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a b s t r a c t

A number of research issues arise in executing large scale High Level Architecture (HLA) based distributed
simulations. Among these issues distributed simulation cloning, fault tolerance and Grid enabled
architecture are particularly important and challenging. This paper presents a Decoupled Federate
Architecture as the underlying infrastructure to facilitate a solution to each of the above issues.

Distributed simulation cloning has been designed to improve the performance of ‘‘what-if’’ analysis,
by enabling the examination of alternative scenarios concurrently within the same execution session.
Furthermore, simulation federates running at different locations are liable to failure. Such risk increases
with the scale of a distributed simulation. The architecture has also been exploited to form the basis of a
generic framework to support runtime robustness. The development of complex simulation applications
often requires geographically distributed huge computing resources and data sets. Using the architecture,
Web and Grid technologies have been successfully combined with existing simulation technologies thus
to enhance interoperability and execution flexibility for such simulations.

Benchmark experiments have been performed to study the extra overhead incurred by the Decoupled
Federate Architecture against a normal federate. Encouraging experimental results indicate that a
well designed architecture can achieve performance close to the normal one in terms of latency and
time synchronization. Additional experiments have been presented for evaluating the three solutions
supported by the architecture.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Modeling and simulations are essential tools in many areas
of science and engineering, for example, for predicting the
behavior of new systems being designed or for analyzing natural
phenomena. Simulation of complex systems has long been placed
in the highly computation intensive world with computational
requirements which far exceed the capabilities of a single
computer. The last decade has witnessed an explosion of interest
in distributed simulation technology. It not only aims at speeding
up simulations, but also serves as a strategic technology for
linking simulation components of various types (e.g., discrete or
continuous, numerical or discrete event etc.) at multiple locations
to create a common virtual environment (e.g., battlefields, virtual
factories and supply chains, agent-based systems, games etc).
The culmination of this activity is the advent of the IEEE 1516
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standard, namely the High Level Architecture (HLA), to facilitate
interoperability among simulation federates and promote reuse of
simulationmodels. Runtime Infrastructure (RTI) software supports
and synchronizes the interactions amongst different federates
conforming to the standard HLA specifications [10,17].

In the case where the problem domain is particularly complex,
or involves multiple collaborative parties, analysts often need
to construct a large scale federation with individual simulation
federates interacting over the Internet. These applications are
usually time consuming and computation intensive, which require
vast distributed computing resources. There are a number of
important research issues to be investigated in the area of
large scale HLA based distributed simulations, such as simulation
cloning, fault tolerance and Web or Grid enabled architectures.

In the context of a conventional simulation, an analyst chooses
the best solutions by repeating the simulation multiple times, to
examine alternative decision policies and strategies. Simulating
each of these choices from the start would require much
computation to be repeated unnecessarily. Distributed simulation
cloning technology can clone replicas of one or more federates at
the decision point, to examine alternative scenarios concurrently
[3]. The analyst can quickly obtain multiple sets of simulation
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Fig. 1.1. Abstract model of a simulation federate.

results that represent the impacts of alternative decisions in
the physical system. Thus, the technology facilitates an effective
decision support tool for simulation.

Simulation federates running at different locations are liable
to failure: as the current IEEE 1516 HLA does not support a
formal fault tolerant model [17], crash of a federate or a part of
a federation will lead to the failure of the whole federation. When
failure occurs, even if it is feasible to restart the simulation from a
previous checkpoint [19], repeating the execution could either be
costly or lose the functions of the failed simulation (for example,
a rare event may not be regenerated in the new ‘‘recovered’’
simulation execution). The risk of such failure increases with
the number of federates inside one single federation. Although
fault tolerance support has been informally proposed in the latest
HLA Evolved specification, and some design patterns for fault
tolerant federations were suggested in [22], there are only a few
preliminary and non-standard implementations for this purpose.
Hence, there exists a pressing need for a mechanism to support
runtime robustness in HLA-based distributed simulations.

Executing HLA-based simulations normally requires users to al-
locate computing resources to federates and the RTIEXEC (DMSO
RTI) statically, which lacks flexibility. Interoperation amongst fed-
erates over the Internet is also restrained by security require-
ments (e.g., firewalls) or heterogeneity of the computing resources
in different organizations. Web services provide interoperability
between software applications distributed over the Internet. The
emergence of Grid technologies provides an unrivalled opportu-
nity for large-scale distributed simulation. The HLA enables the
construction of a large-scale simulation using distributed (possi-
bly existing) simulation components. Meanwhile, Grid technolo-
gies providemechanisms for the collaboration andmanagement of
distributed computing resources where the simulation is being ex-
ecuted, while facilitating access to geographically distributed data
sets as well.

A normal simulation federate can be viewed as an integrated
program, consisting of a simulation model and Local RTI Compo-
nent (LRC), as shown in Fig. 1.1. The simulation model executes
the representation of the system of interest, whereas the LRC ser-
vices it by interacting and synchronizing with other federates. In a
sense, the simulation model performs local computing, while the
LRC carries out distributed computing for the model. It is very dif-
ficult to directly enable any of the above three technologies in a
normal federate, due to the tight coupling of the simulation model
and the LRC. For example, there is no straightforward method to
replicate a federate to support simulation cloning. Providing fault
tolerance to federates requires an approach to ‘‘isolate’’ the error of
the LRC from the simulation model in addition to the challenge to
develop a generic state saving and recoverymechanism. This paper
introduces the idea of decoupling the LRC from a normal HLA fed-
erate, in order to facilitate solutions to the above research issues.

The proposed approach separates these two modules into
two independent processes, namely a virtual federate and a
physical federate. The virtual federate inherits the code of the
original simulation federate, while associating with it a ‘‘virtual’’
RTI component, which still provides the simulation model with
a standard interface of RTI services. The real RTI services are
accessed through the physical federateworking in the background.
All the RTI calls employed by a virtual federate call services
via the corresponding physical federate. Various communication
channels may be used to bridge the two processes together into a
simulator. These processes may execute on the same processor, on
different processors of a shared memory multiprocessor or even
computers on a cluster or network. Low level communications
(Socket, IPC, Fast Message, MPI etc.) may ensure efficiency. In
contrast, high level communications (COBRA,Web service etc.) can
enhance the system’s interoperability, and provide easy utilization,
management and deployment. No matter what communication
channels are used, the approach ensures the intactness of existing
simulation federate codes.

To investigate the overhead incurred by the decoupled ap-
proach, this paper first presents a set of experiments to benchmark
the latency and efficiency of synchronization. Experimental results
for the decoupled federates and normal federates are compared.
The results indicate a promising performance of the decoupled fed-
erates in both types of benchmarks. The paper then presents solu-
tions to the three technologies, i.e., distributed simulation cloning,
fault tolerance as well as Web and Grid Enabled Architecture. The
solutions are established upon the Decoupled Federate Architec-
ture. Several series of experiments have been carried out to evalu-
ate these solutions.

