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A new chaotic Hopfield network with
piecewise linear activation function∗
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This paper presents a new chaotic Hopfield network with a piecewise linear activation function. The dynamic

of the network is studied by virtue of the bifurcation diagram, Lyapunov exponents spectrum and power spectrum.

Numerical simulations show that the network displays chaotic behaviours for some well selected parameters.
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1. Introduction

There is a lot of interest in studying the

chaotic activities in biological and artificial neu-

ral networks.[1−28] Guevara et al. found that de-

terministic mathematical models of neural systems

gave rise to complex chaotic dynamics.[1] Babloyantz

and Lourenco considered a model cortex comprising

two interconnected spatiotemporal chaotic networks,

which could discriminate among different patterns

presented as inputs.[2] Freeman studied the chaotic

activity in the olfactory cortex, and found that chaos

was essential for brain activity.[3,4] More and more ev-

idences show that chaos plays an important role for

information creation and storage in biological neural

networks. Therefore, researches of chaotic neural net-

works are significant for exploring the qualities of the

brain in information processing.

The Hopfield neural network is a simple recur-

rent network which can work as an efficient associa-

tive memory, and it can store certain memories in

a manner rather similar to the brain.[29,30] In fact,

the Hopfield network is a complex nonlinear dynamic

system and one can expect it to display chaotic be-

haviours. Recently, chaotic activities in artificial neu-

ral networks, especially in the Hopfield neural net-

work, have been studied in Refs. [5]–[17] to simulate

the chaotic behaviour of the brain. However, most of

these researches focus on the Hopfield networks with

hyperbolic tangent activation function.

This paper proposes a new chaotic Hopfield net-

work with a piecewise linear activation function. The

dynamic of the network is discussed by virtue of the

bifurcation diagram and Lyapunov exponents spec-

trum. It is shown that the proposed network exhibits

rich dynamics for different parameters, e.g. chaotic at-

tractors and quasi-periodical motions. The proposed

network displays some new double-scroll chaotic at-

tractors.

2. Network model

Consider a Hopfield neural network of the form

Ẋ = −X +Wφ(X), (1)

where X = [x1, x2, x3]
T ∈ R3 is the neuron state vec-

tor, φ(X) = [satlin(x1), satlin(x2), satlin(x3)]
T, the

piecewise linear activation function satlin(·) is defined
as

satlin(x) =


−1, if x ≤ −1,

x, if − 1 < x ≤ 1,

1, if x ≥ 1,

and synaptic weights matrix is defined as

W =


1.68 3.81 −2.23

−5.4 1.8 −4.4

−4.38 −2.2 a

 .

The parameter a varies from −0.6 to 0.2. Fig-

ure 1 illustrates the connection topology of the net-

work (1), which shows a full-connected structure. In

simulations, we find that network (1) exhibits chaotic
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behaviours for some well selected parameters a. It

should be mentioned that some chaotic Hopfield net-

works with a piecewise linear activation function are

proposed in Refs.[14]–[17]. The connection topology

or coupling strength of network (1) is apparently dif-

ferent from that of the networks in Refs. [14]–[17]. In

the following, the dynamic of network (1) is studied

by virtue of the bifurcation diagram, Lyapunov expo-

nents spectrum and power spectrum.

Fig. 1. Connection topology of network (1).

3. Bifurcation and chaotic be-

haviour

To explore the dynamics of network (1) further,

the corresponding bifurcation diagram of state x2 ver-

sus the parameter a is obtained as shown in Fig. 2,

the cross-section is defined as the plane x1 = 0. It

can be observed from Fig. 2 that, the network re-

sponse enters into chaos from quasi-periodical motion

Fig. 2. Bifurcation diagram of state x2 versus the param-

eter a.

nearly at a = −0.35, and the network response en-

ters into quasi-periodical motion from chaos nearly at

a = −0.27. Figure 3 shows the Lyapunov exponents

spectrum as a varying from −0.6 to 0.2 with step 0.01,

following the method listed in Ref. [8]. Usually, a pos-

itive maximum Lyapunov exponent is taken as an in-

dication that the system is chaotic.

Fig. 3. Lyapunov exponents spectrum of network (1).

