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1. INTRODUCTION
Properties of solitons supported by media with local nonlinear
response are now well established. However, recent
interest in the study of nonlocal optical solitons has increased
because of experimental observations and theoretical treat-
ments of self-trapping effects and spatial solitary waves in
different types of nonlocal nonlinear media. In particular,
new effects of nonlocality have been studied in photorefrac-
tive crystals [1,2], nematic liquid crystals [3,4], plasmas [5],
thermo-optical materials [6], and Bose–Einstein condensates
with long-range interparticle interactions [7,8]. The nonlocal-
ity of nonlinear response, which has been shown to pro-
foundly affect the properties and interactions of solitons, is
a characteristic feature of nonlocal nonlinear media. For
example, the nonlocal nonlinear response suppresses the
modulation instability of the plane waves in focusing media
[9,10]; it can arrest the catastrophic collapse of multidimen-
sional beams [11–14] and stabilize complex soliton structures,
such as vortex solitons [15]; it also can make the soliton form
bound states [16] and the colliding solitons merge into a stand-
ing wave. Stable dipole solitons in a medium with a Gaussian
response function also have been predicted recently [17]. Peri-
odic solitons were identified in nonlocal lead-glass displaying
a thermal optical nonlinearity [18]. Analytical soliton solutions
of the nonlocal focusing Kerr-type medium with exponential
response function have been derived by the symmetry reduc-
tion method [19].

The propagating properties of solitons were studied in non-
local media with the spatially growing self-repulsive local non-
linearity [20–24]. The critical behavior of solitary waves was
investigated by using the time-dependent variational principle
in a nonlinear nonlocal medium with a power-law response
function [25]. Many different types of nonlocal solitons are
found in the nonlocal media by manipulating the external
field. The dipole solitons that are strongly asymmetric and
stable are revealed at the interface of optical lattice [26]. A
2D nonlocal gap soliton is formed in the nonlocal medium

with liquid-infiltrated photonic crystal fibers [27]. Mixed
gap solitons exist in the nonlocal nonlinear Kerr-type medium
with two different imprinted semi-infinite periodic lattices
[28]. Studying explicit solutions of nonlinear Schrödinger
(NLS) equations with inhomogeneous coefficients is interest-
ing because these NLS equations are applied to nonlinear op-
tics, Bose–Einstein condensates, and plasma [29–33]. In this
paper, we construct different types of explicit solutions in
the nonlocal nonlinear Kerr media with space dependent
nonlinearity, space-dependent nonlocality, and the exter-
nal field.

The paper is organized as follows: in Section 2, we intro-
duce a general nonlocal NLS model and the corresponding
order differential system by a similarity transformation. In
Section 3, we express various types of soliton waves in the
nonlocal media with different external fields, nonlocalities
and nonlinearities. These soliton waves include breather
bright solitons, double- periodic solitons, quasi-periodic soli-
tons, Saddle-type rogue waves, and fisson soliton waves.
Section 4 is the conclusion.

2. GENERAL THEORY
We consider the dimensionless nonlocal nonlinear Schrödinger
equation with the external field and the alterable modulation
nonlinearity, i.e.,

iψz �
1
2
ψxx − V�x; z�ψ − g�x; z�nψ � 0;

n − A�x; z�nxx � B�x; z�jψ j2; (2.1)

where ψ�x; z� is the complex amplitude envelope of the laser
beam, the nonlinear contribution to the refractive index is
given by n�x; z� � R∞

−∞ R�x − x0�jψ�x0; z�dx0 in which R�x� ∼
exp�−jxj∕σ� is the response function of the nonlocal medium,
x and z denote the transverse and longitudinal coordinates
scaled to the beam width ω0 and diffraction length Ld,
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respectively. V�x; z� is an external potential, g�x; z� and B�x; z�
describe the nonlinearity, and A�x; z� describes the nonlocality
of the nonlinear response. As far as we know, the relationship
between the width of the response function and the width of
the intensity profile divides the degree of nonlocality into four
types, namely the local, weakly nonlocal, general, and strongly
responses. When A�x; z� → 0, Eq. (2.1) describes a local non-
linear response. In contrast, Eq. (2.1) describes a strongly non-
local response as A�x; z� → ∞.