A shorter version of this paper was presented in the 15th
European Simulation Symposium [4] in the context of a Decoupled
Federate Architecture for distributed simulation cloning. The rest
of this paper is organized as follows: Section 2 outlines related
work on the research issues addressed by the Decoupled Federate
Architecture approach. Section 3 introduces the background of
this study and analyzes the problems. Section 4 details a design
and implementation of the decoupled approach. This section also
presents the benchmark experiments on the architecture and
analyzes the results. Section 5 discusses the solutions to resolving
the above research issues and gives the experimental results on
system performance. Section 6 concludes with a summary and
proposals on future works.

2. Related work

Morse et al. proposed an Extensible Modeling and Simulation
Framework1 (XMSF) to allow various simulations to take advan-
tage of Web-based technologies [23,24]. XMSF makes use of Web-
based technologies, applied within an extensible framework, that
enables a new generation of modeling & simulation (M&S) appli-
cations to emerge, develop and interoperate. One of its important
initiatives is to develop aweb enabled RTI.Within the XMSF frame-
work, multiple federates reside as web services on a WAN and the
federation’s Federation Object Model2 (FOM) is mapped to an XML
tagset, allowing interoperation with other distributed applications
supported by web services. The federates communicate using the
SimpleObject Access Protocol (SOAP) and the Blocks Extensible Ex-
change Protocol (BEEP). Several obvious advantages are identified,
such as: platform crossing, language crossing and interoperability

1 http://www.movesinstitute.org/xmsf/xmsf.html.
2 The primary function of a FOM is to specify, in a common standardized format,

the nature of the data exchange among federates.
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of federates (for example, breaking though the constraints of fire-
walls etc.).

Straßburger et al. presented different solutions, including
a gateway program approach to adapt models built using
Commercial-off-the-shelf (COTS) simulation packages to the
HLA [27]. Under this approach, a simulation application consists
of a COTS-based model and a gateway program that couples
the model with the RTI. Thus, previously standalone models
may interoperate with each other using the HLA specification,
with user transparency maintained. Similarly, McLean and Riddick
designed a Distributed Manufacturing Adapter to integrate legacy
simulations with the HLA/RTI [21]. This design aims to simplify
the integrationwhile gaining capabilities of HLA-based distributed
simulations.

Hybinette and Fujimoto proposed using simulation cloning
technology as a concurrent evaluation mechanism in the parallel
simulation domain [16]. The motivation for this technique was to
develop a cloning mechanism that supports an efficient, simple,
and effectiveway to evaluate and compare alternate scenarios. The
method was targeted for parallel discrete event simulators that
provide the simulation application developerwith a logical process
(LP) execution model.

Fault tolerant techniques often employ redundant/backup
components to achieve system robustness, such as the Replica
Federate approach proposed in [1]. Their approach produces
multiple identical instances of one single federate, and failures
can be detected and recovered upon the outputs of those identical
instances. However, redundancy is liable to result in lower system
performance. Furthermore, extra federate replicas in a distributed
simulation increase the probability of overall system failure
incurred by an LRC failure.

Significantly different from above work, this project focuses
on developing a generic infrastructure, which addresses three
independent issues: (1) enabling distributed simulation cloning,
(2) supporting fault tolerance and (3) incorporating Web/Grid
technologies in the HLA. However, this is difficult as these
technologies are heterogeneous to the HLA. Reusability is one of
the key benefits of HLA-based simulation [10]. This study also
aims at providing reusability, thus it minimizes the effort for
users to adopt these technologies in developing federates or taking
advantage of legacy federates. Undoubtedly, this requirement
poses more complications in this task.

3. Background and problem statement

Section 3.1 introduces the concepts related to High Level
Architecture (HLA) followed by the way in which HLA-based
simulations form and operate with the support of Runtime
Infrastructure software. In the rest of Section 3, we elaborate the
background and the major problems with respect to the focus
of this study, i.e., to facilitate solutions based the Decoupled
Federate Architecture to distributed simulation cloning, fault-
tolerant distributed simulation and Web/Grid enabled simulation.
Section 3.2 presents the idea of distributed simulation cloning,
and presents the crucial problems to be tackled for cloning
federates. Section 3.3 analyzes the risk of RTI failure and discusses
several research challenges to support a generic fault-tolerant
mechanism to HLA-based simulations. In Section 3.4, we discuss
the potential benefits and feasibilities of integrating the Web or
Grid technologies with the HLA technologies.

3.1. High level architecture and runtime infrastructure

The HLA defines a software architecture for modeling and sim-
ulation, which is designed to provide reuse and interoperability of
simulation components. The simulation components are referred
to as federates. A simulation federation can be created to achieve
some specific objective by combining simulation federates. The
HLA supports component-based simulation development in this
way [11]. The HLA federation is a collection of federates (observers,
live participants, simulators etc.) interacting with each other for a
common purpose, for example wargaming. These federates inter-
act with each other with the support of the Runtime Infrastructure
(RTI), and the use of a common FOM. In the formal definition, the
HLA standard comprises four main components: HLA Rules, Object
Model Template (OMT), Interface Specification [17] and Federation
Development and Execution Process (FEDEP) [18]. The HLA rules
define the principles of HLA, in terms of responsibilities that fed-
erates and federations must uphold. Each federation has a FOM,
which is a common object model for the data exchanged between
federates in a federation. The OMT defines the metamodel for all
FOMs [20]. The HLA Interface Specification identifies the RTI ser-
vices available to each federate and the functions each federate
must provide to the federation. The FEDEP mainly defines a pro-
cess framework for federation developers, including the necessary
activities to build HLA federations.

The HLA is an architecture defining the rules and interface,
whereas the Runtime Infrastructure (RTI) is the software conform-
ing to the HLA standard, that is used to support a federation ex-
ecution. Fig. 3.1 gives an overview of an HLA federation and the
RTI. The RTI provides a set of services to the federates for data in-
terchange and synchronization in a coordinated fashion. The RTI
services are provided to each federate through its Local RTI Com-
ponent (LRC) [12]. The RTI can be viewed as a distributed operating
systemproviding services to support interoperable simulations ex-
ecuting in distributed computing environments [14]. A total of six
service categories are defined in the specification, namely Federa-
tion Management, Declaration Management, Object Management,
OwnershipManagement, Data DistributionManagement and Time
Management [12]. The RTI services are available as a library (C++
or Java) to the federate developers. Within the RTI library, the class
RTIAmbassador bundles the services provided by the RTI. A feder-
ate may invoke operations on the interface to request a service
(federate-initiated service) from the RTI. The FederateAmbassador
is a pure virtual class that identifies the ‘‘callback’’ functions each
federate is obliged to provide (RTI-initiated) service. Federate de-
velopers need to implement the FederateAmbassador. The callback
functions provide a mechanism for the RTI to invoke operations
and communicate back to the federate.

