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Abstract

In this paper, we firstly establish a class of generalized AOR (GAOR) methods for solving a linear complementarity
problem LCP(M,q), whose special case reduces to generalized SOR (GSOR) method. Then, some sufficient conditions
for convergence of the GAOR and GSOR methods are presented, when the system matrix M is an H-matrix, M-matrix
and a strictly or irreducible diagonally dominant matrix. Moreover, when M is an L-matrix, we discuss the monotone con-
vergence of the new methods. Lastly, we report some computational results with the proposed methods.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

For given matrix M 2 Rn·n and vector q 2 Rn, the linear complementarity problem LCP(M,q) consists of
finding a vector z 2 Rn which satisfies the conditions
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z P 0; Mzþ q P 0; zTðMzþ qÞ ¼ 0: ð1:1Þ

Because the LCP(M,q) has a variety of applications such as the Nash equilibrium point of a bimatrix game,
contact problems, the free boundary problem for journal bearings, etc. (see [1,14]), the research on the numer-
ical methods for solving (1.1) have attracted much attention.

It is known that iterative methods have been found very useful for solving linear complementarity problem
(see [11] and references therein). Most of these iterative methods are from the extension of their counterparts
for solving systems of linear algebraic equation (cf. [2–5,11]).

In [6], James presented a class of generalized accelerated overrelaxation (GAOR) method for linear system
and some convergence conditions were given. While in [8,9], also for linear system, Song proposed some suf-
ficient and/or necessary conditions of convergence when coefficient matrix of the linear system is positive def-
inite, an H-, L-, or M-matrix, or strictly or irreducible diagonally dominant matrix.
003/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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In this paper, a class of generalized AOR (GAOR) and generalized SOR (GSOR) methods for LCP(M,q)
will be established, which is a generalization of modified AOR (MAOR) and modified SOR (MSOR) methods
in [7], based on the models in [5]. Some sufficient conditions for convergence of the GAOR and GSOR meth-
ods will be proposed, when M is an H-, M-matrix and a strictly or irreducible diagonally dominant matrix.
Moreover, when M is an L-matrix, we shall discuss the monotone convergence of the new methods, and give
a comparison theorem, which describes the influences of the parameters upon the monotone convergence rates
of the new methods.

We shall use the following notation. Let C = (ckj) 2 Rn·n be an n · n matrix. By diag(C) we denote the n · n

diagonal matrix coinciding in its diagonal with C. For A = (akj), B = (bkj) 2 Rn·n, we write A P B if akj P bkj

holds for all k, j = 1,2, . . . ,n. Calling A nonnegative if A P 0, we say that B 6 C if and only if �B P �C.
These definitions carry immediately over to vectors by identifying them with n · 1 matrices. By jAj = (jakjj)
we define the absolute value of A 2 Rn·n. We denote by hAi = (hakji) the comparison matrix of A 2 Rn·n where
hakji = jakjj for k = j and hakji = �jakjj for k 5 j, k, j = 1,2, . . . ,n. Spectral radius of a matrix A is denoted by
q(A).

Definition 1 [15]. Let A 2 Rn·n. It is called an

1. L-matrix if akk > 0 for k = 1,2, . . . ,n, and akj 6 0 for k 5 j, k, j = 1,2, . . . ,n;
2. M-matrix if it is a nonsingular L-matrix satisfying A�1 P 0;
3. H-matrix if hAi is an M-matrix.

Definition 2. For x 2 Rn, vector x+ is defined such that (x+)j = max{0, xj}, j = 1,2, . . . ,n. Then, for any
x,y 2 Rn, the following facts hold:

1. (x + y)+ 6 x+ + y+;
2. x+ � y+ 6 (x � y)+;
3. jxj = x+ + (�x)+;
4. x 6 y implies x+ 6 y+.

Linear complementarity problems can be transformed to equivalent fixed point system of equations (see
[10,12]). If D = diag(M) is a nonsingular matrix, then, solving LCP(M,q) is equivalent to finding a solution
of the system:
z ¼ ðz� D�1ðMzþ qÞÞþ: ð1:2Þ
So, in order to solve LCP(M,q), a class of iterative methods for solving linear systems has been developed.

