
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Computers and Chemical Engineering 35 (2011) 615–621

Contents lists available at ScienceDirect

Computers and Chemical Engineering

journa l homepage: www.e lsev ier .com/ locate /compchemeng

An improved genetic algorithm based on a novel selection strategy for nonlinear
programming problems

Ke-Zong Tang ∗, Ting-Kai Sun, Jing-Yu Yang
School of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China

a r t i c l e i n f o

Article history:
Received 16 October 2009
Received in revised form 8 June 2010
Accepted 24 June 2010
Available online 8 July 2010

Keywords:
Genetic algorithms
Nonlinear programming problems
Constraint-handling
Non-dominated solution
Optimization

a b s t r a c t

Genetic algorithm is a heuristic population-based search method that incorporates three primary opera-
tors: crossover, mutation and selection. Selection operator plays a crucial role in finding optimal solution
for constrained optimization problems. In this paper, an improved genetic algorithm (IGA) based on a
novel selection strategy is presented to handle nonlinear programming problems. Each individual in
selection process is represented as a three-dimensional feature vector composed of objective function
value, the degree of constraints violations and the number of constraints violations. We can distinguish
excellent individuals through two indices according to Pareto partial order. Additionally, IGA incorporates
a local search (LS) process into selection operation so as to find feasible solutions located in neighboring
areas of some infeasible solutions. Experimental results over a set of benchmark problems demonstrate
that proposed IGA has better robustness, effectiveness and stableness than other algorithm reported in
literature.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Real world problems such as control and scheduling prob-
lems from the chemical engineering area, can be formulated as
simple nonlinear programming (NLP) problems. In NLP problems,
we define the single-objective optimization function as f: Rn → R,
where n ≥ 1, n is the dimension of the decision solution vector, x.
The aim of NLP problem is to search feasible solutions with better
objective values. Formally speaking, it can be described as follows:

Min f (x) (1)

s.t gi(x) ≤ 0, i = 1, 2, . . . , m, (2)

hj(x) = 0, j = 1, 2, . . . , p, (3)

where x = [x1,x2,. . .,xn] ∈ Rn, f(x) is the objective function of the
constrained problem and f(x) ∈ R. m is the number of inequality
constraints and p is the number of equality constraints. Generally,
equality constraints can be transformed into inequality constraints
by using |hj(x)| − � ≤ 0 (� is a very small value). For convenience,
we denote by S the feasible search region and name the whole
search space by ˝. Obviously, S ⊆ ˝. When there are two solutions,
xa = (xa

1, xa
2, . . . , xa

n) and xb = (xb
1, xb

2, . . . , xb
n) in S, the solution xa is

said to dominate (in the Pareto sense) the solution xb (denoted by

∗ Corresponding author.
E-mail address: tangkezong@126.com (K.-Z. Tang).

xa ≺ xb) if xa
i

≤ xb
i
∀i ∈ {1,2,. . .,n} and xa

i
< xb

j
∃j ∈ {1,2,. . .,n}. In addi-

tion, a solution x* ∈ S is the global optimal solution if f(x*) ≤ f(x) for
every x ∈ S.

In most cases, different constraints are always in conflict,
because in order to satisfy any of the constraints, maybe we
would violate other constraints. One of the well-known constraint-
handling techniques is the penalty function method, in which the
violations of constraints of the solutions are incorporated into
the objective function so that the original constrained problems
with inequality constraints and equality constraints are trans-
formed into unconstrained ones, in that case, we can apply any
unconstrained optimization technique to the new unconstrained
optimization problems. The penalty approach to constrained opti-
mization problems is attributed to Courant (1962), and was
developed and popularized by Fiacco and McCormick (1968).
In recent years, a vast amount of work has been published on
applications of penalty function method to solve constrained opti-
mization problems in many engineering areas, such as constrained
redundancy allocation problem of series system (Gupta, Bhunia,
& Roy, 2009), traffic assignment problem (Shahpar, Aashtiani,
& Babazadeh, 2008), and economic lot size scheduling problem
(Sarker & Newton, 2002). As we know, a major disadvantage of the
penalty approach is the choice of penalty factors. Consequently,
in order to avoid the trial and error tuning process of penalty
factors, Coello (2000) presented the notion of using co-evolution
to adapt the penalty factors of a fitness function incorporated in
a genetic algorithm (GA) for engineering optimization problems.

0098-1354/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.compchemeng.2010.06.014

Author's personal copy

616 K.-Z. Tang et al. / Computers and Chemical Engineering 35 (2011) 615–621

He and Wang (2007) proposed an effective co-evolutionary par-
ticle swarm optimization (PSO) for constrained problems, where
PSO was applied to evolve both decision factors and penalty
factors. In these methods, the penalty factors were treated as
searching variables and evolved by GA or PSO to the optimal val-
ues.

Apart from the penalty function method, there are many other
methods in literature for handling constraints. Coello and Montes
(2002) proposed a dominance-based selection scheme to incorpo-
rate constraints into the fitness function of a genetic algorithm
which was used for global optimization. Unlike the traditional
mathematical programming methods, this approach does not
require the use of a penalty function. Chootinan and Chen (2006)
proposed a constraint-handling technique by taking a gradient-
based repair method. The proposed technique is embedded into
GA as a special operator.