3.2. Problems in cloning federates

When reaching a decision point, a federate has different choices
to examine. Instead of simulating each choice from the start,
distributed simulation cloning technology can be used to replicate
the federate, and allow the replicas to examine these choices
concurrently from the decision point onwards. A decision point
represents the location in the execution path where the states
of the system start to diverge in a cloning-enabled simulation.
‘‘Cloning’’ differs from simple ‘‘replication’’ in the sense that clones
of the original federate execute in different ‘‘paths’’ rather than
simply repeat the same executions. Even though the computation
of clones is identical at the decision point, from the decision
point onwards, each clone explores one particular path together
with its partner federates to form an independent scenario which
represents a unique decision in the simulated physical system [2].
This provides the user with the opportunity to evaluate multiple
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Fig. 3.1. Architecture of HLA-based distributed simulation.

alternative results concurrently, using the same simulationmodels
within a single session. Thus execution time can be reduced,
and the analyst may quickly obtain multiple sets of results that
represent the impacts of alternative decisions.

The new clones of one particular federate should initially have
the same features and states as the original federate, both at the
RTI level and at the simulation model level. This is to ensure the
consistency of simulation state. For example, at the RTI level, clones
must have subscribed to the same object classes and registered the
same object instances etc. At the simulationmodel level, the clones
should have the same program structure, data structures, objects
and variables; all these program entities should have identical
states. Immediately after the cloning, the cloneswill be given some
particular parameters or routines to execute in different paths.

One possible solution is to introduce a state saving and
replication mechanism to the simulation federates, allowing
the simulation federate to store snapshots of all the system
states. When cloning occurs, new federate instances are started
and initialized with stored states. However, users model their
simulations in a totally free manner. It is unlikely that a generic
state saving and replication mechanism can be provided that will
be suitable for any simulation federate. Besides, as the LRC is not
designed to be replicated, direct cloning of a federate can lead to
unpredictable and uncontrollable failure at the RTI level.

Even given such a mechanism, it is unlikely that all simulation
developers will use the same standard package to model their
simulations.Without the ability to customize the user’s simulation
code, it is almost impossible tomake snapshots of all system states
of any federate. Furthermore, the principle of reusing existing
federate code increases the difficulty of this task. On the other
hand, the standard HLA specification makes it relatively easy to
intercept the system states at the RTI level. Using a middleware
approach, onemay save and replicate the RTI states while enabling
transparency. Thus we can see that the simulation model and the
LRC have very different characteristics. Therefore, it suggests a
distinction should bemade between these twomodules for cloning
a federate.

3.3. Problems in enabling fault tolerance

Many factors can contribute to the failure of a federate, for
example, network congestion, platform crash of the RTIEXEC
process [12] etc. People have developed many technologies for
facilitating fault tolerance in distributed applications. Cristian
pointed out some principles about fault-tolerance in distributed
system architectures [9], and these are: understanding failure
semantics, masking failure and balancing design cost.

The checkpoint andmessage-logging approach is an alternative
to the replication methods described in Section 2. As proposed
in [19], a process records each message received in a message
log while the state of each process is occasionally saved as a

checkpoint. Message logging can be pessimistic, assuming the
occurrence of a failure at any time, or optimistic, assuming that a
message will always be properly delivered before process failure.
A failed process can be restored using some previous checkpoint
of the process and the log of messages. This approach assumes
the process execution to be deterministic between received input
messages.

Although the RTI supports the federation save and restore
services, the HLA specification does not support or propose a
fault tolerance mechanism for HLA-compliant simulations [11].
In the context of a checkpoint or simulation migration approach,
it means a federate has to be specially modeled. For example,
given that a checkpoint method is adopted, a federate should
have the additional functionalities to save its simulation model’s
states and recover from the last checkpoint. It is desirable to allow
users to model their federates freely while enabling robustness.
To optimize execution, it is preferable that the fault tolerance
approach can handle the failure of the RTI immediately, without
repeating or disrupting the execution of the simulation model.

A normal federate usually exists as a single process at runtime,
and the simulation model shares the same memory space with
the LRC (see Fig. 1.1). In the case where the RTI crashes or
meets congestion, the failure of any LRC prevents the simulation
execution from proceeding correctly even though the simulation
model contains no error at all. Besides the challenge to develop
a generic state saving and recovery mechanism, the fault-tolerant
model requires an approach to ‘‘isolate’’ the error of the LRC from
the simulation model. On the other hand, the HLA standard makes
it relatively easy to intercept the system states at the RTI level
using a middleware approach. Furthermore, we can see that the
simulationmodel and the Local RTI Component have very different
characteristics. Therefore, it suggests a distinction should be made
between these two modules when dealing with failure.

3.4. Web or grid enabled architecture

The Grid infrastructure provides dependable, consistent, per-
vasive, inexpensive and secure access to high-end computational
capabilities [13]. The Open Grid Services Architecture (OGSA) ex-
tends the Web services to include additional functionalities. With
these features, Web and Grid services offer a promising approach
to enhance the flexibility and interoperability for large scale HLA-
based simulations.

The HLA does not define security mechanisms for using RTI
services, while the Grid provides a built-in security architecture
to support authentication and secure communication in accessing
Grid services [15].

The HLA supports interoperability among HLA-compliant
federates. However, this feature is often hampered in the context
of large scale distributed simulations over the Internet. This is
due to various security requirements on the networking resources
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belonging to different organizations. There is a need to combine
the HLA and Web or Grid technologies, in order to achieve the
advantages of both. Directly utilizing Web or Grid services will
incur extra effort from the developers in modeling simulations. An
alternative approach is to use a Web or Grid Enabled Architecture,
which manages the RTI services at the backend, while presenting
dynamic access of the RTI services to the simulation model or the
end users via Web or Grid services. The architecture can be used
to relieve the developers from the complication of coding Web or
Grid services in existing simulation models.

4. Decoupled federate architecture

To address the issues discussed in Section 3, a Decoupled Fed-
erate Architecture has been designed to separate the simulation
model from the Local RTI Component. Section 4.1 presents the ba-
sic idea of the Decoupled Federate Architecture with notations de-
fined. Section 4.2 details a candidate design of the architecture and
describes the operation of a federate supported by the architecture.
Section 4.3 depicts a RTI++middleware, i.e., the implementation of
the architecture. Section 4.4 introduces a series of experiments to
benchmark the performance of the architecture using the candi-
date design.