2. GAOR method for LCP(M,q)

Let
M ¼ Dþ L1 þ U 1; ð2:1Þ

where D = diag(M), L1 and U1 are strictly lower and strictly upper triangular matrices, respectively. Then,
from (1.2), we definite the GAOR method for LCP(M,q) as follows:
zkþ1 ¼ zk � D�1½aXL1zkþ1 þ ðXM � aXL1Þzk þ Xq�
� �

þ: ð2:2Þ
For a = 1, the GAOR method reduces to GSOR method:
zkþ1 ¼ zk � D�1½XL1zkþ1 þ XðM � L1Þzk þ Xq�
� �

þ:
For a = c/x and X = xI, the GAOR method reduces to the AOR method:
zkþ1 ¼ zk � D�1½cL1zkþ1 þ ðxM � cL1Þzk þ xq�
� �

þ:
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For a = c/x2 and X = (x1I,x2I), the GAOR method reduces to the MAOR method for 2-cyclic matrix,
given in [7]:
zkþ1 ¼ zk � D�1½cL1zkþ1 þ ðXM � cL1Þzk þ Xq�
� �

þ:
Let us denote
J ¼ D�1ðL1 þ U 1Þ:
Then, for X = diag(x1,x2, . . . ,xn) with xi 2 R+ and a be a real number, the generalized AOR (GAOR) meth-
od for LCP(M,q) can be described as follows:

GAOR method

Step 1: Choose an initial vector z0 2 Rn and set k = 0.
Step 2: Calculate
zkþ1 ¼ zk � D�1½aXL1zkþ1 þ ðXM � aXL1Þzk þ Xq�
� �

þ: ð2:3Þ
Step 3: If zk+1 = zk then stop, otherwise set k :¼ k + 1 and return to Step 2.
When a = 1, the GAOR method reduces to GSOR method. So, we can define the GSOR method in
the following:

GSOR method

Step 1: Choose an initial vector z0 2 Rn and set k = 0.
Step 2: Calculate
zkþ1 ¼ ðzk � D�1½XL1zkþ1 þ XðM � L1Þzk þ Xq�Þþ: ð2:4Þ
Step 3: If zk+1 = zk then stop, otherwise set k :¼ k + 1 and return to Step 2.

3. Convergence analysis for H-matrices

The operator f : Rn! Rn, is defined such that f(z) = n, where n is the fixed point of the system
n ¼ z� D�1ðaXL1nþ ðXM � aXL1Þzþ XqÞ
� �

þ: ð3:1Þ

Let
G ¼ I � aXD�1jL1j; F ¼ jI � D�1ðXM � aXL1Þj:

At present, we review an important result.
Lemma 1 [5]. Let M be an H-matrix with positive diagonal elements. Then the LCP(M,q) has a unique solution

z* 2 Rn.

With Lemma 1, we can prove the following convergence theorem for the GAOR method.
Theorem 3.1. Let M = (mkj) 2 Rn·n be an H-matrix with positive diagonal elements. Then, for any initial vector

z0 2 Rn, the iterative sequence {zk} generated by the GAOR method converges to the unique solution z* of the

LCP(M,q) and
qðG�1F Þ 6 max
16i6n

j1� xij þ xiqðjJ jÞf g < 1;
whenever
0 < xi <
2

1þ qðjJ jÞ ; 0 6 a 6 1:
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Proof. Let w = f(y), i.e.,
w ¼ y � D�1½aXL1wþ ðXM � aXL1Þy þ Xq�
� �

þ: ð3:2Þ
Then, by subtracting (3.2) from (3.1) we have
n� w ¼ z� D�1ðaXL1nþ ðXM � aXL1Þzþ XqÞ
� �

þ � y � D�1½aXL1wþ ðXM � aXL1Þy þ Xq�
� �

þ

6 ðz� yÞ � D�1½aXL1ðn� wÞ þ ðXM � aXL1Þðz� yÞ�
� �

þ:
Therefore,
ðn� wÞþ 6 ð�aXD�1L1ðn� wÞÞþ þ ð½I � D�1ðXM � aXL1Þ�ðz� yÞÞþ: ð3:3Þ
Similarly, we get
ðw� nÞþ 6 ð�aXD�1L1ðw� nÞÞþ þ ½I � D�1ðXM � aXL1Þ�ðy � zÞ
� �

þ: ð3:4Þ
From (3.3) and (3.4), we obtain the following estimates:
jn� wj ¼ ðn� wÞþ þ ðw� nÞþ 6 ð�aXD�1L1ðn� wÞÞþ þ ð�aXD�1L1ðw� nÞÞþ
þ ð½I � D�1ðXM � aXL1Þ�ðz� yÞÞþ þ ð½I � D�1ðXM � aXL1Þ�ðy � zÞÞþ ¼ jaXD�1L1ðn� wÞj
þ j½I � D�1ðXM � aXL1Þ�ðz� yÞj 6 aXD�1jL1jjn� wj þ jI � D�1ðXM � aXL1Þjjz� yj:
So,
jn� wj 6 G�1F jz� yj: ð3:5Þ

We know from Lemma 1 that the LCP(M,q) has a unique solution z* 2 Rn under the hypotheses of the the-
orem. That is to say, z* = f(z*). According to the definition of the GAOR method and (3.5) we have
jzkþ1 � z�j ¼ jf ðzkÞ � f ðz�Þj 6 G�1F jzk � z�j:

Hence, the iterative sequence {zk}, k = 0,1,2, . . . , converges to z* if q(G�1F) < 1. Because M 2 Rn·n is an H-
matrix, we know that q(jJj) < 1. With the proving process of [8, Theorem 3.1], we can get
qðT Þ 6 max
16i6n
fj1� xij þ xiqðjJ jÞg;
where
T ¼ ðI � aXD�1jL1jÞ�1½jI � Xj þ ð1� aÞXD�1jL1j þ XD�1jU 1j�: ð3:6Þ

It is easy to see that jG�1Fj 6 T and [16, Theorem 2.8] ensures
qðG�1F Þ 6 qðT Þ 6 max
16i6n
fj1� xij þ xiqðjJ jÞg:
Notice that if xi 6 1, we obtain
j1� xij þ xiqðjJ jÞ ¼ 1� xi þ xiqðjJ jÞ < 1:
While if xi > 1, we also have
j1� xij þ xiqðjJ jÞ ¼ �1þ xi þ xiqðjJ jÞ ¼ xi½1þ qðjJ jÞ� � 1 <
2

½1þ qðjJ jÞ� ½1þ qðjJ jÞ� � 1 ¼ 1:
The proof is completed. h

As a special case, for the GSOR method, we have the following convergence result.

Corollary 3.2. Let M = (mkj) 2 Rn·n be an H-matrix with positive diagonal elements. Then, for any initial vector

z0 2 Rn, the iterative sequence {zk} generated by the GSOR method converges to the unique solution z* of the

LCP(M,q) and
qðG�1F Þ 6 max
16i6n
fj1� xij þ xiqðjJ jÞg < 1;
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whenever
0 < xi <
2

1þ qðjJ jÞ :
It is known that an M-matrix is also an H-matrix. Therefore, the convergence results in Theorem 3.1 and
Corollary 3.2 are valid for M-matrix.

Since a strictly or irreducible diagonally dominant matrix with positive diagonal elements is also satisfying
the condition of Theorem 3.1, then Theorem 3.1 and Corollary 3.2 are also valid for these kinds of matrices.

Furthermore, for strictly or irreducible diagonally dominant matrices, kjJjk1 can take the place of q(j Jj) in
Theorem 3.1 and Corollary 3.2.

If M is strictly diagonally dominant by rows, then
qðjJ jÞ 6 kJk1 < 1:
By Theorem 3.1, a convergence theorem follows directly.

Corollary 3.3. Let M = (mkj) 2 Rn·n be strictly diagonally dominant by rows with positive diagonally elements.

Then, for any initial vector z0 2 Rn, the iterative sequence {zk} generated by the GAOR method or the GSOR

method converges to the unique solution z* of the LCP(M,q) and
qðG�1F Þ 6 max
16i6n
fj1� xij þ xikJk1g < 1;
whenever
0 < xi <
2

1þ kJk1
; 0 6 a 6 1
for the GAOR method, and
0 < xi <
2

1þ kJk1
for the GSOR method.