Our goal is to research for the analytical solutions of
Eq. (2.1) by the proper similarity transformation, which was
proposed in [29,31,34]:

ψ�x; z� � ρ�x; z�eiτ�x;z�Φ�ξ�x; z��;
n�x; z� � ρ�x; z�χ�ξ�x; z��: (2.2)

We use the above transformation in Eq. (2.2) and require Φ�ξ�
and χ�ξ� to satisfy the following stationary nonlocal nonlinear
Schrödinger equation:

μΦ�Φξξ � GΦχ � 0; χ − Dχξξ −Φ2 � 0; (2.3)

where μ is the eigenvalue of the nonlinear equation (or named
the chemical potential), and G and D are constants. And we
find a set of constraint equations for the functions ρ, τ, and ξ,

2ρρz � �ρ2τx�x � 0; (2.4)

�ρ2ξx�x � 0; 2gρ � −Gξ2x (2.5)

V � τz � �τ2x � μξ2x − ρ−1ρxx�∕2 � 0; (2.6)

ξz � τxξx � 0; (2.7)

ρ − Aρxx − Bρ2 � 0; (2.8)

Aξ2x − DBρ � 0: (2.9)

If we can get exact solutions of these functions ρ, τ, and ξ
from Eqs. (2.4) to (2.9), we finally obtain the solutions of ψ
and n by combining the similarity transformation in Eq. (2.2)
with the solutions Φ and χ of Eq. (2.3). In order to get the sol-
utions of ρ, τ, and ξ, we take ξ�x; z� � F�η�x; z��, in which
η�x; z� � γ�z�x� δ�z�. The function γ�z� denotes the inverse
of the width of the soliton solution, and −δ�z�∕γ�z� denotes
the central position of its mass. Obviously, Eqs. (2.4)–(2.9)
are overdetermined for the functions ρ, τ, and ξ. However,
we can handle the problem to confirm that functions
V�x; z�, g�x; z�, A�x; z�, and B�x; z� are expressed by the func-
tions ρ, τ, and ξ. Therefore, we obtain

ρ�x; z� �
�����������
γ�z�
F 0�η�

s
; (2.10)

τ�x; z� � −

γz
2γ

x2 −
δz
γ
x� α�z� (2.11)

g�x; z� � −

G
2
γ4

ρ5
; (2.12)

V�x; z� � ρxx
2ρ

− τz −
τ2x
2
−

μγ4

2ρ4
(2.13)

A�x; z� � ρ4D

γ4 � ρ3ρxxD
; (2.14)

B�x; z� � γ4

ργ4 � ρ4ρxxD
; (2.15)

where α�z�, γ�z�, and δ�z� are arbitrary functions with respect
to z. We can choose the appropriate forms of the functions
γ�z� and δ�z� to construct the external potential function
V�x; z�, the nonlocality of the nonlinear responses A�x; z�
and the nonlinearity g�x; z� [and B�x; z�]. The nonlocality func-
tion A�x; z� in Eq. (2.14) and the parameter D are required to
maintain their positive values for nonlocal nonlinearity media
materials in reality. However, the nonlocal Kerr system is
equivalent to the quadratic χ�2� nonlinear system when the
nonlocality A�x; z� < 0 (or the parameter D < 0) [35, 35]. So
that seeking the solutions of this case is useful in physics.

3. NONLOCAL SOLITON SOLUTIONS
We take that the nonlinearity g�x; z� has the exponential func-
tion type as

g�x; z� � −

G
2
γ
3
2e

5η2

2 : (3.1)

And then from Eqs. (3.1) and (2.10), we obtain the external
potential function about harmonic and parabolic types and
the nonlocality function

V�x; z� � ω2�z�x2 � f �z�x� h�z� − μ

2
γ2e2η

2
; (3.2)

A�x; z� � γ−2e−2η
2
D

1� �η2 − 1�e−2η2D ; (3.3)

where

ω2�z� � γ6 � γγzz − 2γ2z
2γ2

; (3.4)

f �z� � γ5δ� γδzz − 2γzδz
γ2

; (3.5)

h�z� � γ4δ2 − γ4 − δ2z − 2γ2αz
2γ2

; (3.6)
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and the functions ρ�x; z� � ���
γ

p
e−�η

2∕2� and B�x;z� � γ−1∕2eη
2∕2∕

�1��η2 − 1�e−2η2∕D�. In order to investigate the nonlocal soli-
ton solutions of Eq. (2.1) with different external potential
functions, we consider three different cases of the chemical
potential μ.