As shown in Figs. 2 and 3, the bifurcation dia-

gram coincides well with the corresponding Lyapunov

exponents spectrum. Moreover, it can be observed

from Figs. 2 and 3 that network (1) displays a ro-

bust chaos, because there is no periodic window in

the chaotic region. Furthermore, the robust chaos in

Hopfield networks with hyperbolic tangent activation

function, which displays chaotic behaviours in a large

parameter space, has been observed in Ref. [13]. The

chaotic region of network (1) is much smaller than

that of the network in Ref. [13].

For a = −0.3, it can be verified that network (1)

has three equilibria, namely X1 = [0, 0, 0]T, X2 =

[−0.71, 0.71, 1.24]T, X3 = [0.71,−0.71,−1.24]T.

The Jacobian matrix of network (1) evaluated at

X1 is

J1 =


0.68 3.81 −2.23

−5.4 0.8 −4.4

−4.38 −2.2 −1.3

 .

It can be calculated that the eigenvalues of J1 are

λ1 = 1.83, λ2 = −0.83 + 1.45 i, λ3 = −0.83− 1.45 i,

where λ1 is a positive real number, λ2 and λ3 become

a pair of complex conjugate eigenvalues with negative

real parts, which implies that the equilibrium point

X1 is a saddle point. Similarly, it can be calculated

that X2 and X3 are also saddle points.

Figure 4 shows the phrase portrait of network (1)

with the initial state [−0.66,−0.059, 0.648]T for a =
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−0.3. It can be calculated that the Lyapunov expo-

nents are 0.17, −0.04, −0.56, which implies that the

network is chaotic. The calculated Lyapunov expo-

nent is not a rigorous method, so that it is necessary

to study the dynamic of network (1) by other methods,

such as the Poincare section and power spectrum.

To plot the Poincare section of network (1) with

a = −0.3, we define the cross-section plane as x1 = 0.

Figure 5 shows the Poincare section and power spec-

trum of network (1). As illustrated in Fig. 5(a), the

Poincare section is composed of a large number of

thick dots, and the chaotic attractor is almost sym-

metric with respect to the origin. The power spectrum

has a broad-band nature. This confirms that the mo-

tion displayed in Fig. 4 is indeed a chaotic attractor.

Fig. 4. Phrase portrait of the network with a = −0.3.

Fig. 5. The Poincare section and power spectrum of the network with a = −0.3. (a) Poincare section,

(b) Power spectrum of x2.

For a = −0.4, Fig. 6(a) shows the phrase portrait of network (1) with the initial state [0.745, 0.1927,

−0.4336]T. Figure 6(b) plots the power spectrum of x2. The power spectrum possesses several frequencies

which are very close to each other. Thus, the network is quasi-periodic, but the motion is very close to a

periodic orbit.

Fig. 6. The phrase portrait and power spectrum of the network with a = −0.4. (a) Phrase portrait, (b) Power

spectrum of x2.
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For a = −0.2, Fig. 7 plots the phrase portrait and the power spectrum of network (1) with the initial

state [0.666, 0.228,−0.606]T. As shown in Fig. 7(b), the power spectrum possesses several distinctly different

frequencies. Thus, the network is quasi-periodic when a = −0.2.

Fig. 7. The phrase portrait and power spectrum of the network with a = −0.2. (a) Phrase portrait, (b) Power

spectrum of x2.

In numerical simulations, we find that the net-

work dynamic exhibits sensitive dependence on the

connection strength. To illustrate this, Fig. 8 plots

the phrase portrait of network (1) with a = −0.28.

Figures 4 and 8 have the same initial state, angle of

Fig. 8. Phrase portrait of the network with a = −0.28.

view, initial time and final time. Although the pa-

rameter a is only slightly changed, but the network

dynamic changes apparently. Compared with the net-

work in Ref. [13], we find that the dynamic of network

(1) shows a more sensitive dependence on the connec-

tion strength.

4. Conclusion

In this paper, a new chaotic Hopfield network

with piecewise linear activation function is presented.

It is shown that the network displays rich dynam-

ics for different parameters, e.g. chaotic attrac-

tors and quasi-periodical motions. The network dy-

namic exhibits sensitive dependence on the connection

strength, and it exhibits chaotic behaviours for some

well selected parameters.
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