For irreducible diagonally dominant matrices ,the parameters xi can equal to 2/[1 + kJk1].

Theorem 3.4. Let M = (mkj) 2 Rn·n be irreducible diagonally dominant by rows with positive diagonal elements.

Then, for any initial vector z0 2 Rn, the iterative sequence {zk} generated by the GAOR method or the GSOR

method converges to the unique solution z* of the LCP(M,q) and
qðG�1F Þ < max
16i6n
fj1� xij þ xikJk1g 6 1; ð3:7Þ
whenever
0 < xi 6
2

1þ kJk1
; 0 6 a 6 1
for the GAOR method, and
0 < xi 6
2

1þ kJk1
for the GSOR method.

Proof. We only give a proof for the GAOR method. Because M is also an H-matrix, from Theorem 3.1 the
iterative sequence {zk}, k = 0,1,2, . . . , converges to the unique solution z* of the LCP(M,q). We only need to
prove inequality (3.7). Assume that
0 < xi 6
2

1þ kJk1
; 0 6 a 6 1:
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With (3.6), we know that T is nonnegative and, so, according to [16, Theorem 2.7], there exists an eigenvector
x P 0, x 5 0, such that
Tx ¼ qðT Þx

holds, i.e.,
½jI � Xj þ ð1� aÞXD�1jL1j þ XD�1jU 1j�x ¼ qðT ÞðI � aXD�1jL1jÞx:

Multiplying by X�1, it holds that
½qðT ÞX�1 � jI � X�1j�x ¼ f½1� aþ aqðT Þ�D�1jL1j þ D�1jU 1jgx:

As [1�a + aq(T)]D�1jL1j + D�1jU1jP 0, it follows by [13, Theorem 11] that
min
16i6n
fx�1

i qðT Þ � j1� x�1
i jg 6 qð½1� aþ aqðT Þ�D�1jL1j þ D�1jU 1jÞ: ð3:8Þ
With the proof of [8, Theorem 3.1], we get
qðT Þ < 1; 0 6 1� aþ aqðT Þ < 1:
Since M, the matrices J and [1 � a + aq(T)]D�1jL1j + D�1jU1jare irreducible, by [16, Theorem 2.1], it follows
that
qð½1� aþ aqðT Þ�D�1jL1j þ D�1jU 1jÞ < qðD�1ðjL1j þ jU 1jÞÞ ¼ qðjJ jÞ 6 kJk1: ð3:9Þ

With (3.8) and (3.9) and M be irreducible diagonally dominant by rows, we have
qðT Þ < max
16i6n

j1� xij þ xikJk1
� �

6 1:
So,
qðG�1F Þ < max
16i6n

j1� xij þ xikJk1
� �

6 1:
This completes the proof. h
4. Monotone convergence analysis

In this section, we mainly discuss the monotone convergence properties of the GAOR and GSOR methods
when the system matrix M 2 Rn·n is an L-matrix. For this purpose, we assume, from now on, that the set
W ¼ fz 2 Rnjz P 0;Mzþ q P 0g

of the LCP is nonempty.

Firstly, we study the monotone properties of the operator f : Rn! Rn with
f ðzÞ ¼ n;

n ¼ ðz� D�1½aXL1nþ ðXM � aXL1Þzþ Xq�Þþ:
ð4:1Þ
Theorem 4.1. Let the operator f : Rn! Rn be defined in (4.1). Assume that M 2 Rn·n is an L-matrix, and it has

the splitting (2.1). Also, assume that 0 < xi 6 1, 0 6 a 6 1. Then, for any z 2 W, it holds that:

(1) f(z) 6 z;

(2) y 6 z implies f(y) 6 f(z);

(3) n = f(z) 2 W.
Proof. We firstly verify (1). We only need to verify that the inequalities
ni 6 zi; i ¼ 1; 2; . . . ; n ð4:2Þ

hold, with ni satisfying
ni ¼ zi � m�1
ii axi

Xi�1

j¼1

ðL1Þijðnj � zjÞ þ xiðMzþ qÞi

" # !
þ

; ð4:3Þ
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where (•)ij represents the (i, j)th element of a matrix, (•)i the ith element of a vector. Since z 2 W, it holds that
n1 6 z1. Now, suppose (4.2) hold for i = 1,2, . . . , j � 1, then we can easily get nj 6 zj from (4.3). By induction, it
is obvious that (4.2) holds for all i = 1,2, . . . ,n.