During the past three decades, a global optimization technique,
genetic algorithm, has been successfully applied to many engineer-
ing and chemical engineering problems, such as polymer design
problem (Sundaram & Venkatasubramanian, 1998), batch beer
fermentation (Carrillo-Ureta, Roberts, & Becerra, 2001), transporta-
tion problems (Li, Ida, & Gen, 1997), job scheduling problems (Park,
Choi, & Kim, 2003), etc. However, in the implementation of GA
to constraint problems, individuals (i.e., solutions to a problem)
generated by applying crossover and mutation operators usually
violate the system constraints resulting in infeasible individuals.
Particularly, in the selection, although best individuals will be pre-
sented in the next generation with a higher probability, it does
not search the space further. When a few infeasible individuals are
located in neighboring areas of feasible individuals, if we attempt
to produce descendants that are better than their parents, we
have to find a way of estimating how close an infeasible individ-
ual is from the feasible region. This paper develops an improved
genetic algorithm (IGA) where we concentrate on the selection
operator, and give a novel strategy of individual selection where
a new local search procedure is performed with the aim to further
search feasible individuals located in neighboring areas of infeasi-
ble individuals. This local search procedure works by generating a
temporary subset of solutions with a modified mutation method
in differential evolution algorithm. The proposed algorithm, IGA,
has a very different design concept, as compared with traditional
GA. Firstly, it adopts the real coding instead of the genetic string
implementation normally found in GAs. Since many complex opti-
mization problems in real-life applications and scientific researches
are represented in real variables, and it can obtain faster compu-
tation without conversion between binary and decimal system.
Also, real coding is very appropriate to NLP problems with better
precision and simpleness of operation, and easy to search in com-
plex high-dimensional space. Secondly, it performs a local search
procedure in the neighboring area of infeasible individuals while
preserving non-dominated individuals in an external set in terms
of corresponding feature vectors. Thirdly, IGA uses the concept of
the (� + �)-ES (Costa & Oliveira, 2001). Where � is the assigned
member of individuals, and it is a constant in each generation.
The number of generated new individuals is the � multiplied by a
fixed ratio �. Hence, the number of offspring is an invariable value,
and it is equal to � (i.e., � × �). Experimental results over a set
of benchmark problems demonstrate that proposed IGA has bet-
ter robustness, effectiveness and stableness than other algorithm
reported in literature.

The aim of this paper is to present an improved genetic algo-
rithm based on a novel selection strategy. It is designed to exploit
the benefit of the existing genetic algorithms so as to be able to
deal with various engineering and chemical engineering problems.
The rest of this paper is organized as follows: Section 2 introduces
related mechanics of GA in details. The proposed algorithm, IGA,

Fig. 1. Genetic algorithm flow chart.

is presented in Section 3. Our results are briefly discussed in Sec-
tion 4 and our conclusions and some paths of future researches are
provided in Section 5.

2. Description of GA

Genetic algorithm, initiated by Holland (1975) is one of the most
important evolutionary computation techniques. It mimics the pro-
cess of natural selection (Goldberg, 1989) and starts with artificial
individuals (represented by a population of “chromosomes”). GA
tries to evolve those individuals that are fitter and, by applying
genetic operators (crossover and mutation), it attempts to produce
descendants that are better than their parents in terms of a certain
quantitative measure. In spite of their diversity, most of them are
based on the same iterative procedure.

As a heuristic population-based method, GA is really like a “black
box”, completely independent from the characteristic of the prob-
lem. Fig. 1 presents the classical GA flow chart. An initial population
of individuals is generated randomly. Each of these individuals is
evaluated in terms of a certain “fitness function” that can “guide” GA
to the desired region of the search space. Holland’s three genetic
operators (selection, crossover and mutation) are the main com-
ponents to improve the GA’s behavior. Selection is the process that
mimics the “survival of the fittest” principle in the biological theory
of evolution. Firstly, the selection operator assures that individu-
als are copied to the next generation with a probability associated
to their fitness values. Although selection is implemented in a GA
as a policy for determining the best candidate individuals that will
be presented in the next generation with a higher probability, it
does not search the space further, because it just copies the previ-
ous candidate individuals. The search results from the creation of
new individuals from old ones. Secondly, the crossover operator is
implemented in GA by exchanging chromosome segments between
two randomly selected chromosomes. Crossover process provides
a mechanism to allow new chromosomes to inherit the properties
from old ones. Thirdly, mutation is a random perturbation to one
or more genes in the chromosomes during evolutionary process.
The purpose of the mutation operator is to provide a mechanism
to avoid local optima by exploring the new regions of the search
space, which selection and crossover could not fully guarantee.
The searching process terminates when the predefined criterion
is satisfied.

3. The proposed algorithm

This section firstly gives a novel strategy of individual selection,
and briefly describes a new local search scheme we have imple-
mented to neighboring areas of infeasible individuals in selection
process. Finally, an improved genetic algorithm based on this novel
selection scheme is described in details.

