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In this paper, the logarithmically complete monotonicity, logarithmically absolute monotonicity and
logarithmically absolute convexity of the function [�(1 + tx)]s/[�(1 + sx)]t for x, s, t ∈ R such that
1 + sx > 0 and 1 + tx > 0 with s �= t are verified, some known results are generalized.

Keywords: Logarithmically absolutely convex function; Logarithmically completely monotonic
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1. Introduction

By using a geometrical method in ref. [1], the following double inequality was proved

1

n! ≤ [�(1 + x)]n
�(1 + nx)

≤ 1, (1)

for x ∈ [0, 1] and n ∈ N, where �(x) stands for the classical Euler’s gamma function defined
for x > 0 by �(x) = ∫ ∞

0 e−t t x−1dt .
By analytical arguments in ref. [2], it was presented that the function

f (x, y) = [�(1 + x)]y
�(1 + xy)

(2)
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838 F. Qi et al.

for all y ≥ 1 decreases in x ≥ 0. From this, it is deduced that

1

�(1 + y)
≤ [�(1 + x)]y

�(1 + xy)
≤ 1, (3)

for all y ≥ 1 and x ∈ [0, 1], which is a generalization of inequality (1).
In ref. [3], It was shown that if f is a differentiable and logarithmically convex function in

[0, ∞), then the function ([f (x)]a/f (ax)) for a ≥ 1 (or 0 < a ≤ 1 respectively) decreases (or
increases respectively) in [0, ∞).As one of applications to inequalities involving gamma func-
tion, Riemann’s zeta function and the complete elliptic integrals of the first kind, inequalities (1)
and (3) were deduced.

In ref. [4], an inequality involving a positive linear operator acting on the composition of two
continuous functions is presented and, as applications of this inequality, some new inequalities
involving the beta, gamma and Riemann’s zeta functions and a large family of functions that
are Mellin transforms are produced. In particular, for β > δ > 0, αβ > −1 and αδ > −1, if
either α < 0 or α > 1, then inequality

[�(1 + δ)]α
�(1 + αδ)

>
[�(1 + β)]α
�(1 + αβ)

(4)

holds true; if 0 < α ≤ 1, inequality (4) is reversed. It is not difficult to see that the left hand
sides in inequalities (1) and (3) are special cases of inequality (4).

Recall refs. [5–7] that a function f is called completely monotonic on an interval I if f has
derivatives of all orders on I and (−1)kf (k)(x) ≥ 0 for all k ≥ 0 on I . The set of completely
monotonic functions on I is denoted by C[I ]. Recall also refs. [8–10] that a positive function
f is said to be logarithmically completely monotonic on an interval I if f has derivatives of
all orders on I and its logarithm ln f satisfies (−1)k[ln f (x)](k) ≥ 0 for all k ∈ N on I . The set
of logarithmically completely monotonic functions on I is denoted by L[I ]. Recall ref. [11]
that if f (k)(x) for some non-negative integer, k is completely monotonic on an interval I ,
but f (k−1)(x) is not completely monotonic on I , then f (x) is called a completely monotonic
function of k-th order on an interval I . Among other things, it was proved implicitly or
explicitly in refs. [6, 8, 10, 12,–14] that a logarithmically completely monotonic function is
always completely monotonic, but not conversely. Motivated or stimulated by the papers in
refs. [8, 10], among other things, it is further revealed in ref. [12] that S \ {0} ⊂ L[(0, ∞)] ⊂
C[(0, ∞)], where S denotes the set of Stieltjes transforms. In ref. [12, Theorem 1.1] and
refs. [9, 15], it is pointed out that the logarithmically completely monotonic functions on
(0, ∞) can be characterized as the infinitely divisible completely monotonic functions studied
by Horn in ref. [16, Theorem 4.4]. For more information on the logarithmically completely
monotonic functions, please refer to refs. [6, 8–12, 14, 15, 17–29] and the references therein.

DEFINITION 1.1 Let f be a positive function, which has derivatives of all orders on an
interval I . If [ln f (x)](k) for some non-negative integer k is completely monotonic on I ,
but [ln f (x)](k−1) is not completely monotonic on I , then f is said to be a logarithmically
completely monotonic function of kth order on I .

In refs. [28, 29], the following logarithmically complete monotonicities, as generalizations
of the decreasingly monotonic property in [2], are presented

(i) For given y > 1, the function f (x, y) defined by equation (2) decreases and is logarithmi-
cally concave with respect to x ∈ (0, ∞) and (1/f (x, y)) is a logarithmically completely
monotonic function of second order in x ∈ (0, ∞).
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Function for gamma function with logarithmically absolute convexity 839

(ii) For given 0 < y < 1, the function f (x, y) defined by equation (2) increases and is loga-
rithmically convex with respect to x ∈ (0, ∞) and f (x, y) is a logarithmically completely
monotonic function of second order in x ∈ (0, ∞).