To verify (2), we denote w = f(y), where w is the fixed point of the system of equation:
w ¼ ðy � D�1½aXL1wþ ðXM � aXL1Þy þ Xq�Þþ:
Therefore, we only need to verify that the inequalities
wi 6 ni; i ¼ 1; 2; . . . ; n ð4:4Þ

hold when y 6 z. In fact, since
wi ¼ yi � m�1
ii axi

Xi�1

j¼1

ðL1Þijwj þ ximiiyi þ ð1� aÞxi

Xi�1

j¼1

ðL1Þijyj þ xi

Xn

j¼1
j 6¼i

ðU 1Þijyj þ xiqi

2
664

3
775

0
BB@

1
CCA
þ

¼ ð1� xiÞyi � m�1
ii axi

Xi�1

j¼1

ðL1Þijwj þ ð1� aÞxi

Xi�1

j¼1

ðL1Þijyj þ xi

Xn

j¼1
j 6¼i

ðU 1Þijyj þ xiqi

2
664

3
775

0
BB@

1
CCA
þ

;

by noticing
n1 ¼ ð1� x1Þz1 � m�1
11 x1

Xn

j¼2

ðU 1Þ1jzj þ x1q1

" # !
þ

P ð1� x1Þy1 � m�1
11 x1

Xn

j¼2

ðU 1Þ1jzj þ x1q1

" # !
þ

¼ w1
and considering the hypotheses, we can immediately demonstrate the validity of (4.4) by induction.
Now, we turn to (3). Let f = f(n). Then by (1) and n = f(z), we easily have n 6 z, and from (2), we

immediately get f 6 n. By the definition of operator f, we see that n = f(z) P 0, f = f(n) P 0. Moreover, we can
assert the validity of the inequality (Mn + q)1 P 0. Otherwise,
f1 ¼ n1 � m�1
11 x1ðMnþ qÞ1

� �
þ > ðn1Þþ ¼ n1;
i.e., f1 > n1. This contradicts f 6 n. At present, suppose that we have got (Mn + q)j P 0,j = 1,2, . . . , k � 1.
Then we must have fj 6 nj, j = 1,2, . . . ,k � 1. Besides, we can also assert that it holds that (Mn + q)k P 0.
Otherwise, by defining
m ¼ ðn� D�1XðMnþ qÞÞþ;
we immediately obtain mk P nk. On the other hand, the following estimates can by straightforwardly deduced
from the definitions of f and m:
fk ¼ nk � m�1
kk axk

Xk�1

j¼1

ðL1Þkjðfj � njÞ þ xkðMnþ qÞk

" # !
þ

¼ ð1� xkÞnk � ð1� aÞxkm�1
kk

Xk�1

j¼1

ðL1Þkjnj � xkm�1
kk

Xn

j¼1
j 6¼k

ðU 1Þkjnj � axkm�1
kk

Xk�1

j¼1

ðL1Þkjfj � xkm�1
kk qk

0
BB@

1
CCA
þ

6 ð1� x1Þnk � ð1� aÞxkm�1
kk

Xk�1

j¼1

ðL1Þkjnj � xkm�1
kk

Xn

j¼1
j 6¼k

ðU 1Þkjnj � axkm�1
kk

Xk�1

j¼1

ðL1Þkjnj � xkm�1
kk qk

0
BB@

1
CCA
þ

¼ nk � xkm�1
kk ðMnþ qÞk

� �
þ ¼ mk:
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In addition, since
f� m ¼ ðn� D�1½aXL1fþ ðXM � aXL1Þnþ Xq�Þþ � ðn� XD�1ðMnþ qÞÞþ 6 ð�aXD�1L1ðf� nÞÞþ

and analogously,
m� f 6 ð�aXD�1L1ðf� nÞÞþ;

we get
jf� mj ¼ ðf� mÞþ þ ðm� fÞþ 6 ð�aXD�1L1ðf� nÞÞþ þ ð�aXD�1L1ðn� fÞÞþ ¼ jaXD�1L1ðf� nÞj