Author's personal copy

K.-Z. Tang et al. / Computers and Chemical Engineering 35 (2011) 615–621 617

3.1. A novel selection scheme

Selection is the first genetic operator in GA. In this process,
the better individuals are selected according to their fitness for
which they will take part in genetic operations (crossover and
mutation). Generally, there are three selection schemes in the
GA community, i.e., Roulette wheel, rank-based and tournament,
respectively. Firstly, Roulette wheel is the simplest proportional
selection scheme. The basic concept of this scheme is that the indi-
viduals of the population are considered as slots of the Roulette
wheel. Each slot is as wide as the probability for selection of
the corresponded chromosome. Using the scaled fitness function,
selection probabilities are calculated for each respective individ-
ual. This scheme is emphasized to the better individuals in the
population and exerts a large pressure on the search process. Sec-
ondly, rank-based selection is similar to the proportional selection
scheme. Calculating the selection probability is to use individual’s
rank instead of the fitness function. Thirdly, tournament selection
models the tournament games. It uses the fitness function values
to evaluate the prospective for reproduction individuals. According
to this scheme, we randomly choose some individuals from popu-
lation to form a tournament size. In a contest, only one individual
that has the highest fitness value is the winner.

Based on selection schemes mentioned above, several
researchers have attempted to derive good techniques to build
better selection schemes for solving constraints problems. Jiménez
and Verdegay (1999) proposed a min–max approach to handle
constraints. The main idea of this approach is to apply a set of
simple rules to decide the selection process. Coello and Montes
(2002) proposed a dominance-based selection scheme to incor-
porate constraints into the fitness function. Their proposal is
to try to reach the feasible region of the search space in two
ways: finding non-dominated solutions and choosing those with a
lower accumulation of constraints violations. Additionally, some
individuals are probabilistically selected in the selection. These
individuals can be either infeasible or dominated. The reason for
this phenomenon is to avoid stagnates and prematurely converges
of the proposed algorithm. To some extent, this method can keep
the diversity required in the population to ensure that the search
progresses. As an extension of the previous work, the number
of constraints violations of non-dominated solutions should be
considered in our study. Particularly, in such a condition that both
function values (e.g., f(x) and p(x)) of a solution are the same as
those of another solution, then we may consider the number of
constraints violations in order to give an appropriate evaluation
between two solutions. In account of the equality and inequality
constraints, we give the following definitions.

Definition 1 (The degree of constraints violations). The degree of
constraints violations, p(x), for an infeasible solution x is defined as
follows:

p(x) =
m+p∑
i=1

qi(x)2, (4)

qj(x) =
{

max(0, gj(x)), 1 ≤ j ≤ m

|hj(x)|, 1 ≤ j ≤ p
. (5)

Definition 2 (The number of constraints violations). The number of
constraints violations, s(x), for an infeasible solution x is defined as
follows:

s(x) =
m+p∑
i=1

Numj(x), (6)

Numj(x) =
{

0, if qj(x) ≤ 0

1, otherwise
. (7)

Definition 3 (The representation of feature vector of an individual).
The feature vector v(x) of each individual x consists of three ele-
ments: the value of objective function (f), the degree of constraints
violations (p), and the number of constraints violations (s). For each
random individual x in the population, its value of objective func-
tion is calculated by using the original objective function f(x). Hence,
v(x) = (f, p, s).

Based on the above concepts, when comparing two individuals
in selection, according to the feature vectors of individuals we can
have an appropriate evaluation. However, the comparison between
two vectors is not the same as the comparison between two ordi-
nary real-values. In general, we can compare two vectors by way of
the Pareto partial order ≺. We give some related concepts for the
set of individuals Pop = (x1,x2,. . .,xn) as follows:

Definition 4 (The intensity value of an individual). Given xi ∈ Pop,
then IV(xi) represents the number of individuals that individual xi
dominates. We name IV(xi) as the intensity value of an individual.

IV(xi) = #
{

xj ∈ Pop and �(xi) ≺ �(xj)
}

(8)

where # is a cardinal number of set.

Definition 5 (The domination count of individual). Given xi ∈ Pop,
then DC(xi) represents the number of individuals which dominate
the individual xi.

DC(xi) = #
{

xj|xj ∈ Pop and v(xj) ≺ v(xi

}
(9)

We apply two indices (IV and DC) to compare two feasible or
infeasible individuals. If IV of individual xi is better than DC in a
population, then the number of individuals that individual xi dom-
inates is more than the number of individuals which dominate the
individual xi, and vice versa. Obviously, if an individual is feasible,
both feature components (p and s) of individual xi are equal to 0,
then comparing two individuals only by way of comparing the fea-
ture component, f. Conversely, if an individual is infeasible, both
feature components (p and s) of individual xi are usually unequal to
0, and the value of feature component f may be nonsense or a par-
ticular value. Under such circumstances, the feature component f of
individual xi is assigned as an infinite value. When comparing two
individuals between xa and xb in selection, there are four possible
situations:

(1) Both individuals are feasible. In this case, we make a decision
in terms of corresponding IV between two individuals.

(2) One is feasible and the other is infeasible. Obviously, the feasible
individual wins in terms of the partial order between corre-
sponding feature vectors of two individuals.