A. Case A. μ � 0
In this case, choosing δ�z� � 0 and α�z� � −

R
γ2�z�∕2dz, we

can obtain the simplest form of the external potential

V�x; z� � ω2�z�x2: (3.7)

Let φ � 1∕γ, we transform Eq. (3.4) into the Mathieu equation:

φzz � 2ω2�z�φ � 1
φ3 : (3.8)

Considering the periodic function with respect to z for the ex-
ternal potential, we take two choices for ω�z� in Eq. (3.8).

The first choice is

ω2�z� � �1� cos�ω0z��∕2; (3.9)

where ω0 is a real constant. To illustrate the solution of the
Mathieu Eq. (3.8), we take ω0 � 6 and obtain the function γ:

γ �

���������������������������������������������������������������������������������������������������������������������������������������������������������
3

���������������������
4c1c22 − c21

q �
C
�
1
9 ;−

1
18 ; 3z

�
S0�1

9 ;−
1
18 ; 3z

�
− C0�1

9 ;−
1
18 ; 3z

�
S
�
1
9 ;−

1
18 ; 3z

��
2c1C

�
1
9 ;−

1
18 ; 3z

�
S
�
1
9 ;−

1
18 ; 3z

�� 2c2S
�
1
9 ;−

1
18 ; 3z

�
2 � 2c1c2C

�
1
9 ;−

1
18 ; 3z

�
2

vuut
; (3.10)

where S��1∕9�;−�1∕18�; 3z� and C��1∕9�;−�1∕18�; 3z� stand
for the odd and even periodic Mathieu functions, respectively,
the prime stands for the first derivative of the Mathieu func-
tion, and c1, c2 are arbitrary real constants. From Eq. (2.10),
we find the similarity invariant ξ is

ξ�x; z� �
Z

γ�z�x

0
eη

2
dη � −

i
2

���
π

p
erf�iη�: (3.11)

On the other hand, taking μ � 0 into Eq. (2.3) and solving it,
we have derived

Φ�ξ� � 3m

�m2 � 1�
��������
GD

p cn�kξ;m�dn�kξ;m�;

χ�ξ� � 1
2GD

−

3 m2

�1�m2�GD sn�kξ;m�2; (3.12)

where k � �1∕
��������������������������
2�1�m2�D

p
� and m �

���
3

p
−

���
2

p
. Finally, we

can obtain that the profile of the laser pulse and the refractive
index are

jψ j2 � 9 m2γe−η
2

�1�m2�2GD cn�kξ;m�2dn�kξ;m�2;

n � γ
1
2e−

η2

2

�
1

2GD
−

3m3

�1�m2�GD sn�kξ;m�2
�
: (3.13)

It is evident the solution in Eq. (3.13) of ψ is a multibright
soliton, in which amplitude is periodically changed along with
the propagating direction. The breather frequency of this
soliton solution is not the unitary value. It has a multivalue,
which is determined by the frequencies of the function
cn��k∕6m�ξ;m�dn��k∕6m�ξ;m�. Figure 1 plots the evolutions
of the pulse profile jψ j2 and the refractive index n with G �
3, D � 0.2, and c1 � 2, c2 � 3 in Eq. (3.10). From Figs. 1(a)
and 1(b), we understand that the evolutions of profile jψ j2 and
the refractive index n are the proceeding propagation of

multisolitons, in which amplitudes are periodically modulated.
These amplitudes of the bright soliotns (x � 0) of jψ j2 and n
aremodulated by two periods. Not only the amplitudes but also
the routes of bright solitons distributed in both sides of x � 0
are periodically changed. Figure 1(c) shows the form of the
external potential V�x; z� � �1� cos�6z��x2, respectively.

The second choice of the function ω is ω2�z� � 1. From
Eq. (3.8), we obtain

φ � 1
γ
�

����������������������������������
1� cos

� ���
2

p
z
�2

2

s
: (3.14)

Fig. 1. Propagating behavior of Eq. (3.13) jψ j2 and n with G � 3, D � 2, c1 � 2, and c2 � 3: (a) jψ j2, (b) n, (c) V�x; z�.

