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a b s t r a c t

This paper presents a novel method for automatic scaling of the F layer from ionograms based on image
processing and analysis techniques. The proposed method converts ionospheric vertical sounding data to a
binary image. By extracting the F layer trace through segmentation of the F layer image, the ordinary and
extraordinary traces used to scale ionospheric parameters can be separated automatically. We applied the
method to ionograms recorded by the digital ionosonde developed at China Research Institute of Radiowave
Propagation inwhich the ordinary and extraordinary modes are recorded together. Tests were performed on
random ionograms with different qualities obtained at three ionospheric stations in different seasons and
time and comparison of the results with those scaled by the standard manual method was given. The
experiments show that the scaled parameters are valid and our method is feasible.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Since the ionospheric F layer varies with disturbances and plays
a major role in the reflection of radio waves, the condition of the F
layer has been one of the key issues concerned with the design
and operation of communication systems.

In the last three decades researchers have made many con-
tributions developing computer programs to automatically scale
vertical incidence ionograms, which principally include four steps:
reducing the noise, forming the trace, identifying the trace, and
scaling the parameters.

The ARTIST (Automatic Real-Time Ionogram Scaler with True-
height) approach was to adaptively threshold the ionogram to
remove background noise, reduce echoes to edgels corresponding
to the leading edge of the echo, string echoes into traces, identify
traces and determine their characteristics using information of
wave polarization based on hyperbolic curve fitting (Reinisch
and Huang, 1983; Reinisch et al., 2005; Galkin and Reinisch,
2008). The Autoscala method developed by Scotto (2001) adopted
a correlation-based curve fitting algorithm to identify and scale
F2 layer (Scotto and Pezzopane, 2002, 2008; Pezzopane and

Scotto, 2010), Es layer (Scotto and Pezzopane, 2007) and F1 layer
(Pezzopane and Scotto, 2008) traces of the ionograms without
polarization information. Fox and Blundell (1989) designed a

system relying on an ionosonde only able to record ordinary ray
echoes, by which a trace is formed using successive mathematical
extrapolations. The algorithm developed by Igi et al. (1993) did not
distinguish between ordinary and extraordinary mode compo-
nents and it was based on parabolic and hyperbolic curve fittings.
Tsai and Berkey (2000) developed a method according to the
concepts of fuzzy segmentation and connectedness. Ding et al.
(2007a,b) presented a method based on empirical orthogonal
function (EOF) analysis to automatically scale the F2 layer para-
meters. The algorithm developed by Liu et al. (2009) was based on
an IRI model in combination with the methods of fuzzy theory,
constraint extrapolations and ARTIST.

The current methods of ionogram automatic scaling are mainly
based on the mechanism of ionospheric echo signals, and try to
combine the empirical data and model through fitting and extra-
polation to identify each layer trace for scaling automatically,
and which may not be easily applied to different ionosondes at
different longitudes and latitudes in different seasons and time
directly. This paper presents a novel method for automatic scaling
of the F layer from ionograms based on image processing and
analysis techniques (Fig. 1). The method converts the sounding
data recorded by an ionosonde to a gray-level image and reduces
the impulse noise through image preprocessing and binarization.
By segmentation of the F layer image with the removal of the
F layer multiple reflections according to the characteristics of
ionospheric structure, the F layer trace can be extracted by image
skeletonization and mathematical morphology. Then the F layer
parameters are scaled automatically based on the least square
polynomial fitting and image projection. This method can implement
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automatic scaling for ionograms recorded by different digital
ionosondes without historical or empirical data and model and
can separate the ordinary and extraordinary traces without polar-
ization information. In this paper tests were performed on random
ionograms with different qualities obtained at three different
ionospheric stations in different seasons and time by the digital
ionosondes developed at China Research Institute of Radiowave
Propagation and comparison of the results with those obtained by
the standard manual method was given.

2. Converting the sounding data to a binary image

2.1. Converting the sounding data to a gray-level image

The sounding data consists of a set of m vectors of n dimensions
that can be converted to a matrix A of m rows and n columns
according to the sounding mechanism. The matrix A can be trans-
formed into a gray-level image with a size of m�n, where the
abscissa (horizontal direction x) represents frequency f (MHz), and
the ordinate (vertical direction y) represents virtual height h′ (km),
whose number is defined by the following formulas:

f ¼ n� f stepþ f start ðMHzÞ ð1Þ

h′¼m� hstep ðkmÞ ð2Þ
where fstep is the frequency step of the sounding and the frequency
starts from fstart, while hstep is the height resolution at which the
sounding has been recorded. The gray-level value of each pixel
represents the echo amplitude received by the ionosonde, and the
higher the value, the stronger the echo amplitude received by the
ionosonde.