(3) Both individuals are infeasible. We may compare two individu-
als in terms of the partial order between corresponding feature
vectors of two individuals.

(4) Both individuals are infeasible and impossible to compare in
terms of their feature vectors. An individual with less DC would
wins, regardless of its IV.

The pseudo code of our approach is presented in Fig. 2. The
following notation is adopted: CPop represents the current popula-
tion, random is a function of generating a random positive integer
and Feasibility is a test function which makes a decision with
respect to the feasibility of individuals, IVCompute and DCCompute
are applied to compute IV and DC of an individual, respectively.

Author's personal copy

618 K.-Z. Tang et al. / Computers and Chemical Engineering 35 (2011) 615–621

Fig. 2. The representation of pseudo code for a novel selection process.

3.2. A new local search (LS) process embedded in selection

In traditional GA, some infeasible individuals would be directly
discarded when comparing two individuals in selection. However,
for a number of optimization problems in real world, some infea-
sible individuals may be helpful to effectively find non-dominated
individuals since they are located in neighboring areas of feasible
individuals. For this reason, we design a local search scheme in
which neighboring areas of infeasible individuals is to be searched
further with the aim of increasing the diversity of the individu-
als. In particular, this local search procedure works by generating
a temporary subset (denoted by TS) of individuals with a modified
mutation method in differential evolution. Individuals located in
the TS, whose size LS is an assigned value, are considered as “firm
candidates”. Each one of these firm candidate individuals (xi) is
included in the ES (an external set of individuals) by using Pareto-
dominance relations (Gil, Márquez, Baños, Montoya, & Gómez,
2007). The local search procedure is described as follows:

Step 1. Select a random individual xj from ES, and compute the
similarity degree between xi = (xi1,xi2,. . .,xin) and xj = (xj1,xj2,. . .,xjn),
according to the following formula:

Sd(xi, xj) = 1 −
∑n

k=1xik ⊕ xjk

n
(10)

where ⊕ is an exclusive or operator. If xik is very close to xjk (i.e.,
the absolute difference between xik and xjk is less than a prescribed
number �), then the result of performing the operator is 0. Other-
wise, its result is 1.

Step 2. If Sd > ı (ı is a prescribed number), then go to step 3.
Otherwise, go to step 1.

Step 3. Performing the modified mutation to generate better
solutions.

xnew
ik = xik + F(xik − xjk) (11)

where F is dynamic mutation parameter. Generate LS random num-
bers F, then get a subset TS = (x1

i
, x2

i
, . . . , xLS

i
) according to Eq. (11).

Step 4. If xt
i

≺ xj using their feature vectors, t ∈ (1,2,. . .,LS), then
replace xj by xt

i
. Otherwise, if xt

i
is better than any solution in ES by

using their feature vectors, then replace the dominated individual

with xt
i
. Otherwise, if xt

i
is better than any solution in CPop using

their feature vectors, then replace the dominated individual with
xt

i
.

3.3. Summary of the IGA

In our study, we incorporate the discrete crossover and Gaus-
sian mutation (Sarker, Liang, & Newton, 2002) into the IGA. The
proposed algorithm is described as follows:

Step 1. Form an initial population of q individuals randomly. The
size of external set, ES, is arbitrary.
Step 2. Collect non-dominated individuals into ES from the popu-
lation.
Step 3. Select � individuals from the current population randomly.
Perform Gaussian mutation and discrete crossover to generate
� × � new individuals.
Step 4. Perform selection operator for new individuals. Select an
individual into ES, and perform the local search process if another
compared individual is infeasible.
Step 5. Execute repeatedly step 3 and step 4 until getting n indi-
viduals, and then replace old population.
Step 6. Go to step 2 if the termination criteria are not met.

In step 2, although the IGA collects a fixed number of non-
dominated solutions into ES, the size of the external storage is not
restricted. In step 3, we control the number of individuals from
the current population so as to decrease the computation time of
performing these operators (mutation and crossover). Hence the
total time to run IGA is under control. To search better individu-
als in selection process, we execute the local searching process in
neighboring area of infeasible individual in step 4.

In proposed algorithm, we adopt the real number representa-
tion instead of the binary string implementation normally found
in GAs. There have been a number of different schemes of real
coding so far (Zhou et al., 2003). For example, simulated binary
crossover (denoted by SBX), blend crossover (denoted by BLX),
unimodal normal distribution crossover (denoted by UNDX) and
simplex crossover (denoted by SPX).

4. Numerical experiment

Many engineering and chemical engineering problems are
presented in simple mathematical formulation. In the following
experiments, five benchmark optimization problems P1–P5 (Zhou,
Li, Wang, & Kang, 2003) and P6 (Costa & Oliveira, 2001) chosen
from the chemical engineering area will be applied to show the
way in which the proposed algorithm works, and those are all
high-dimensional optimization functions with multiple inequality
or equality constraints. These benchmark problems have been pre-
viously solved by applying a variety of other algorithms. The initial
population size, q, is set to 200, which is a common value found
in many GAs experiments. The maximum number of generations
is 2500. The size of TS is 30. The selected number of individuals
from the current population, �, is 20, and the ratio of offspring and
parents, �, is 2. Crossover rate is equal to 0.6. For each variable, the
mutation rate is 1/n, where n is the total number of variables.