4.1. Virtual federate and physical federate

In the context of the decoupled architecture, a federate’s
simulation model is decoupled from the Local RTI Component. A
virtual federate is built up with the same code as the original
federate. As HLA only defines the standard interface of RTI services,
we are able to substitute the original RTI software with our
customized RTI++ library (also see Section 4.3)without altering the
semantics of RTI services [2]. Fig. 4.1(B) gives the abstract model
of the virtual federate. Compared with the original federate model
illustrated in Fig. 1.1, the only difference is in themodule below the
RTI interface, which remains transparent to the simulation user.

A physical federate is specially designed as shown in Fig. 4.1(A).
The physical federate associates itself with a real LRC. Physical
federates interact with each other via a common RTI. Both vir-
tual federates and physical federates operate as independent pro-
cesses. Reliable external communication channels, such as Inter-
Process Communication (IPC), Sockets, SOAP or other out-of-band
communication mechanisms, bridges the two entities into a single
federate executive [28]. To ease discussion, this paper uses the ab-
breviation ‘‘ExtComm’’ to denote those alternative communication
channels and assumes messages are delivered/received strictly in
FIFO manner.

All the components inside the dashed rectangle form a Mid-
dleware module between the simulation model and the real RTI.
Within the virtual federate, the RTIPlus contains customized li-
braries while presenting the standard RTI services and related
helpers to the simulation model. This module can be designed to
contain all other management modules for the objectives men-
tioned previously. The fedAmb serves as a common callback (Fed-
erateAmassador) to the user federate, which is freely designed by
the user and independent of the decoupled approach. The RTIPlus
handles the user’s RTI service calls by converting the method to-
getherwith the associated parameters into ExtCommmessages via
theMessaging Protocol. The protocol mainly defines a mapping be-
tween an ExtCommmessage and the RTI method it represents. For
example, an RTI_UPDATE message indicates that the virtual feder-
ate has invoked the RTImethod updateAttributeValues(). The proto-
col can also be extended for other purposes, such as manipulating
the physical federate. The ExtComm conveys these messages im-
mediately to the physical federate for processing in a FIFOmanner.

The physical federate converts an RTI call message generated
from the virtual federate into the corresponding RTI call through
its own messaging protocol layer. The RTIAmb module executes
any RTI service initiated by the simulation model prior to passing
the returned value to the ExtComm. The phyFedAmb serves as
the callback module of the physical federate to respond to the
invocation issued by the real RTI. Within the phyFedAmb module,
the messaging protocol is employed to pack any callback method
with its parameters into ExtComm messages. The ExtComm
enqueues the callback message to the Callback Processor module
at the virtual federate. Through the messaging protocol, the
callback processor activates the corresponding fedAmb method
implemented by the user. From the simulation users’ perspective, a
combination of one virtual federate and its corresponding physical
federate operates as a simulation federate in the context of the
decoupled architecture. The federate combination performs an
identical execution to a normal simulation federate with the same
code as the virtual federate. In future discussion, we will explicitly
use ‘‘normal federate’’ to refer to a traditional federate that directly
interacts with the RTI. By default, in the discussion of this paper a
federate contains a virtual federatemodule and a physical federate
module.

4.2. Inside the decoupled architecture

As discussed above, the decoupled approach interlinks a virtual
federate and the physical federate into a simulator that performs
an identical simulation to the corresponding normal federate. This
section gives the details of how an RTI service call is executed and
the callback is invoked in the Decoupled Federate Architecture.

Fig. 4.2 depicts the procedure where a simulation model ini-
tiates an RTI call and waits for a return from the real RTI. For
example, the virtual federate invokes the redefined updateAt-
tributeValues() method. The data associated with this call are
packed into an RTI_UPDATEmessage, and sent over to the physical
federate. The latter then recovers a new AHVPS [12] object and re-
lated parameters, and those are passed to the RTI::updateAttribute
Values() accordingly, which invokes the real RTI service. On the ac-
complishment of this RTI::updateAttributeValues() call, the physical
federate acknowledges the virtual federatewith an ExtCommmes-
sage containing the returned value. Immediately after that, the ini-
tial updateAttributeValues() call finishes and the returned value is
conveyed to the simulation model. From the user’s point of view,
the initiation and accomplishment of an RTI call are same as the
original normal federate. The semantics of RTI services are kept in-
tact in the decoupled approach.

The RTI software has an interface that provides flexiblemethods
to the user for packing update data, and leaves the transmission
details transparent. The user can create update data of variable
lengths. However, most low level communications do not offer
flexible methods to handle message delivery without agreement
of lengths between source and destinations. For example, most
IPC mechanisms have limitations in message size and buffer size.
The Message Queue based on Solaris defines the maximum queue
length as 4096 bytes [28]. The message sender and receiver must
agree with each other on the same message length. If a fixed
message size is defined for ExtComm messaging, it may incur
some unnecessary overhead. A fixed large size is inefficient in
transmitting small messages. On the other hand, a fixed small
size increases the overhead for packing, delivering and unpacking
a large number of small packets in the case of processing large
messages. Therefore a simple protocol is proposed for messaging
between the virtual federate and physical federate. We define a
small message size (MSG_DEF) and a large message size (MSG_LG)
for assembling user data into packets. A special ‘‘PREDEFINE’’
packet is used to notify the receiver if large or multiple packets
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Fig. 4.1. Decoupled federate architecture.

Fig. 4.2. Executing an RTI call in the decoupled architecture.

are to be sent for a single data block. Fig. 4.3 gives the messaging
details based on this simple protocol.

The RTI communicates with a federate via its Federate
Ambassador provided by the user [12]. In the DMSO RTI, a federate
must explicitly pass control to the RTI by invoking the tick()
method. For example, the RTI delivers the Timestamp Order (TSO)
events and Time Advance Granted (TAG) to a time-constrained
federate in strict order of simulation time, which coordinates
event interchange among time regulating and time constrained
federates in a correct and causal manner. Therefore, the decoupled

architecture should guarantee that (1) the Federate Ambassador at
the user federate works in a callback like manner and (2) callback
methods are invoked in the correct order. Fig. 4.4 depicts how to
realize these functionalities. To ease discussion, we assume the
physical federate will get the callbacks shown in Fig. 4.4.

The Virtual federate invokes the routine RTIPlus::tick(), and an
RTI_TICK message is sent to the physical federate which triggers
the real RTI tick() call. The Local RTI Component acquires control
and delivers events to the phyFedAmb module of the physical
federate in a strict order. In each callback method invoked, the
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Fig. 4.3. Messaging between virtual federate and physical federate.

data sent by the RTI is enqueued to the callback ExtComm channel.
The Callback Processor continuously processes the messages in
a FIFO order, while activating the corresponding method in the
fedAmb module. At the physical federate side, once the RTI
passes control to the physical federate, the latter returns an
RTI_TICK_DONE message to the virtual federate. Thus, the virtual
federate accomplishes the RTIPlus::tick(), and control is returned to
the caller immediately.