190 J. Opt. Soc. Am. A / Vol. 31, No. 1 / January 2014 Lin et al.



Taking the same solution in Eq. (3.12) of the system in
Eq. (2.3) and substituting Eq. (3.14) into Eq. (3.13), we find
these solutions of jψ j2 and n of Eq. (2.1) are multiperiodically
breather solitons. The width and the amplitude of breather
bright soliton jψ j2 at center (x � 0) are variable with the same
period along the propagating direction z. The solitons solu-
tions are symmetric on both sides of the center (x � 0)
and move on the curve cos�

���
2

p
z�. The intensity region of pulse

is distributed in the domain x ∈ �−1.8; 1.8�. The solution of the
refractive index n is a multidark solitons solution. The distri-
bution of the refractive index n also has the symmetric struc-
ture on both sides (x � 0) in the domain x ∈ �−3.0; 3.0� [see
Fig. 2(d)]. These amplitudes of the solitons are periodically
changed along the propagating orientation z. The propagating
trajectories are the curve of cos�

���
2

p
z�. The corresponding ex-

ternal potential is just a parabolic surface V�x; z� � x2. The
nonlocality function A�x; z� is a periodic bright soliton in
which amplitude is periodically varied. Figure 2 shows the
evolutions of the breather solitons jψ j2 and n.

B. Case B. μ � �1∕2D�
As we know, the ODE system in Eq. (2.3) has different solu-
tions for the different values of μ. Here we also take δ�z� � 0

and α�z� � −

R
γ2�z�∕2dz for the simplicity. For this case, we

can get a dipole soliton solution of Φ and a bright soliton sol-
ution of χ in Eq. (2.3):

Φ�ξ� � 3�����������
−GD

p sech
�

ξ����������
−2D

p
�
tanh

�
ξ����������
−2D

p
�
; (3.15)

χ�ξ� � −

3
GD

sech
�

ξ����������
−2D

p
�
2
: (3.16)

Meanwhile, we can decide the function γ�z� by the external
potential function V�x; z� and finally obtain the solutions of
ψ and n in Eq. (2.1). We give two choices of the external
potential function.

1. V�x; z� � �1� 0.5 cos�2z��x2 − γ2e2η
2∕�4D�

In this case, we can get the function γ�z� from
Eq. (3.8):

γ�z� �

������������������������������������������������������������������������������������������������������������������������������������������������������������������
4c1c22 − c21

q �
C
�
2;− 1

2 ; z
�
S0
�
2;− 1

2 ; z
�
− C0

�
2;− 1

2 ; z
�
S
�
2;− 1

2 ; z
��

2c1C
�
2;− 1

2 ; z
�
S
�
2;− 1

2 ; z
�
� 2c2S

�
2;− 1

2 ; z
�
2 � 2c1c2C

�
2;− 1

2 ; z
�
2

vuuuut : (3.17)

Fig. 2. Propagating behavior of Eq. (3.13) jψ j2 and n with G � 3, D � 0.2, c1 � 2, and c2 � 3: (a) jψ j2, (b) n, (c) A�x; z�, and the density distri-
butions of (d) n and (e) jψ j2.
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Taking Eqs. (3.17) and (3.15) into the expressions in Eq. (2.2)
of ψ and n, we finally achieve the quasi-periodic soliton sol-
utions of ψ and n. We plot the evolution of intensities of jψ j2
and nwhen selecting these parameters D � −2, G � 3, c1 � 2,
c2 � 3 and the external potential function V�x; z� in Fig. 3.
From Fig. 3, we know the profile jψ j2 is a quasi-periodic dipole
soliton solution and the refractive index n is a quasi-periodic
single bright soliton solution. Their amplitudes and width
(Δx0) are changed periodically with some quasi-periods along
the propagating direction z [see Fig. 3(d)].

2. V�x; z� � �γ6 � γγzz − 2γ2z�x2∕�2γ2� − γ2e2η
2∕�4D�

We take γ � �1� 0.15 sin�z��2 and get the dipole-type breather
soliton of jψ j and the bright-type breather soliton of n. Their
amplitudes are changed with a single period along the propa-
gating direction z. Furthermore, the width of the laser beam
and the one of the refractive index n take on a periodic varia-
tion along the propagating direction z. Figure 4 shows the evo-
lutions of the dipole-type breather soliton solution of ψ and the
breather bright-type soliton solution of n with G � 3 and
D � −2. In order to investigate the stability of the exact solitary

wave solutions, we take the exact solution with white noise as
the initial perturbed solution of Eq. (2.1):

ψ �
���
6

p

2
e�−0.5�0.15i�x2sech

�
ξ

2

�
tanh

�
ξ

2

�
�1� 0.1 random�x��:

(3.18)

Then we calculate the evolution of the solution ψ by the
numerical simulation technique. Finally, we obtain the profile
and the propagating path of the laser beam ψ are all almost
not change. So the exact analytical solitary solution is stable.
Figure 4(c) shows the numerical evolution of the solution jψ j2
in Eq. (2.2) with the white noise perturbation.