6 aXD�1jL1jjf� nj 6 aXD�1jL1jðI � aXD�1jL1jÞ�1XD�1jMnþ qj ! 0 ða! 0Þ;
that is, lima!0f ¼ m: Here, the estimate
jf� nj 6 ðI � aXD�1jL1jÞ�1XD�1jMnþ qj ð4:5Þ

is used. In fact, with the facts of Definition 2 we have
f ðnÞ ¼ f ¼ ðn� D�1½aXL1fþ ðXM � aXL1Þnþ Xq�Þþ 6 nþ þ ð�D�1½aXL1fþ ðXM � aXL1Þnþ Xq�Þþ

and
f ðnÞ ¼ f ¼ ðn� D�1½aXL1fþ ðXM � aXL1Þnþ Xq�Þþ P nþ � ðD�1½aXL1fþ ðXM � aXL1Þnþ Xq�Þþ;
i.e.,
ðf� nÞþ 6 ð�aXD�1L1ðf� nÞ � XD�1ðMnþ qÞÞþ

and
ðn� fÞþ 6 ðaXD�1L1ðf� nÞ þ XD�1ðMnþ qÞÞþ:
So, we obtain
jf� nj ¼ ðf� nÞþ þ ðn� fÞþ 6 jaXD�1L1ðf� nÞ þ XD�1ðMnþ qÞj 6 aXD�1jL1jjf� nj þ XD�1jMnþ qj;
i.e.,
jf� nj 6 ðI � aXD�1jL1jÞ�1XD�1jMnþ qj:

Thus, (4.5) holds. Moreover, observing mk P nk, we know that fk P nk must hold for some sufficiently small
a 2 [0,1]. However, this contracts f 6 n. Therefore, (Mn + q)k P 0. By induction, we obtain n 2 W. h

We remark that results in the spirit of this theorem can be found in [4]. Based on Theorem 4.1, we can
derive the following monotone convergence theorem about the GAOR and GSOR methods.

Theorem 4.2. Assume that M 2 Rn·n is an L-matrix. Also, assume that 0 < xi 6 1, 0 6 a 6 1. Then for any initial

vector z0 2 W, the iterative sequence {zk}, k = 0,1,2, . . . , generated by the GAOR method or the GSOR method

has the following properties:

(1) 0 6 zk+1
6 zk

6 z0, k = 0,1,2, . . .;
(2) limk!1zk ¼ z� is the unique solution of the LCP(M, q).

Proof. We only prove the GAOR method. Since z0 2 W, by (1) of Theorem 4.1 we have z1
6 z0 and z1 2 W.

Now, by recursively using Theorem 4.1 again, we obtain (1). From (1), we know that the sequence {zk} is
monotone bounded, so that it converges to some vector z* satisfying
z� ¼ ðz� � D�1½aXL1z� þ ðXM � aXL1Þz� þ Xq�Þþ;
i.e.,
z� ¼ ðz� � D�1½XMz� þ Xq�Þþ:
Therefore, z* is the unique solution of the LCP(M,q). h
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The following theorem describes the influences of the parameters xi and/a upon the monotone convergence
rate the GAOR and GSOR methods.

Theorem 4.3. Let M 2 Rn·n be an L-matrix. Then, for any initial vector z0 ¼ �z0 2 W, both the iterative sequences

{zk} and f�zkg generated by the GAOR (or GSOR) method, corresponding to the parameter (xi,a) and ðxi; �aÞ,
respectively, converge to the solution z* 2 Rn of the LCP(M,q). Moreover, we have
zk
6 �zk; k ¼ 0; 1; 2; . . . ; ð4:6Þ
if the parameters satisfy
0 < xi 6 xi 6 1; 0 6 �a 6 a 6 1:
Proof. The convergence of sequences {zk} and f�zkg is proved by Theorem 4.2. Now, we prove (4.6). Similar to
the proving process of Theorem 4.1, we can demonstrate that zk, �zk 2 W for k = 0,1,2, . . .