The real RTI starts to take charge only when the physical
federate explicitly invokes RTI::tick(). On the other hand, the
RTIPlus::tick() can only return when the real RTI finishes its work.
As the ExtComm channels work in a FIFO manner, the order of
each callback method invoked at the physical federate is identical
to the sequence in which the callback processor at the virtual
federate processes the data. From the user’s perspective, the
callback mechanism based on the decoupled approach executes
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Fig. 4.4. Conveying callbacks to the virtual federate.

the equivalent operations to the normal federate. It guarantees
consistency in presenting messages from the real RTI to the
simulation model and also ensures user transparency.

The decoupled architecture requires an additional ExtComm
communication layer, although it performs exactly the same
computation as the corresponding normal federate. The external
communication may incur some extra overhead. To investigate
the overhead incurred by the decoupled approach, a series of
benchmark experiments has been performed to compare with
the normal federates. Section 4.4 reports and analyzes the
experimental results in terms of communication overhead and
synchronization efficiency.

4.3. Middleware and the RTI++ Library

Conforming to the critical principle of reusing the user’s
programs, our decouple approach minimizes or avoids the
modification to the user’s existing code. As also indicated in Fig. 4.1,
a middleware approach has been adopted to hide the complexity.
The middleware is designed as an RTI++ library which extends
the standard RTI to encapsulate the enhanced functionality and all
operations directly related to the RTIwhile presenting the standard
RTI interface to the user. The physical federate is also regarded as
a component of the middleware.
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Fig. 4.5. Illustration of the RTI++ library and execution of the middleware.

Any of the solutions to be discussed in Section 5 should
work as an underlying control mechanism transparent to federate
codes. Hiding the implementation details while enabling the
management of scenarios can maximize the reusability of the
user’s existing simulation model. Fig. 4.5 gives the pseudo code
of an implementation of middleware. The left side represents the
code for a normal federate while the right column illustrates the
counterpart for the corresponding decoupled federate.

Fig. 4.5(A) shows the fragment of the definition of RTI
services for a normal federate and the decoupled federate, and
the RTI++ class is different only in the name. As the RTI++
adopts an identical definition of FederateAmbassador class to the
normal RTI, introduction to this class is therefore omitted in this
paper. Fig. 4.5(B) illustrates the implementation of a federate
of two versions. The difference3 lies in the declaration of the
RTIAmbassador instance.

3 Theseminor differences donot exist in our Java implementation ofGrid Enabled
Architecture.

Three RTI calls are highlighted for a comparison at runtime
between the normal federate and the decoupled federate, as
shown in Fig. 4.5(C) with indexes (1), (2) and (3). For exam-
ple, once the 2nd call registerObjectInstance() invoked by the nor-
mal federate, LRC takes control and introduces a new object in-
stance named ‘‘MACHINE1’’of class machineCls into the federa-
tion and returns the object handle to the variable theMachine.
As for the decoupled federate, the virtual federate invokes the
call, and the RTI++ middleware takes control and starts follow-
ing private routines inaccessible to the simulation developer:
(a) saving arguments passed to the call as system states, (b)
sending an ‘‘RTI_REGISTER_OBJ’’ message to the physical federate,
(c) the physical federate being instructs to execute the RTI call reg-
isterObjectInstance() to obtain the object handle, (d) extended func-
tionalities by the designer of the decoupled architecture and (e) re-
turning object handle to the variable theMachine. Routine (b) may
adopt alternative communication backbones, and routing (d) can
be customized by us for various purposes, i.e., support of cloning,
fault tolerance and Web/Grid enabled architecture in this study.
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Table 4.1
Configuration of experiment test bed

Specification Computers

Workstation1&2 Server1
Operating System Sun Solaris OS 5.8 Sun Solaris OS 5.8
CPU Sparcv9 CPU, at

900 MHz
Sparcv9 CPU * 6, at 248 MHz

RAM 1024M 2048M
Compiler GCC 2.95.3 GCC 2.95.3
Underlying RTI DMSO NG 1.3 V6 DMSO NG 1.3 V6
Processes running on FedX[i] & Y [i] RTIEXEC & FEDEXE

The executions of the two versions of the federate are the same
from the simulation user’s point of view.

4.4. Benchmark experiments and results for a candidate design

The decoupled architecture separates the simulation model
and the LRC into independent processes. In contrast, in a normal
federate these operate within the same memory space. In order
to investigate the overhead incurred in the proposed architecture
due to decoupling, we perform a series of benchmark experiments
to compare the decoupled federate with a normal federate. The
experiments study the scalability, by emulating the simulation
cloning procedure based on the decoupled architecture using the
IPC Message Queue as the external communication to bridge the
virtual and physical federate. The performance is compared in
terms of latency and time advancement calculation. Latency is
reported as the one-way event transmission time between one pair
of federates. The time advancement performance is represented as
the time advance grant rate.

4.4.1. Experiment design
The experiments use three computers in total (two worksta-

tions andone server), inwhich the server executes theRTIEXEC and
FEDEX processes (see Fig. 4.6). The federates that run at one inde-
pendentworkstation are enclosed in a dashed rectangle. In our case
Fed X[i] and Fed Y [i] (i > 0) occupy workstation 1 and worksta-
tion 2 respectively. The computers are interlinked via a 100 Mbps-
based backbone. Table 4.1 gives the configurations of the test bed.

The experiments study the scalability by increasing the number
of identical federates. As shown in Fig. 4.1, Fed X[1] and Y [1] form
a pair of federate partners, which represent the initial federation
scenario. Fed X[i] and Y [i] (i > 1) stand for the ith clones of the two
original federates respectively and forman individual scenario. The
architecture is used through all the benchmarks experiments and
for both normal federates and decoupled federates.

A Data Distributed Management (DDM) based approach is used
to partition concurrent scenarios [2]. For the latency benchmark,
each pair of federates has an exclusive point region associated
to any event being exchanged. The federates are neither time
regulating nor time constrained. In one run, each federate updates
an attribute instance and waits for an acknowledgment from its
partner (from Fed X[i] to Fed Y [i], and vice versa) for 5000 times
with a payload of 100, 1 k and 10 k bytes. The time interval in the
ping-pong procedure will be averaged and divided by 2 to give the
latency inmilliseconds. A federate merely reflects the events with
identical region to itself. In other words, Fed X[i] only exchanges
events with Fed Y [i].

As for the time advancement benchmark, all federates are time
regulated and time constrained. Each federate has a lookahead 1.0
and advances the federate time from 0.0 to 5000.0 with timestep
1.0 using timeAdvanceRequest() [12]. The results report the rate
(TAGs/Second) that the RTI issues timeAdvanceGranted().

Fig. 4.6. Architecture of benchmark experiments.

Fig. 4.7. Latency benchmark on decoupled federate vs. normal federate with
payload 100 bytes.