Test P1 Min f (x) = 3x1 + 0.000001x3
1 + 2x2 + (0.000002/3)x3

2
s.t x4 − x3 + 0.55 ≥ 0, − x4 + x3 + 0.55 ≥ 0,

103 sin(−x3 − 0.25) + 103 sin(−x4 − 0.25) + 894.8 − x1 = 0,
103 sin(x3 − 0.25) + 103 sin(x3 − x4 − 0.25) + 894.8 − x2 = 0,
103 sin(x4 − 0.25) + 103 sin(x4 − x3 − 0.25) + 1294.8 = 0,
0 ≤ xi ≤ 1200 (i = 1, 2), − 0.55 ≤ xi ≤ 0.55 (i = 3, 4).

Author's personal copy

K.-Z. Tang et al. / Computers and Chemical Engineering 35 (2011) 615–621 619

Test P2 Min f (x) = ex1x2x3x4x5

s.t

5∑
i=1

x2
i

− 10 = 0, x2x3 − 5x4x5 = 0, x3
1 + x3

2 + 1 = 0,

−2.3 ≤ xi ≤ 2.3 (i = 1, 2), − 3.2 ≤ xi ≤ 3.2 (i = 3, 4, 5).

Test P3 Min f (x) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2 + 10x6

5 + 7x2
6 + x4

7 − 4x6x7 − 10x6 − 8x7

s.t 127 − 2x2
1 − 3x4

2 − x3 − 4x2
4 − 5x5 ≥ 0, 282 − 7x1 − 3x2 − 10x2

3 − x4 + x5 ≥ 0,

196 − 23x1 − x2
2 − 6x2

6 + 8x7 ≥ 0, − 4x2
1 − x2

2 + 3x1x2 − 2x2
3 − 5x6 + 11x7 ≥ 0,

−10.0 ≤ xi ≤ 10.0 (i = 1, 2, . . . , 7).

Test P4 Min f (x) = x1 + x2 + x3
s.t −1 + 0.0025(x4 + x6) ≤ 0, − 1 + 0.0025(x5 + x7 − x4) ≤ 0,

−1 + 0.01(x8 − x5) ≤ 0, − x1x6 + 833.33252x4 + 100x1 − 83333.333 ≤ 0,

−x2x7 + 1250x5 + x2x4 − 1250x4 ≤ 0, − x3x8 + 1250000 + x3x5 − 2500x5 ≤ 0,

100 ≤ x1 ≤ 104, 103 ≤ xi ≤ 104 (i = 2, 3), 10 ≤ xi ≤ 103 (i = 4, 5, . . . , 8).

Test P5 Min f (x) = x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2 + 2(x6 − 1)2+
+5x2

7 + 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45
s.t 105 − 4x1 − 5x2 + 3x7 − 9x8 ≥ 0, − 10x1 + 8x2 + 17x7 − 2x8 ≥ 0,

−3(x1 − 2)2 − 4(x2 − 3)2 − 2x2
3 + 7x4 + 120 ≥ 0, − x2

1 − 2(x2 − 2)2 + 2x1x2 − 14x5 + 6x6 ≥ 0,

3x1 − 6x2 − 12(x9 − 8)2 + 7x10 ≥ 0, − 0.5(x1 − 8)2 − 2(x2 − 4)2 − 3x2
5 + x6 + 30 ≥ 0.

−10.0 ≤ xi ≤ 10.0 (i = 1, 2, . . . , 10).

Test P6 Min f (x) = (x1 − 1)2 + (x2 − 1)2 + (x3 − 3)2 + (x4 − 1)2 + (x5 − 1)2 + (x6 − 1)2 − In(x7 + 1)
s.t x1 + x2 + x3 + x4 + x5 + x6 − 5 ≤ 0, x2

1 + x2
2 + x2

3 + x2
6 − 5.5 ≤ 0, x1 + x4 − 1.2 ≤ 0,

x2 + x5 − 1.8 ≤ 0, x3 + x6 − 2.5 ≤ 0, x1 + x7 − 1.2 ≤ 0, x2
2 + x2

5 − 1.64 ≤ 0, x2
3 + x2

6 − 4.25 ≤ 0,

x2
3 + x2

5 − 4.64 ≤ 0, xi ≥ 0 (i = 1, 2, 3), xi ∈ {0, 1} (i = 4, 5, 6, 7).

To evaluate the performance of the IGA, we compare IGA
with other three kinds of algorithms. These algorithms are Pareto
strength evolutionary algorithm (Zhou et al., 2003), stochastic
ranking algorithm (Runarason & Yao, 2000) and homomorphous
mapping method (Koziel & Michalewicz, 1999), respectively. Those
are denoted by ZW, RY and KM, respectively. Each problem is exe-
cuted 20 times, and the number of iteration is 1000 each time. We
calculate the best solution, worst solution and mean solution by
means of having a statistical computation for each running of the
IGA and other algorithms. The experimental results obtained by
other algorithms are provided in the literature (Zhou et al., 2003).
Simulations are performed in MATLAB 7.0 with a 2 GHz Pentium
Pc. The experimental results are given in Tables 1–3.