(iii) For given x ∈ (0, ∞), the function f (x, y) defined by equation (2) is logarithmically
concave with respect to y ∈ (0, ∞), and (1/f (x, y)) is a logarithmically completely
monotonic function of first order in y ∈ (0, ∞).

(iv) For given x ∈ (0, ∞), let

Fx(y) = �(1 + y)[�(1 + x)]y
�(1 + xy)

(5)

in ∈ (0, ∞). If 0 < x < 1, then Fx(y) is a logarithmically completely monotonic func-
tion of second order in (0, ∞); if x > 1, then 1/Fx(y) is a logarithmically completely
monotonic function of second order in (0, ∞).

In ref. [30, Theorem 2.1], it was proved that the function

Gs,t (x) = [�(1 + tx)]s
[�(1 + sx)]t (6)

decreases (or increases, respectively) in x ∈ [0, ∞) if either s ≥ t > 0 or 0 > s ≥ t (or both
s > 0 and t < 0 respectively) such that 1 + sx > 0 and 1 + tx > 0. This result generalized
and extended the corresponding conclusions in refs. [1, 2, 4].

Recall refs. [5–7, 24, 31, 32] that a function f is said to be absolutely monotonic on an
interval I if it has derivatives of all orders and f (k−1)(t) ≥ 0 for t ∈ I and k ∈ N. Recall
also [13, 33, 34] that a positive function f is said to be logarithmically absolutely monotonic
on an interval I if it has derivatives of all orders and [ln f (t)](k) ≥ 0 for t ∈ I and k ∈ N. In
[13 33, 34] it was proved that a logarithmically absolutely monotonic function on an interval
I is also absolutely monotonic on I , but not conversely.

DEFINITION 1.2 Let f be a positive function which has derivatives of all orders on an
interval I . If [ln f (x)](k) for some non-negative integer k is absolutely monotonic on I ,
but [ln f (x)](k−1) is not absolutely monotonic on I , then f is said to be a logarithmically
absolutely monotonic function of kth order on I .

Recall ref. [5, p. 375, Definition 3] and [6, 7, 31, 35, 36] that a function f which has deriva-
tives of all orders on an interval I is said to be absolutely convex on I if f (2k)(x) ≥ 0 on I for
any nonnegative integer k.

DEFINITION 1.3 A positive function f which has derivatives of all orders on an interval I is
said to be logarithmically absolutely convex on I if [ln f (x)](2k) ≥ 0 on I for k ∈ N.

The main aim of this paper is to generalize and extend some results obtained in
refs. [1–4, 28–30], especially those in refs. [28, 29].

Our main result can be stated as the following theorem.

THEOREM 1.4 The function Gs,t (x) defined by equation (6) for x, s, t ∈ R such that 1 + sx > 0
and 1 + tx > 0 with s �= t has the following properties:

(i) Gs,t (x) = (1/Gt,s(x));
(ii) For t > s > 0 and x ∈ (0, ∞), Gs,t (x) is an increasing function and a logarithmically

completely monotonic function of second order in x;
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840 F. Qi et al.

(iii) For t > s > 0 and x ∈ (−(1/t), 0), Gs,t (x) is a logarithmically completely monotonic
function in x;

(iv) For s < t < 0 and x ∈ (−∞, 0), Gs,t (x) is a decreasing function and a logarithmically
absolutely monotonic function of second order in x;

(v) For s < t < 0 and x ∈ (0, −(1/s)), Gs,t (x) is a logarithmically completely monotonic
function in x;

(vi) For s < 0 < t and x ∈ (−(1/t), 0), Gt,s(x) is an increasing function and a logarithmi-
cally absolutely convex function in x;

(vii) For s < 0 < t and x ∈ (0, −(1/s)), Gt,s(x) is a decreasing function and a logarithmi-
cally absolutely convex function in x.

2. Proof of Theorem 1.4

It is clear that Gs,t (x) = (1/Gt,s(x)). Therefore, it is sufficient to show Theorem 1.4
only for s < t .

Taking logarithm of Gs,t (x) yields

ln Gs,t (x) = s ln �(1 + tx) − t ln �(1 + sx)

and

∂k[ln Gs,t (x)]
∂xk

= stkψ(k−1)(1 + tx) − tskψ(k−1)(1 + sx)

= st

xk−1

[
(tx)k−1ψ(k−1)(1 + tx) − (sx)k−1ψ(k−1)(1 + sx)

]
, (7)

for k ∈ N.
In ref. [37, Lemma 2.2], it was obtained that the function xα

∣∣ψ(i)(1 + x)
∣∣ strictly increases

in (0, ∞) if and only if α ≥ i, where i ∈ N and α ∈ R. This was generalized in ref. [38,
Theorem 1] as follows: For β ≥ (1/2), the function xα

∣∣ψ(i)(x + β)
∣∣ strictly increases in

[0, ∞) if and only if α ≥ i ∈ N. In particular, the functions x2iψ(2i)(1 + x) decrease and the
functions x2i−1ψ(2i−1)(1 + x) increase in [0, ∞) for i ∈ N. From this, it is readily obtained
for i ∈ N, t > s > 0 and x > 0 that

∂2i[ln Gs,t (x)]
∂x2i

> 0 and
∂2i+1[ln Gs,t (x)]

∂x2i+1
< 0.