Fig. 4.8. Latency benchmark on decoupled federate vs. normal federate with
payload 1000 bytes.

4.4.2. Latency benchmark results
The latency benchmark experiments report the latency with

three different payload sizes. From Figs. 4.7 to 4.9, we can see
that no matter whether the payload size is small or large, latency
increases steadily with the number of federates. The increment
becomes obvious when the number of federates exceeds 4 pairs
(8 federates in total).

As indicated in Figs. 4.7 and 4.8, when the payload is not greater
than 1000 bytes, the latency varies from about 10 ms for one pair
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Fig. 4.9. Latency benchmark on decoupled federate vs. normal federate with
payload 10,000 bytes.

Fig. 4.10. Time advancement benchmark on decoupled federate vs. normal
federate.

of federates to about 30 ms for 7 pairs of federates. The decoupled
federate and normal federate show similar results in this situation,
and the decoupled federates incur only slightly more latency than
the normal ones.

As shown in Fig. 4.9, when a bulky payload as large as 10,000
bytes is applied, the decoupled federates incur about 5 ms extra
latency to the normal ones. However the extra latency remains
nearly constant with the number of federate pairs. The latencies
for both types of federates increase more rapidly than the small
payload cases. This is due to the extra overhead incurred by Inter-
Process Communication, which becomes obvious with bulky data
transmission between the physical federate and virtual federate.
When the payload size and the number of participating federates
are not too large, the decoupled federate has a similar performance
to the normal federate in terms of latency.

4.4.3. Time advancement benchmark results
Another series of experiments is carried out to compare the

decoupled federates and normal federates in terms of the speed of
time synchronization. Fig. 4.10 presents the experimental results
reported as the TAG rate. In the time advancement benchmark,
the TAG rate decreases with the number of federates for both
decoupled and normal federates. The rate decreases less rapidly
when the number of federate pairs is greater than 4 (8 federates
in total). The TAG rate is about 300 times per second for one
pair of federates down to about 40 times per second for 7 pairs
of federates. The results indicate that the performance of the
decoupled and normal federates is very similar in terms of time
advancement.

5. Solutions developed upon the architecture

This section has a general discussion on the major uses of
the Decoupled Federate Architecture. An independent solution
together with performance results are presented for each issue.
Section 5.1 introduces a design for distributed simulation cloning.
A simply supply chain simulation has been used to examine
the effectiveness of the design. Section 5.2 discusses a generic
fault tolerant mechanism. Experiments have been conducted to
measure the overhead of enabling fault tolerance. Section 5.3
describes the design of Web or Grid enabled architectures. Two
series of benchmark experiments on Grid enabled federates and
Grid enabled federations respectively have been performed to
investigate the performance and scalability of the Grid Enabled
Architecture.

5.1. Distributed simulation cloning

Distributed simulation cloning technology aims to provide
muchmore powerful and flexible decision support than traditional
‘‘linear’’ simulation. Using the decoupled approach solves the
problemofmaking copies of LRC at runtime in the case of executing
traditional federates. There exist alternative approaches to cloning
a federate. We can replicate a simulation model, using COTS
packages which support state saving/recovery. Another way is to
fork the virtual federate process to create its exact replicas. Each
of the replicas executes an instance of the simulation model with
identical initial states. New physical federate instances can be
started with restored system state at the RTI level to serve the
replicated models.

As illustrated in Fig. 5.1, at runtime the middleware intercepts
the invocation of each RTI service method. The RTI States
manipulator saves RTI states immediately before passing an RTI
call to the physical federate to execute it.4 After that, the RTI
statesManipulator logs all the RTI system states into stable storage.
Some RTI states are relatively static, such as the federate identity,
federation information, the published/subscribed classes and time
constrained/regulating status. Other states include the registered
or deleted objected instances, and granted federate time. Some
event data may also need to be saved, such as sent and received
interactions, updated and reflected attribute values of object
instances, etc.

As soon as a federate reaches a decision point, cloning
conditions are checked to decide whether cloning is required or
not. If necessary, the middleware spawns clones of the federate
immediately, to explore alternative execution paths. From the
perspective of the federate making clones, the process of a
simulation cloning can be described as follows (see Fig. 5.2).

• Copying simulation model. The cloning manager within the
middlewaremakes the specified number of clones of the virtual
federate (simulation model).

• Initiating physical federates. The cloning manager initiates
an individual physical federate for each clone of the virtual
federate and hooks up the two new processes into a whole.

• Replicating states.A clone’s physical federate is initializedwith
the stored system states from the parent federate, after which
a new clone of the original federate is formed.

4 For example, when the virtual federate invokes publishObjectClass(), the RTI
States Manipulator intercepts this call and saves the information, after which it will
call the physical federate via ExtComm.
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Fig. 5.1. Saving RTI states.

Fig. 5.2. Federate cloning.

Fig. 5.3. A simple distributed supply chain simulation.

Those COTS packages that already provide state saving of
the simulation model can easily employ the Decoupled Federate
Architecture to perform model cloning. In the future when
standards for interoperation amongst different COTS packages
are established, simulation cloning can be a desirable scheme to
optimize execution for those COTS packages that support state
saving [30].

The theory and algorithms of distributed simulation cloning
are detailed in [5,6]. Experiments on a distributed supply chain
simulation in [5] have been repeated to show the execution
efficiency of the cloning technology. As illustrated in Fig. 5.3, a
supply chain with three nodes can be modeled as three federates,
namely simAgent, simFactory and simTransportation. At a decision
point, the simFactory has three candidate policies to proceed with.
The simulation executes the supply chain’s operation for a whole
year (from simulation time 0 to 361).

Using the same codes for the simulation models, the federates
are built into two different versions by linking to: (1) the DMSO
RTI library directly (NORM) and (2) an RTI++ middleware library
supporting cloning (CLON_EN). We also configure the federates
of the 2nd version to execute each of the policies without using
cloning (CLON_DIS). For normal and CLON_DIS federates, we first
execute the policies one by one (sequential scheme), after that
we initiate three federations in parallel to study an individual
policy in each federation (parallel scheme). As for CLON_EN

federates, federate simFactory is triggered to make active cloning
at simulation times 80, 203 and 320. The average time of executing
one single scenario per run is 584 and 589 s using normal and
CLON_DIS federates accordingly (see Fig. 5.4). Compared with
the experiments not using cloning technology, the ones using
cloning can reduce execution time significantly (∼15%, ∼35%, and
∼60% for cloning at three different points). The more common
computation there is between scenarios, the more execution time
can be reduced using cloning.