Let X ¼ diagðx1;x2; . . . ;xnÞ. Then
�zkþ1 ¼ �zk � D�1½�aXL1�zkþ1 þ ðXM � �aXL1Þ�zk þ Xq�
� �

þ:
Since
�aXL1�zkþ1 þ ðXM � �aXL1Þ�zk þ Xq ¼ �aXL1ð�zkþ1 � �zkÞ þ XðM�zk þ qÞ 6 aXL1ð�zkþ1 � �zkÞ þ XðM�zk þ qÞ;

it follows that
�zkþ1 P ð�zk � D�1½aXL1ð�zkþ1 � �zkÞ þ XðM�zk þ qÞ�Þþ ¼ f ð�zkÞ: ð4:7Þ
We verify (4.5) by induction. In fact, when k = 0, the inequality (4.5) is trivial. Assume that (4.5) holds for
some positive integer k. Then, by Theorem 4.1 and the inequality (4.6), we get
�zkþ1 P f ð�zkÞP f ðzkÞ ¼ zkþ1
and so zk
6 �zk for k = 0,1,2, . . .We have completed the proof. h

Remark. Theorems 4.2 and 4.3 show that the parameter collections xi = a = 1 can result in faster convergence
rate of the GAOR and GSOR methods under the assumptions. This also implies that the optimum parame-
ters, in general, should be x0

i , a0 2 [1,1).
5. Numerical results

In this section, we present numerical results of the GAOR and GSOR methods. The codes are written in
matlab.

Example 5.1. We consider the LCP(M,q), see [17,18], with the system matrix M 2 Rn·n and vector q 2 Rn:
M ¼

S �I �I 0 � � � 0 0

�I S �I �I � � � 0 0

I �I S �I � � � 0 0

..

. ..
. . .

. . .
. . .

. . .
. ..

.

..

. ..
. . .

. . .
. . .

. . .
.

�I

..

. ..
. . .

. . .
.

S �I

0 0 � � � � � � I �I S

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
2 Rn�n; q ¼

�1

1

�1

..

.

ð�1Þn�1

ð�1Þn

0
BBBBBBBBB@

1
CCCCCCCCCA
2 Rn;
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respectively, where S ¼ tridiagð�1; 8;�1Þ 2 R�n��n, I 2 R�n��n is the identity matrix, and �n2 ¼ n. It is known that
M is a strictly diagonally dominant matrix and thus is an H-matrix. So, the LCP(M,q) has a unique solution
as all diagonal elements of M are positive.

For the test problems, we take the initial vector z0 = (5,5, . . . , 5). The termination criterion for GAOR and
GSOR methods is
Table
Time u

n

1600
1600
2500
2500
3600
3600
4900
4900

Table
GAOR

Interva

[0.3 0.5
[0.3 0.5
[0.3 0.5
[0.5 0.7
[0.5 0.7
[0.5 0.7
[0.7 0.9
[0.7 0.9
[0.7 0.9
[0.9 1.0
[0.9 1.0
[0.9 1.0
[1 1.14
[1 1.14
[1 1.14

xi ¼ 1

xi ¼ 1

xi ¼ 1
eðzkÞ :¼ kminðMzk þ q; zkÞk1 < 0:1;
where the minimum is taken component-wise, see [18]. If e(zk) is close to zero, then we can certainly regard zk

as a good approximation to the unique solution of LCP(M,q).
For all tests, we let in.no and cputime denote, respectively, the number of iteration and the executive time of

iterative process. The n parameters xi, i = 1,2, . . . ,n, are taken from the n equal-partitioned points of the given
interval.