C. Case C. μ � − 1
D

In this case, we can derive the bright-type soliton solutions for
Φ and χ in Eq. (2.3):

Φ�ξ� � 3

2
��������
GD

p
�
tanh

�
ξ

2
����
D

p
�
− 1

�
;

χ�ξ� � 3
2GD

�
1 − tanh

�
ξ

2
����
D

p
�
2
�
: (3.19)

Fig. 3. Intensity jψ j2 and nwith G � 3, D � −2, c1 � 2, c2 � 3: (a) jψ j2, (b) n, (c) V�x; z�, (d). The evolutions of amplitudes of jψ j2 at x � 0.8 and n
at x � 0 along the propagating direction.
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We investigate the propagating property of the laser beam
and the distribution of the refractive index in two different
external potentials. First, if we take an external potential
function,

V�x; z� � ��1� 0.2z2�4 � 0.4�1 − 0.6z2��1� 0.2z2�−2�x2

� 0.5�1� 0.2z2�2e2�1�0.2z2�2x2 �; (3.20)

we find a fantastic propagating property of the laser beam in
the nonlocal media. The laser beam becomes the rogue wave,
which has two humps. It means the laser beam can be trapped
in the finite domain by manipulating the external potential. It
is as if the light was stopped by electromagnetically induced
transparency in a doped solid [37]. We hope this theoretical
result will be tested by experiment. The distribution of the re-
fractive index is also like the Saddle-type structure in the

plane domain (x ∈ �−1.4; 1.4�, z ∈ �−20; 20�) [see Fig. 5(b)].
Figure 5 shows the dynamics of the laser beam, the refractive
index, and the external potential function V�x; z�.

Second, if we take the external potential function as

V�x; z� � 0.5�sech�0.1z�4 − 0.01�x2

� sech�0.1z�2e2sech�0.1z�2x2�; (3.21)

we can observe the fissions of the bright solitons of the laser
beam and the nonlocality of the refractive index n by manipu-
lating the external potential. We plot the evolutions of the la-
ser beam and the refractive index with the external potential
function in Fig. 6.

Fig. 4. Propagating behaviors of solutions jψ j2 and n with Eq. (3.15) and G � 3, D � −2: (a) jψ j2, (b) n and the numerical evolution of the exact
solution (c) jψ j2 with the white noise.

Fig. 5. Dynamics of solution jψ j2 and n with Eq. (3.19) and G � 2, D � 1 and the external potential V�x; z�: (a) jψ j2, (b) n, (c) V�x; z�.

Fig. 6. Propagating behavior of solution jψ j and n with Eq. (3.19) and G � 13, D � 0.1: (a) jψ j2, (b) n.
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4. CONCLUSIONS
We first construct various types of exact solutions of the di-
mensionless nonlocal nonlinear Schrödinger equation with
the external potential and the alterable modulation nonlinear-
ity. We use the similarity transformation to reduce Eq. (2.1) to
the ordinary differential in Eq. (2.3). For the chemical poten-
tial μ � 0, we can obtain periodic and quasi-periodic breather
solitons solutions by the periodic-parabolic and parabolic ex-
ternal potential functions, respectively. For μ � 1∕�2D�
�D < 0�, we consider the self-focusing media and must take
D < 0. We have calculated the quasi-periodic and periodic di-
pole soliton solutions of the profile of the laser beam and
quasi-periodic and periodic single soliton solutions for the
refractive index with the external potentials [in Case B].
We hope to use this theoretical result to investigate experi-
mentally the propagating property of the laser beam in
SHG by controlling the external potential function. For
μ � −1∕D �D > 0�, we derive the rogue waves and the fission
of the soliton wave in Eq. (2.1) by controlling the external po-
tentials. Otherwise, we investigate the stability of the exact
solitary wave solution [Case B(2)] with the white noise pertur-
bation numerically. The result reveals the exact analytical sol-
ution possesses the stability of propagation. For other cases,
we also numerically analyze their evolution stabilities of soli-
tary wave solutions and obtain the same result as Case B(2).
In this paper, we only investigate the propagating properties
of exact solutions for Eq. (2.1), and we will research for their
critical behavior of solutions with a Gaussian-type response
function in the future.