Since
∂[ln Gs,t (x)]

∂x
= st[ψ(1 + tx) − ψ(1 + sx)] (8)

and the psi function ψ increases in (0, ∞), it is easy to see (∂[ln Gs,t (x)]/∂x) > 0.
Consequently, for t > s > 0 and x > 0, Gs,t (x) is an increasing function in x ∈ (0, ∞) and
a logarithmically completely monotonic function of second order in x ∈ (0, ∞).

If t > s > 0 and 0 > x > −(1/t), then

(−1)k−1 ∂k[ln Gs,t (x)]
∂xk

= st

(−x)k−1

[
(tx)k−1ψ(k−1)(1 + tx) − (sx)k−1ψ(k−1)(1 + sx)

]
,

for k ∈ N. Let hk(u) = ukψ(k)(1 + u) for u ∈ (−1, 0) and k ∈ N. A straightforward compu-
tation gives

h′
k(u) = uk−1

[
kψ(k)(1 + u) + uψ(k+1)(1 + u)

]

= (−u)k−1
{
k
[
(−1)k+1ψ(k)(1 + u)] + (−u)

[
(−1)k+2ψ(k+1)(1 + u)

]}
> 0.
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Function for gamma function with logarithmically absolute convexity 841

This means that the function hk(u) for u ∈ (−1, 0) and k ∈ N increases. Then, it is
concluded that (−1)k−1(∂k[ln Gs,t (x)]/∂xk) < 0 for k ∈ N. As a result, the function Gs,t (x)

is logarithmically completely monotonic in x ∈ (−(1/t), 0
)

for t > s > 0.
If s < t < 0 and x < 0, then

(−1)k
∂k[ln Gs,t (x)]

∂xk
= st

(−x)k−1

[
(sx)k−1ψ(k−1)(1 + sx) − (tx)k−1ψ(k−1)(1 + tx)

]
,

for k ∈ N, accordingly

(−1)2i ∂
2i[ln Gs,t (x)]

∂x2i
> 0 and (−1)2i+1 ∂2i+1[ln Gs,t (x)]

∂x2i+1
< 0

for i ∈ N. From equation (8), it follows that (∂[ln Gs,t (x)]/∂x) < 0. Hence, Gs,t (x) is a
logarithmically absolutely monotonic function of second order in x ∈ (−∞, 0), for s < t < 0.

If s < t < 0 and 0 < x < −(1/s), then formula (7) is valid. In virtue of the increasingly
monotonic property of the function hk(u) for u ∈ (−1, 0) and k ∈ N, it is deduced that
(∂k[ln Gs,t (x)]/∂xk) > 0 for k ∈ N. This means that the function Gs,t (x) for s < t < 0 is
logarithmically completely monotonic in x ∈ (0, −(1/s)).

If s < 0 < t and −1/t < x < 0, then

∂k[ln Gs,t (x)]
∂xk

= −st

(−x)k−1

{
(−1)k−1(−tx)k−1[(−1)kψ(k−1)(1 + tx)]

− (sx)k−1
[
(−1)kψ(k−1)(1 + sx)

]}
,

for k ∈ N. Accordingly, it is obtained readily that (∂2i[ln Gs,t (x)]/∂x2i ) < 0 for i ∈ N. This
implies that the function (1/Gs,t (x)) is logarithmically absolutely convex in x ∈ (−(1/t), 0)

for s < 0 < t . Formula (8) implies that the function Gs,t (x) increases in x ∈ (−(1/t), 0) for
s < 0 < t .

If s < 0 < t and 0 < x < −(1/s), then

∂k[ln Gs,t (x)]
∂xk

= −st

xk−1
(−1)k

{
(sx)k−1

[
(−1)kψ(k−1)(1 + sx)

]

− (tx)k−1
[
(−1)kψ(k−1)(1 + tx)

]}
,

for k ∈ N. Hence, it is deduced apparently that (∂2i[ln Gs,t (x)]/∂x2i ) < 0 for i ∈ N. This
implies that the function (1/Gs,t (x)) is logarithmically absolutely convex in x ∈ (0, −(1/s))

for s < 0 < t . Formula (8) implies that the function Gs,t (x) decreases in x ∈ (
0, −(1/s)), for

s < 0 < t . The proof of Theorem 1.4 is complete.
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