Table 1 shows the available optimal solutions and corresponding
global minimum for all test problems. Table 2 shows the com-
parison of the test results between the IGA and the known three
algorithms. The results indicate that IGA reports a slight improve-
ment of the precision in localizing the global solution with a similar
reliability, but presents a higher probability to get the best solution

with a reduced number of trials. For problems P2, P4, P5, and P6, we
can see that best solutions obtained by IGA are better than other
three algorithms since those solutions are much close to the true
optimal solutions. For problems P1, and P3, our algorithm finds a

similar solution to ZW in terms of all three criteria: the best, mean,
and worst results. Both algorithms performed well. The simulation
results with P1 show that no feasible solutions are obtained at the
end of the iterations using the KM. Note that the IGA can find the
best solution with P4 for 18 times. We can observe a very robust
behavior of the proposed algorithm with P4. Simulation results with
other test problems also show that the proposed algorithm is very
effective.

To examine the efficiency of the IGA further, we execute the IGA
and other three algorithms for 100 runs, respectively. At each run,
if the feasible solution x satisfies that |f(x) − f*| < 1E-3 (f* represents
the global minimum), then simulation is considered as success-
ful. Simulation results by using different algorithms for five test
problems are shown in Table 3, where Sr represents the successful
rate, and time and number of iterations are the average value of
finding optimal solution and corresponding number of iterations,
respectively.

Table 1
The available global optimal solutions and corresponding global minimum with all test problems.

Design variables Optimal solution

P1 P2 P3 P4 P5 P6

x1 679.9453 −1.717143 2.330499 579.3167 2.171996 0.2
x2 1026.067 1.595709 1.951372 1359.943 2.363683 1.280624
x3 0.1188764 1.827247 −0.477541 5110.071 8.773926 1.954483
x4 −0.396234 −0.763641 4.365726 182.0174 5.095984 1
x5 − −0.763645 −0.624487 295.5985 0.9906548 0
x6 – – 1.038131 217.9799 1.430574 0
x7 – – 1.594227 286.4162 1.321644 1
x8 – – – 395.5979 9.828726 –
x9 – – – – 8.280092 –
x10 – – – – 8.375927 –
Global minimum 5126.4981 0.0539498 680.63006 7049.3307 24.306209 3.557463

Author's personal copy

620 K.-Z. Tang et al. / Computers and Chemical Engineering 35 (2011) 615–621

Table 2
The comparison among IGA, ZW, RY and KM (20 independent runs).

Test problem Method Best solution Best error (%) Mean solution Mean error (%) Worst solution Worst error (%)

P1 IGA 5126.498272 0.00000 5126.528315 0.00059 5127.159164 0.01290
ZW 5126.59811 0.00195 5126.52654 0.00055 5127.15641 0.01284
RY 5126.497 0.00002 5128.881 0.04648 5142.472 0.31159
KM – – – – –

P2 IGA 0.053949816 0.00003 0.053950126 0.00060 0.053952358 0.00474
ZW 0.053949831 0.00006 0.053950257 0.00085 0.053972292 0.04169
RY 0.053957 0.01335 0.057006 5.66490 0.216915 302.06822
KM 0.054 0.09305 0.064 18.62880 0.557 932.44127

P3 IGA 680.6301361 0.00001 680.6302536 0.00003 680.6304037 0.00005
ZW 680.6300573 0.00000 680.6300573 0.00000 680.6300573 0.00000
RY 680.630 0.00001 680.656 0.00381 680.763 0.01953
KM 680.91 0.04113 681.16 0.07786 683.18 0.37464

P4 IGA 7049.3307150 0.00000 7049.3307510 0.00000 7049.3310130 0.00000
ZW 7049.2480205 0.00117 7051.2874292 0.02776 7058.2353585 0.12632
RY 7054.316 0.07072 7559.192 7.23276 8835.665 25.34048
KM 7147.9 1.39828 8163.6 15.80674 9659.3 37.02436

P5 IGA 24.30620913 0.00000 24.30620926 0.00000 24.30621013 0.00000
ZW 24.306209068 0.00000 24.325487652 0.07932 24.362999860 0.23365
RY 24.307 0.00325 24.374 0.27890 24.642 1.38150
KM 24.620 1.29099 24.826 2.13851 25.069 3.13826

P6 IGA 3.557471 0.00022 3.643247 2.41138 3.731238 4.88480
ZW 3.559345 0.05290 4.245433 19.33878 4.632134 30.20891
RY 3.762318 5.75845 4.678341 31.50779 5.198211 46.12129
KM 3.912343 9.97565 5.012315 40.89577 6.783529 90.68446

Of the six test problems, there are three successful rates of the
IGA, which is larger (P4, P5 and P6) than those of the proposed algo-
rithm (especially in P4), and only one (P3) is equal to that of ZW.
The successful rate of the proposed algorithm is a little smaller than
that of ZW in tests P1 and P2. Although the IGA does not outperform
the ZW with P1 and P2 in terms of Sr, both algorithms is very close
in terms of running time, and IGA is much superior to the other
two algorithms, i.e., RY and KM. Note that the successful rates of
six test problems are all above 80% using IGA, and obtained opti-
mal solutions are all very close to the real optimal solutions. From
Table 3, it can be seen that the IGA significantly outperforms the
other two algorithms (RY and KM) with six test problems from the
viewpoints of the Sr, time and f*.