ACKNOWLEDGMENTS
The work was supported by the National Natural Science
Foundation of China no. 11175158 and by a program for
the Innovative Research Team in Zhejiang Normal University.

REFERENCES
1. M. Mitchell, M. Segev, and D. N. Christodoulides, “Observation

of multihump multimode solitons,” Phys. Rev. Lett. 80, 4657–
4660 (1998).

2. A. V. Mamaev, A. A. Zozulya, V. K. Mezentsev, D. Z. Anderson,
and M. Saffman, “Bound dipole solitary solutions in anisotropic
nonlocal self-focusing media,” Phys. Rev. A 56, R1110–R1113
(1997).

3. M. Peccianti, K. A. Brzdakiewicz, and G. Assanto, “Nonlocal
spatial soliton interactions in nematic liquid crystals,” Opt. Lett.
27, 1460–1462 (2002).

4. M. Peccianti, C. Conti, and G. Assanto, “Interplay between non-
locality and nonlinearity in nematic liquid crystals,” Opt. Lett.
30, 415–417 (2005).

5. A. G. Litvak, V. A. Mironov, G. M. Fraiman, and A. D. Yunakov-
skii, “Direct measurement of the attenuation length of extensive
air showers,” Sov. J. Plasma Phys. 1, 31–33 (1975).

6. J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R.
Whinnery, “Long-transient effects in lasers with inserted liquid
samples,” J. Appl. Phys. 36, 3–8 (1965).

7. L. Santos, G. V. Shlyapnikov, P. Zoller, and M. Lewenstein,
“Bose–Einstein condensation in trapped dipolar gases,” Phys.
Rev. Lett. 85, 1791–1794 (2000).

8. V. M. Pérez-García, V. V. Konotop, and J. J. Garcia-Ripoll,
“Dynamics of quasicollapse in nonlinear Schrödinger systems
with nonlocal interactions,” Phys. Rev. E 62, 4300–4308
(2000).

9. W. Krolikowski, O. Bang, J. J. Rasmussen, and J. Wyller, “Mod-
ulational instability in nonlocal nonlinear Kerr media,” Phys.
Rev. E 64, 016612 (2001).

10. M. Peccianti, C. Conti, and G. Assanto, “Optical modulational in-
stability in a nonlocal medium,” Phys. Rev. E 68, 025602 (2003).

11. S. K. Turitsyn, “Spatial dispersion of nonlinearity and stability of
multidimensional solitons,” Theor. Math. Phys. 64, 797–801
(1985).

12. O. Bang, W. Krolikowski, J. Wyller, and J. J. Rasmussen,
“Collapse arrest and soliton stabilization in nonlocal nonlinear
media,” Phys. Rev. E 66, 046619 (2002).

13. D. Neshev, G. McCarthy, and W. Krolikowski, “Dipole-mode
vector solitons in anisotropic nonlocal self-focusing media,”
Opt. Lett. 26, 1185–1187 (2001).

14. W. Krolikowski, O. Bang, and J. Wyller, “Nonlocal incoherent
solitons,” Phys. Rev. E 70, 036617 (2004).

15. A. I. Yakimenko, Y. A. Zaliznyak, and Y. Kivshar, “Stable vortex
solitons in nonlocal self-focusing nonlinear media,” Phys. Rev. E
71, 065603(R) (2005).

16. N. I.Nikolov,D.Neshev,W.Krolikowski,O.Bang,J.J.Rasmussen,
and P. L. Christiansen, “Attraction of nonlocal dark optical
solitons,” Opt. Lett. 29, 286–288 (2004).

17. S. Lopez-Aguayo, A. S. Desyatnikov, Y. S. Kivshar, S. Skupin, W.
Krolikowski, and O. Bang, “Stable rotating dipole solitons in
nonlocal optical media,” Opt. Lett. 31, 1100–1102 (2006).

18. I. Kaminer, C. Rotschild, O. Manela, and M. Segev, “Periodic soli-
tons in nonlocal nonlinearmedia,”Opt. Lett.32, 3209–3211 (2007).