5.2. Supporting fault tolerance

The federation save and restore services provided by the RTI can
be used to recover a crashed federation. In order to handle failure,
we can save the RTI states with these services at some checkpoints.
In the case of failure, a new federation can be created to ‘‘restore’’
the federation with the saved states. This approach requires the
simulationmodel to have the functionality tomanipulate the states
at the model level, and it repeats the computation from one of the
checkpoints onwards. The overhead for executing federation save
and recovery can also be significant [26,32]

We propose using the decoupled approach to design a fault-
tolerant model, which aims to minimize the cost for providing
robustness. The model is designed to handle the fail-stop failures
which may affect the global execution [29]. Our study does not
consider federate crashes due to the incorrect implementation of
its simulation model. We assume also that the messages that are
sent and received in the network are not corrupted.

As shown in Fig. 5.5, the model contains a Failure Detector
and a Management Module approach in the middleware. The
management module comprises an RTI States Manipulator (see
Section 5.1). The failure detectormonitors the status of the physical
federate or even the RTIEXEC if necessary. As soon as an RTI
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Fig. 5.4. Execution time of experiments using different types of federates.

Fig. 5.5. Fault-tolerant model upon dynamic LRC substitution.

failure is detected, the management module within the virtual
federate will cut off the connection from its physical federate and
terminate it.

The fault tolerant model provides user transparency, which
frees the user from including extra ‘‘fault tolerant codes’’ in
modeling federates, or intervening into the running simulation
to deal with RTI failure. The model exploits a ‘‘dynamic LRC
substitution’’ method, which allows a simulation to be resumed
from exactly the point where the failure occurs. This means the
simulation model’s execution is immune from the LRC failure. The
model enables robustness to legacy federates and avoids extra
effort for facilitating rollback to the simulation models.

The Failure Detector monitors the status of the LRC or
even the RTIEXEC if necessary. An RTI failure in the current
implementation can be: (1) time-out of an RTI invocation, (2) a
critical RTI exception,5 (3) any other unknown error from the RTI or
(4) crash of the physical federate or RTIEXEC. The first three cases
can be detected passively via the physical federate while the
fourth requires the failure detector actively checking the status
of the physical federate or RTIEXEC. Subsequent to confirming an
occurrence of an RTI failure, the Management Model will start a
failure recovery procedure (from the perspective of the first failed
federate(s)) in the following steps:

• The Management Module cuts off the connection from its
PhyFed and terminates it, while other federates’ middleware
attempt to extract received events before doing this.

• TheManagementModule creates a newphysical federation and
initiates a new PhyFed instance. Other federates’ middleware
also perform exactly the same operation. All virtual federates
switch to the new PhyFeds and form a newworkable federation
together.

• All RTI States Manipulators recover RTI states from stable
storage to the PhyFeds.

5 e.g. RTI::RTIinternalError or any other exception specified as critical by the user.

Fig. 5.6. Execution times for benchmarking fault tolerant model.

• All Buffer Managers ensure in-transit events are delivered
properly to the subscribers.

• The Management Module synchronizes the recovered federa-
tion to guarantee that all federates are fully reinitialized and
ready to proceed.

Finally, the virtual federates obtain control again and continue
executionwith the support of a newphysical federation. Therefore,
physical federates work as plug-and-play components, and they
can be replaced at runtime. The fault-tolerant model functions as
a firewall to prevent failure of local or remote LRCs from stopping
the execution of the simulation model.

In [7], we have investigated the performance of the fault
tolerant model, via experiments on the overall execution time
using normal and robust federates (same federate codes linking to
an RTI++middleware library supporting fault tolerance) to execute
the distributed supply chain simulation (Fig. 5.3). For normal
federates, we have a number of runs, and the average execution
time of these runs is referred to as the NORMAL time of executing
one simulation session. As for the robust federates, we first
repeat the FAULT_FREE experiments (no fault encountered during
execution) then carry out a number of the FAULT_INCURRED (fault
deliberately introduced) experiments. From FAULT_INCURRED
experiments, we select three runs in which the failure of federate
simFactory occurs at the start (FI_S), middle (FI_M) and end (FI_E)
stages respectively. The simulation execution times are reported
in Fig. 5.6. The normal simulation execution time is ∼584 s
using normal federates, which is almost the same as the average
simulation execution time in FAULT_FREE experiments. In the
FAILURE_INCURRED experiments, the simulation execution time is
only 11–13 s longer than the normal case. When failure occurs, we
assume that the normal federates have to start from the beginning.
Obviously, the later the failure occurs, themore execution time can
be saved (up to 50%).

5.3. Supporting web or grid enabled architecture

Using a Decoupled Federate Architecture can ease the combi-
nation of Web or Grid technologies with the HLA. Fig. 5.7 gives
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Fig. 5.7. Model supporting web or grid enabled architecture.

the abstract model which supports Web or Grid enabled architec-
tures. Themodel treats physical federates and the RTIEXEC process
as components managed by the Web or Grid services. Therefore,
each LRC (or RTIEXEC) is encapsulated as aWeb or Grid service and
becomes a Web or Grid-enabled component (GEC) accessible via
web-based communications (such as SOAP, BEEP). A Web or Grid-
enabled RTI library is embedded in the middleware to bridge the
model and the physical federate.

The model has significant advantages compared with tradi-
tional simulation, using the HLA RTI in the sense that (1) it can
cross firewalls, (2) it enhances the interoperability and connectiv-
ity among simulation federates and (3) it eases the interoperation
between HLA federates and non-HLA simulations. Communication
between the virtual federate and the physical federate is via Web
services which can pass through most firewalls. Using Web ser-
vices allows interoperation of federates physically located at vari-
ous organizations, while connecting them over a normal RTI may
encounter network barriers. The RTI component becomes a Web
service in the context of the architecture. Non-HLA simulations can
also be wrapped as Web services. Therefore, HLA simulations can
easily interoperate with non-HLA ones through Web services.

Using Grid services has the added benefits over using pureWeb
services as follows:

• Grid services provide dynamic creation and lifecycle manage-
ment. The RTI and federate instances are dynamic and transient
service instances under the management of the Grid service in-
frastructure.

• The model also eases the discovery of the Grid-enabled RTI and
federate services using the Grid Index Service [15].

• The Grid provides security in accessing services using its built-
inmechanisms such as authentication, secured communication
etc.

• With the notifications feature of the Grid, the simulationmodel
does not have to block for the completion of RTI calls and may
operate asynchronously from the physical federate.

With the nature of Grid, this model has the potential in
providing fault tolerance and load balancing. The model supports
the reusability of legacy federate code, and it also allows federates
developed upon the Web or Grid Enabled Architecture to interact
with other traditional federates.

5.3.1. Experiments with grid enabled federates
A Grid Enabled Architecture [31] from our research group has

been developed in Java using Globus Toolkit 3. Experimental re-
sults for latency benchmark and efficiency of time advancement

Fig. 5.8. Tileworld experiment configuration in a WAN environment.

