency,
the coding rate of the direct NonC scheme equals to Rc D 1 = 8.

Figure 6 demonstrates that the NetCC scheme is capable of providing the obvious perfor-
mance gain compared with the direct NonC scheme and exhibits a rapid convergence, regarding
six iterations.

4.4. Simulation Experiment 4

This experiment investigates the impact of distance on the resultant BER performance. Our com-
parisons are carried out between the NetCC and direct NonC scheme having K D 4SNs and one
RN, while employing a repetition coding rate of Rc D 1 = 4 in the NetCC scheme and Rc D 1=8 in
the direct NonC scheme. The FSO system operates at � D 1550 nm, C 2n D 1.7 � 10�14m�2=3 and

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2012; 25:1465–1478
DOI: 10.1002/dac



NETWORK-CODED MULTIPLE-SOURCE COOPERATIVE FSO TRANSMISSION 1473

3 3.5 4 4.5 5
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Distance (km)

B
E

R
Direct NonC Scheme
NetCC Scheme
Direct NonC Scheme
NetCC Scheme
Direct NonC Scheme
NetCC Scheme

25dB

35dB

15dB

Cooperation Gain

Figure 7. Impact of link distance on the BER performance.

Table I. Scintillation index versus distance.

Distance(km) 3.0 3.5 4.0 4.5 5.0

˛ 2.9020 2.5196 2.2965 2.1676 2.0979
ˇ 2.5100 2.0918 1.8219 1.6383 1.5084
SI 0.8803 1.0647 1.2233 1.3533 1.4556

D << L. Furthermore, we set the Eb=N0 equals to 15, 25, 35 dB, respectively. The impact of path
loss-induced attenuation is separated from the dependence of L on ˛and ˇ [23].

Figure 7 shows that at higher Eb=N0, the NetCC scheme is capable of gleaning a higher coop-
eration diversity gain because the confident decisions of the unimpaired network-coded streams
provide valuable extrinsic information for less reliable streams. Thus, a better BER performance can
be achieved in comparison with the direct NonC scheme. On the other hand, even in the absence
of attenuation, the BER degrades with the increase of the distance and the scintillation index, as
quantified in Table I.

5. CONCLUSIONS

In this paper, a network-coded FSO cooperative relaying scheme was developed for mitigating the
atmospheric turbulence fading. At the destination, an OOK-modulated FSO iterative MSD scheme
was invoked in conjunction with the chip-level multisource soft network decoding. Furthermore, we
investigated the attainable system performance for transmission over Gamma–Gamma turbulence
fading channels. Our numerical results confirm that the proposed NetCC FSO scheme is capable
of achieving a substantial reduction in BER compared with the conventional noncooperative
scheme. Additionally, our design requires less equipment cost and high flexibility in the context
of multisource FSO cooperative transmissions.

APPENDIX A

In this appendix, we analytically characterize the OOK-modulated iterative MS detection algorithm
of Section 3.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2012; 25:1465–1478
DOI: 10.1002/dac



1474 X. ZHOU ET AL.

When OOK is employed, we have x.1/i Œl � 2 ¹0, 1º, 8i , l . To focus on the i th SN, given the

turbulence channels’ observation I .1/ D
°
I
.1/
i

±
,8i , the a posteriori LLR of x.1/i is
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(A.1)

where eMSD

�
x
.1/
i

�
is the extrinsic LLR of x.1/i . La
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is the a priori information of x.1/i .

Furthermore,
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where the estimates of the interference mean and variance are E.	i / D <
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The a priori information La
MSD

�
x
.1/
i

�
is zero during the first detection iteration, which is then

updated by the interleaved extrinsic information eDEC

�
c
.1/
i

�
gleaned from the soft DEC module

of Figure 3.
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APPENDIX B

In this appendix, we derive the MS’s soft network decoding algorithm used in Section 3. The LLRs
of c.2/i in Figure 3 are given by
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where we let 
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In the expression of !, we have
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where 16 k 6 .K � 1/, ‚D ¹1, 2, � � � .i � 1/, .i C 1/, � � �Kº, G0 D 0.
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