19. J. Jian and J. Lin, “Solitons in nonlocal nonlinear kerr media with
exponential response,” Opt. Express 20, 7133–7479 (2012).

20. O. V. Borovkova, Y. V. Kartashov, B. A. Malomed, and L. Torner,
“Algebraic bright and vortex solitons in defocusing media,” Opt.
Lett. 36, 3088–3099 (2011).

21. O. V. Borovkova, Y. V. Kartashov, L. Torner, and B. A. Malomed,
“Bright solitons from defocusing nonlinearities,” Phys. Rev. E
84, 035602(R) (2011).

22. Y. V. Kartashov, V. A. Vysloukh, L. Torner, and B. A. Malomed,
“Self-trapping and splitting of bright vector solitons under inho-
mogeneous defocusing nonlinearities,” Opt. Lett. 36, 4587–4589
(2011).

23. V. E. Lobanov, O. V. Borovkova, Y. V. Kartashov, B. A. Malomed,
and L. Torner, “Stable bright and vortex solitons in photonic
crystal fibers with inhomogeneous defocusing nonlinearity,”
Opt. Lett. 37, 1799–1801 (2012).

24. Y. J. He and B. A. Malomed, “Solitary modes in nonlocal media
with inhomogeneous self-repulsive nonlinearity,” Phys. Rev. A
87, 053812 (2013).

25. S. Abe and A. Ogura, “Solitary waves and their critical behavior
in a nonlinear nonlocal medium with power-law response,”
Phys. Rev. E 57, 6066–6070 (1998).

26. Y. V. Kartashov, L. Torner, and V. A. Vysloukh, “Lattice-
supported surface solitons in nonlocal nonlinear media,” Opt.
Lett. 31, 2595–2597 (2006).

27. P. D. Rasmussen, F. H. Bennet, D. N. Dragomir, A. Andrey, C. R.
Rosberg, W. Krolikowski, O. Bang, and Y. S. Kivshar, “Observa-
tion of two-dimensional nonlocal gap solitons,” Opt. Lett. 34,
295–297 (2009).

28. Z. W. Shi, G. Zheng, Q. Guo, and W. Hu, “Mixed-gap solitons
supported by two different semi-infinite periodic lattices in
nonlocal nonlinear media,” J. Opt. Soc. Am. B 26, 1526–1531
(2009).

29. V. N. Serkin, A. Hasegawa, and T. L. Belyaeva, “Nonautonomous
solitons in external potentials,” Phys. Rev. Lett. 98, 074102
(2007).

30. J. Belmonte-Beitia, V. M. Pérez-García, V. Vekslerchik, and V. V.
Konotop, “Localized nonlinear waves in systems with time- and
space-modulated nonlinearities,” Phys. Rev. Lett. 100, 164102
(2008).

31. Z. X. Liang, Z. D. Zhang, and W. M. Liu, “Dynamics of a bright
soliton in Bose-Einstein condensates with time-dependent
atomic scattering length in an expulsive parabolic potential,”
Phys. Rev. Lett. 94, 050402 (2005).

32. Z. Y. Yan, V. V. Konotop, A. V. Yulin, and W. M. Liu, “Two-
dimensional superfluid flows in inhomogeneous Bose-Einstein
condensates,” Phys. Rev. E 85, 016601 (2012).

33. X. Y. Tang and P. K. Shukla, “Solution of the one-dimensional
spatially inhomogeneous cubic-quintic nonlinear Schrödinger
equation with an external potential,” Phys. Rev. A 76, 013612
(2007).

194 J. Opt. Soc. Am. A / Vol. 31, No. 1 / January 2014 Lin et al.



34. V. M. Pérez-García, P. Torres, and V. V. Konotop, “Similarity
transformations for Schrödinger equations with time-dependent
coefficients,” Physica D 221, 31–36 (2006).

35. N. I. Nikolov, D. Neshev, O. Bang, and W. Z. Krolikowski, “Quad-
ratic solitons as nonlocal solitons,” Phys. Rev. E 68, 036614
(2003).

36. A. V. Buryak and Y. S. Kivshar, “Solitons due to second harmonic
generation,” Phys. Lett. A 197, 407–412 (1995).

37. G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and im-
age storage by electromagnetically induced transparency up to
the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013)
and therein.

Lin et al. Vol. 31, No. 1 / January 2014 / J. Opt. Soc. Am. A 195


	XML ID ack1