Table 5.1
Benchmarks over LAN and WAN

Normal federates Grid enabled architecture

Latency Cluster 10 ms 19 ms
WAN 122 ms 935 ms

Time advancement Cluster 680/s 150/s
WAN 2/s 0.41/s

calculation (see Section 4) have been collected. Normal federates
and federates supported byGrid EnabledArchitecture are executed
over a Linux Cluster and WAN as shown in Fig. 5.8 (between Uni-
versity of Birmingham, UK and Nanyang Technological University,
Singapore). The experimental results are shown as in Table 5.1.

The latency benchmark over LAN shows that the Grid Enabled
Architecture incurs about twice the overhead of the normal
federate in a cluster. In the case of WAN environment, such
communication using GT3 becomes very costly; it can also
be observed that the latency of the Grid Enabled Architecture
is ∼7 times more than that of the normal federate. The
time advancement benchmark indicates that the Grid Enabled
Architecture incurs about 3–4 times more overhead than the
normal federate case in terms of synchronization efficiency.

We have also developed an agent-based federation using
Tileworld [25], as a test case. Tileworld is a well established testbed
for agent-based systems. It includes a grid-like environment
consisting of tiles, holes and obstacles, and agents whose goal is
to score as many points as possible by pushing tiles to fill in the
holes. In general, an agent-based federation can be constructed by
one environment federate containing the tiles, holes and obstacles
of the model and one or more agent federates. The complexity of
the simulated system increases considerably with the number of
agents.

Experiments for evaluating the performance of normal feder-
ates andGrid enabled federates have also been conducted in aWAN
environment [8]. In these experiments, the RTIEXEC and the envi-
ronment federate are in Birmingham while the agent federate is
in Singapore, as illustrated in Fig. 5.8. Two GECs are also hosted in
Birmingham for the environment and agent federates respectively.
Only one agent federate is used with the number of agents ranging
from 1 to 2048. The results for aWAN environment are depicted in
Fig. 5.9 (logarithmic scale applies in both X-axis and Y -axis). It can
be observed that the Grid enabled agent simulation federates per-
form much worse than the normal agent simulation federates in
the WAN environment. Nevertheless, when the number of agents
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Fig. 5.9. Execution time of grid enabled and HLA repast based simulations with a
single agent federate over WAN.

Fig. 5.10. An example of grid enabled federation over WAN.

becomes larger, the total execution time with Grid enabled feder-
ates tends to be closer to that with the normal federates.

5.3.2. Grid enabled federation
Considering the need of supporting the reusability of federates

at executive level, it is desirable to present a whole federation
as services. In a HLA-based simulation, federates interact only
through the RTI. Federates are not aware that other federates are
connected in the same federation. From a federate’s point of view,
its correct execution can be guaranteed as long as the events it
consumes from other federates, and the events it generates to
them have correct content and order. Thus, we can use a gateway
federate [2] to collect the events of the federates from the intranet
and present the gateway federate as a set of Grid services on
a public node using the Grid Enabled Architecture. Eventually,
the resources inside the administrative domain and the internal
simulation federates are exposed to authorized external users.

The configuration of a Grid enabled federation can be illustrated
as in Fig. 5.10. The federation is formed by a number of
synchronization benchmark federate. Each benchmark federate
occupies an individualwork node separately. The benchmark starts
with one federate at Singapore cluster and another at Birmingham
cluster. We then increased the number of federates equally until
twelve federates were involved at each side (denoted as A1–A12 at
Singapore and B1–B12 at Birmingham). Proxy b directly interacts
with federates B1 to B24 through an RTI session at Birmingham

Fig. 5.11. Synchronization benchmark results for Grid enabled federation over
WAN.

while Gw-b interacts with federates A1–A12 through another RTI
session at Singapore. A Grid-enabled gateway between the two RTI
sessions was formed by gluing Gw-btogether with Proxy b through
Grid invocations over the Grid. Fig. 5.11 presents the benchmark
results. The TAG rate is 1.61 times per second for two federates
down to about 1.48 times per second for four federates. The TAG
rate remains almost constant when the number of federates is not
greater than twenty four.

6. Conclusions and future work

In this paper, we have investigated a number of research
issues in large scale HLA-based distributed simulations that can
be resolved using a Decoupled Federate Architecture. A federate is
separated into a virtual federate process and a physical federate
process, where the former executes the simulation model and
the latter provides RTI services at the backend. A standard RTI
interface is presented to support user transparency, while the
original RTI component is substituted with a customized library.
Benchmark experiments have been performed to investigate the
overhead incurred by the Decoupled Federate Architecture. The
experimental results are compared for a decoupled federate and
normal federate, in terms of latency and time advancement
performance. Results indicate that the decoupled architecture
incurs only a slight extra latency in the case of a bulky payload and
has a very close performance of time advancement compared with
a normal federate.

The Decoupled Federate Architecture can be exploited in sup-
porting distributed simulation cloning, providing fault tolerance
and introducing Web and Grid technologies to HLA-based simu-
lations. In this paper, we have presented three solutions to address
these issues respectively. In these efforts, the Decoupled Federate
Architecture has been shown to offer three advantages: (1) it guar-
antees the correctness of executing RTI services calls and reflecting
RTI callbacks to the simulation model, (2) it facilitates state saving
and replication at the RTI level, and (3) it incurs minimal overhead
when being utilized to sustain distributed simulation cloning and
fault tolerance.

In summary, the HLA-based distributed simulations benefit
from the Decoupled Federate Architecture in the following ways:

• Distributed Simulation Cloning. The architecture enables repli-
cating federates at runtime without affecting the correctness of
RTI and other simulation federates. Experimental results indi-
cate that the cloning technology based on the architecture can
optimize the computation of distributed simulations effectively
compared with the ones using traditional federates.
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• Fault tolerance. Experiments demonstrate that faults of a part
of a federation can be successfully isolated, and fault recovery
provided without having to rollback the simulation execution.
Experimental results show that the robust federates have a very
close performance to normal federates.

• Web or Grid Enabled Architecture. The architecture has been
engineered to combine the advantages of Web/Grid technolo-
gies and HLA simulations to achieve a Web/Grid Enabled Ar-
chitecture, which provides flexible resource management and
enhanced interoperability to HLA simulations. Experimental
results show that the current implementation of Grid Enabled
Architecture incurs more overhead than using the normal RTI
software, and it is suitable for coarse-grained applications.

One of the advantages of executing distributed simulations over a
network is the capability of exploiting sharable computing power.
This can be achieved by migrating load from the congested host
to other more lightly loaded hosts. For our future work, we need
to design and implement the models to support load balancing.
Using the Decoupled Federate Architecture, we aim to avoid users’
efforts to handle RTI states and in-transit events and the overhead
incurred in saving/restoring RTI state when adopting a federate
migration approach to balance the federates’ load.
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