The number of iteration to find optimal solution indicates com-
putational efficiency for an evolutionary optimization technique.
This metric is normally adopted in evolutionary computation since
the number of iteration is independent of the hardware used for
the experiments. Furthermore, from Table 3, it also could be seen
that the IGA is able to reach all global optima of the six test func-
tions during the less number of iterations, whereas the other three
algorithms may not be able to reach them.

5. Discussion of results

Since the IGA is a stochastic algorithm based on population, that
is, each separate run of the IGA could result in a different result. It is
desired to know the performance of stability one may obtain if the
IGA is adopted in engineering and chemical engineering area. To
some extent, it is directly relating to the quality of worst solution.
We conduct the worst-case analysis by comparing the worst solu-
tion and optimum solution. Table 2 summarizes the experimental
results we obtained after 20 independent runs. For P4 and P5, worst
error is 0, which means our algorithm was capable of finding bet-
ter solutions than other algorithms. For P3, worst error is 0.00005
which is very approximate to 0, which mean the stability of obtain-
ing best solution is also very good. For P1, P2, and P6, their worst
errors are 0.01290, 0.00474 and 4.88480, respectively. In compar-
ison with the results obtained by other algorithms, these results
obtained by our approach are significantly better for all problems.

The analysis from the worst solution is very useful when the user
requests a guarantee for the quality of the optimum solution.

There are a few things about our approach that deserve to be
mentioned. Firstly, we have empirically shown the feasibility of
using the feature vector to compare individuals. The feature vec-
tor of individual plays an important role in our approach, since
it is responsible for selecting better individual between differ-
ent individuals. When comparing two vectors, we can have four
possible situations. During these situations, some individuals are
selected according to the Pareto partial order. These individu-
als can be either infeasible or dominated. Our approach tries to

Table 3
The comparison among IGA, ZW, RY and KM (100 independent runs).

Test
problem

Method Sr (%) Time (s) f* Number of
iterations

P1 IGA 80 40.62 5126.49821 318
ZW 100 45.35 5126.49813 876
RY 30 60.78 5127.52751 1213
KM – – – –

P2 IGA 83 31.04 0.0539501 603
ZW 95 29.26 0.0539498 1232
RY 60 40.65 0.0053956 1550
KM 57 35.27 0.0541862 1479

P3 IGA 95 43.35 680.6300573 703
ZW 95 40.51 680.6300573 910
RY 80 50.63 680.6300913 1078
KM 20 45.36 683.108472 1802

P4 IGA 100 35.26 7049.3307 701
ZW 46 39.48 7049.3648 1323
RY 15 41.62 7159.4294 1832
KM 26 40.14 7084.9617 2312

P5 IGA 100 50.89 24.3062091 523
ZW 98 56.24 24.3062091 1283
RY 90 64.61 24.3062091 1658
KM 51 60.78 24.3068061 1753

P6 IGA 100 45.34 3.557471 504
ZW 85 50.32 3.559345 1123
RY 70 57.36 3.762318 1453
KM 50 58.21 3.912343 2097

Author's personal copy

K.-Z. Tang et al. / Computers and Chemical Engineering 35 (2011) 615–621 621

find non-dominated individuals and choosing those with a lower
accumulation of constraint violation. It is worth emphasizing that
traditional evolutionary optimization techniques normally cannot
be used directly to handle constraints because their emphasis is to
drive the GAs towards the feasible region, but not necessarily to the
global optimum.

A significant difference of our approach with respect to other
algorithms (ZW, RY and KM) is the way in which a local search
process is performed at the neighboring areas of infeasible individ-
uals. The reason for this is to avoid that our algorithm stagnates and
prematurely converges to a local optimum. This mechanism is thus
responsible for keeping the diversity required in the population to
move the search towards the global optimum of the problem.

Further, throughout our study, the IGA is faster for several of the
test problems, but for other cases the ZW is faster. It is important to
emphasize that the performance of any evolutionary algorithm for
constrained optimization is determined by the constraint-handling
technique used, as well as the natures of problems. This implies that
the any evolutionary algorithm has not absolutely superiority over
other methods. Further work is needed to understand that how
the natures of problems exert influence on different constraint-
handling technique used in terms of starting population, inequality
constraints and equality constraints, crossover rate and mutation
rate.

In summary, the proposed approach performed well in different
NLP test problems both in terms of the quality of the solutions found
and in terms of the successful rate. IGA has higher efficiency in solv-
ing NLP problems for reaching the near-optimal solutions with less
error. It shows that our approach has a significant universality to
some extent. In addition, it is also noted that the stability of any
algorithm depends on the parameter selection to some extent. Cur-
rently the parameters can only be chosen heuristically, and more
study is needed to investigate on this problem.