The results are summarized in Tables 1 and 2. In Table 1, we test the iterative convergence of GAOR and
GSOR methods when n = 1600, 2500, 3600 and 4900, respectively. Moreover, it can be seen from Table 1 that,
when 0 < a 6 1; 0 < xi <

2
1þqðjJ jÞ, the value of a and xi is bigger, the iterative speed is faster.
1
nit: s e(zk) < 0.1

2

1þ qðjJ jÞ
Interval GAOR GSOR

a cputime in.no a cputime in. no

1.1457 [1 1.14] 0.9 1.141 6 1 1.265 6
1.1457 [0.5 0.7] 0.7 3.359 16 1 3.219 16
1.1447 [1 1.14] 0.9 2.453 6 1 2.532 6
1.1447 [0.3 0.5] 0.7 11.922 29 1 11.859 29
1.1441 [1 1.14] 0.9 5.187 6 1 4.937 6
1.1441 [0.5 0.7] 0.7 14.234 17 1 13.234 16
1.1438 [1 1.14] 0.9 10.297 6 1 10.484 6
1.1438 [0.3 0.5] 0.7 52.672 30 1 48.031 29

2
GSOR n ¼ 1600

2

1þ qðjJ jÞ ¼ 1:1441
2

1þ kJk1
¼ 1:1429eðzkÞ < 0:1

l a q(G�1F) max16i6nfj1� xij þ xiqðjJ jÞg max16i6nfj1� xij þ xikJk1g
] 0.4 0.9053 0.9237 0.925
] 0.7 0.9014 0.9237 0.925
] 1 0.8971 0.9237 0.925
] 0.4 0.8443 0.8728 0.875
] 0.7 0.8329 0.8728 0.875
] 1 0.8193 0.8728 0.875
] 0.4 0.7797 0.822 0.825
] 0.7 0.7553 0.822 0.825
] 1 0.7225 0.822 0.825
] 0.4 0.7207 0.7711 0.775
] 0.7 0.6777 0.7711 0.775
] 1 0.6106 0.7711 0.775

] 0.4 0.9166 0.9901 0.995
] 0.7 0.9018 0.9901 0.995
] 1 0.8800 0.9901 0.995

2
þkJk1

0.4 0.9941 0.9951 1

2
þkJk1

0.7 0.9930 0.9951 1

2
þkJk1

1 0.9914 0.9951 1



Table 3
GAOR n = 3000 e(zk) < 0.001 time unit: s

a Interval Problem # 1 Problem # 2

cputime in.no cputime in.no

0.4 [0.3 0.5] 373 6 307.859 5
0.7 [0.5 0.7] 185.547 3 184.672 3
0.9 [0.7 0.9] 123.359 2 123.344 2
1 xi = 1 122.066 2 121.868 2
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By Table 2, we compare q(G�1F) with max16i6nfj1� xij þ xiqðjJ jÞg in according to Theorem 3.1 and Cor-
ollary 3.2 as M is an H-matrix with positive diagonal elements. At the same time, since M is also strictly and
irreducible diagonally dominant, we compare q(G�1F) with max16i6nfj1� xij þ xikJk1g through Corollary
3.3 and Theorem 3.4. These computational data of Table 2 illustrate our theoretic results.

Example 5.2. This example is prepared for the monotone convergence of L-matrix. In this test, matrix M is a
symmetric tridiagonal matrix with its diagonal elements be 8, whose nondiagonal elements are chosen
randomly from interval [�5 0]. Obviously, M is an L-matrix. The elements of q are random points in the
interval [100,200] in order that W = {z 2 Rnjz P 0, Mz + q P 0} is nonempty.

For these tests, we also let in.no and cputime denote, respectively, the number of iteration and the executive
time of iterative process. The n parameters xi, i = 1,2, . . . ,n, are taken from the n equal-partitioned points of
the given interval.

We generate two test problems for different parameters. The initial vector z0 2 W is always set to
(25, 25, . . . , 25). The termination criterion for the GAOR and GSOR is e(zk) :¼ kmin(Mzk + q,zk)k1 < 0.001.
The results of test is in Table 3, which confirm Theorems 4.2 and 4.3.
6. Conclusion

In this paper, we have proposed a class of generalized AOR (GAOR) methods for linear complementarity
problem, whose special case reduces to GSOR. We also have presented some sufficient conditions for conver-
gence of the GAOR and GSOR methods, when M is an H-matrix, M-matrix and a strictly or irreducible diag-
onally dominant matrix. Besides, the monotone convergence of the new methods have been discussed when M
is an L-matrix. From the numerical results, the proposed methods are effective for large and sparse linear com-
plementarity problems when M is an H-matrix with positive diagonals.
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