6. Conclusion

In this paper, an improved genetic algorithm based on a
novel selection scheme was introduced for nonlinear program-
ming problems. In selection process, each individual is represented
as a three-dimensional feature vector. The proposed algorithm
improves the selection strategy of individuals. We can distin-
guish excellent individuals through two indices according to Pareto
partial order. On the other hand, a new local search process is
embedded in selection process with the aim to improve the quality
of the solutions further. The performance of this new algorithm
has been compared with three well-known algorithms on five
single-objective benchmark problems. In most cases, the proposed
algorithm outperforms other approaches reported in the literature
in terms of a set of metrics.

For future work, we intend to examine the proposed algorithm
and improve its performance for single-objective optimization
problems and other combinatorial optimization problem. In addi-
tion, we are interested in the hybridation of IGA and other heuristic
population-based search method such as particle warm opti-
mization, ant colony optimization, and simulated annealing. The
combination of the IGA and other heuristic method should offer
the advantages of mutual optimization methods while offsetting
their disadvantages.

Acknowledgement

This paper is supported by the National Natural Science Foun-
dation of China (Nos. 60803049 and 60472060).

References

Courant, R. (1962). Calculus of variations and supplementary notes and exercises. Sup-
plementary notes by Kruskal, M. and Rubin, R., revised and amended by Moser,
J. New York: New York University.

Fiacco, A. V., & McCormick, G. P. (1968). Nonlinear programming: sequential uncon-
strained minimization technique. New York: John Wiley and Sons.

Gupta, R. K., Bhunia, A. K., & Roy, D. (2009). A GA based penalty function technique
for solving constrained redundancy allocation problem of series system with
interval valued reliability of components. Journal of Computational and Applied
Mathematics, 232, 275–284.

Shahpar, A. H., Aashtiani, H. Z., & Babazadeh, A. (2008). Dynamic penalty function
method for the side constrained traffic assignment problem. Applied Mathemat-
ics and Computation, 206, 332–345.

Sarker, R., & Newton, C. (2002). A genetic algorithm for solving economic
lot size scheduling problem. Computers and Industrial Engineering, 42,
189–198.

Coello, C. A. C. (2000). Use of a self-adaptive penalty approach for engineering opti-
mization problems. Computers in Industry, 41, 113–127.

He, Q., & Wang, L. (2007). An effective co-evolutionary particle swarm optimiza-
tion for constrained engineering design problems. Engineering Applications of
Artificial Intelligence, 20, 89–99.

Jiménez, F., & Verdegay, J. L. (1999). Evolutionary techniques for constrained opti-
mization problems. In Seventh European congress on intelligent techniques and
soft computing (EUFIT’99). Berlin: Springer.

Coello, C. A. C., & Montes, E. M. (2002). Constraint-handling in genetic algorithms
through the use of dominance-based tournament selection. Advanced Engineer-
ing Informatics, 16, 193–203.

Chootinan, P., & Chen, A. (2006). Constraint handling in genetic algorithms
using a gradient-based repair method. Computers and Operations Research, 33,
2263–2281.

Sundaram, A., & Venkatasubramanian, V. (1998). Parametric sensitivity and
search-space characterization studies of genetic algorithms for computer-aided
polymer design. Journal of chemical Information and Computer Science, 38,
1177–1191.

Carrillo-Ureta, G. E., Roberts, P. D., & Becerra, V. M. (2001). Genetic algorithms for
optimal control of beer fermentation. In Proceedings of the 2001 IEEE international
symposium on intelligent control (pp. 391–396).

Li, Y., Ida, K., & Gen, M. (1997). Improved genetic algorithm for solving multiobjec-
tive solid transportation problem with fuzzy numbers. Computers and Industrial
Engineering, 33, 589–592.

Park, B. J., Choi, H. R., & Kim, H. S. (2003). A hybrid genetic algorithm for
the job shop scheduling problems. Computers and Industrial Engineering, 45,
597–613.

Zhou, Y. R., Li, Y. X., Wang, Y., & Kang, L. S. (2003). A Pareto strength evolution-
ary algorithm for constrained optimization. Journal of Software (in china), 14,
1243–1249.

Runarason, T., & Yao, X. (2000). Stochastic ranking for constrained evo-
lutionary optimization. IEEE Transactions on Evolutionary Computation, 4,
284–294.

Koziel, S., & Michalewicz, Z. (1999). Evolutionary algorithms, homomorphous map-
pings, and constrained parameter optimization. Evolutionary Computation, 7,
19–44.

Holland, J. (1975). Adaptation in natural and artificial systems. Ann Arbor: The Uni-
versity of Michigan Press.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learn-
ing, reading. Massachusetts: Addison-Wesley.

Gil, G., Márquez, A., Baños, R., Montoya, M. G., & Gómez, J. (2007). A hybrid method
for solving multi-objective global optimization problem. Journal of Global Opti-
mization, 38, 265–281.

Sarker, R., Liang, K. H., & Newton, C. (2002). A new multiobjective evolutionary
algorithm. European Journal of Operational Research, 140, 12–23.

Costa, L., & Oliveira, P. (2001). Evolutionary algorithms approach to the solution
of mixed integer non-linear programming problems. Computers and Chemical
Engineering, 25, 257–266.