The gray-level image converted from the data received by the
digital ionosonde we used in this paper is of size 320�640 with
the intensity value of each pixel in the range [0, 255], and fstart is 1,
hstep is 2.5 while fstep is adjustable such as 0.025 and 0.03.

2.2. Image preprocessing and binarization

In order to extract each layer trace of an ionogram for automatic
scaling, image processing techniques were applied to remove noise
from the gray-level ionograms which contain the echo signals as well

as the impulse noise caused by the ionosonde or electromagnetic
interference. Usually, the amplitude of echo signals is higher than that
of the impulse noise. To eliminate the impulse noise, the smoothing
spatial filtering on ionograms followed by a threshold was adopted in
our method. Specifically, we used the morphological closing operation
(Gonzalez and Woods, 2008, Chapter 9) to smooth sections of the
trace contours while repairing the small discontinuities in traces and
the max filter (Gonzalez and Woods, 2008, Chapter 3) to enhance the
traces while suppressing the noise, and then applied the OTSU (Otsu,
1979) adaptive threshold method to eliminate the noise yielding the
binary ionogram.

Fig. 1. The method proposed in this paper to scale F layer from ionograms automatically.
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Fig. 2. (a) Gray-level image of ionogram recorded on 1st February 2010 at 11:30 am
local time by the ionosonde installed at Xinxiang station. (b) The binary image of
the ionogram (a).
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Fig. 2 is an example of the experimental results. It can be
shown that the proposed techniques of image preprocessing and
binarization did improve the image quality of ionogram signifi-
cantly without computational complexity, while the key informa-
tion of the trace was kept and the noise was reduced.

3. Segmenting F layer image

3.1. Segmenting F region image

Generally the frequency band of valid ionospheric echo signals
does not occupy the entire frequency range of ionogram, as shown
in Fig. 2b, where the right part (high frequency region) is in fact
strong interference caused by the ionosonde we used due to the
limitation of this ionosonde, which cannot be removed by the
OTSU method. So it is important to remove the high frequency
region with strong interference by image segmentation to simplify
the subsequent computations in trace extraction and identification.
We used the image projection method to segment the F region
image, specifically, the vertical projection of the binary ionogram
means to sum the echo signals in each frequency channel forming

the integral curve, while the horizontal projection of the binary
ionogram means to sum the echo signals in each virtual height
forming the integral curve.

Considering that the ionospheric echo signals are usually con-
centrated and continuous but spaced with the high-frequency
strong interference echo signals, we combined the image projection
method and ionospheric structural characteristics to segment the
valid frequency region image from the ionogram binary image.
Fig. 3b shows the segmented valid frequency region image remov-
ing the high-frequency strong interference from the ionogram
binary image (Fig. 2b) according to its vertical projection (Fig. 3a).

Since there always exists an interval on the horizontal projec-
tion integral curve between the E region and the F region because
of the ionospheric E–F valley, we can further segment the F region.
In order to separate F region from E region especially Es layer
effectively, the highest row with minimal integral value of hor-
izontal projection between 150 km and 250 km, which means the
first interval below the F layer trace, will be chosen as the
segmenting position, and if there appears continuous zero integral
values a suitable higher row of the range will be chosen. From
Fig. 3c, it can be seen that the E–F valley of ionogram (Fig. 3b) with
interval ranged from 190 km to 247.5 km and 225 km was chosen
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Fig. 3. Segmenting the F region image from Fig. 2b. (a) The vertical projection integral curve of the ionogram binary image Fig. 2b, where the horizontal axis represents the
column of the ionogram binary image (frequency) and the vertical axis represents the sum of corresponding pixels (echo signals). (b) The segmented valid frequency region
image containing the E region image and the F region image of the ionogram according to (a). (c) The horizontal projection integral curve of the ionogram valid frequency
region image (b), where the horizontal axis represents the row of the ionogram valid frequency region image (virtual height) and the vertical axis represents the sum of
corresponding pixels (echo signals). (d) The segmented F region image containing F layer image and F layer multiple reflections of ionogram according to (c).
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as the segmenting position yielding the segmented F region image
(Fig. 3d).

3.2. Removing F layer multiple reflections

The F layer multiple reflections are usually incomplete second-
order reflections at the level of double altitudes (Figs. 3d and 4a),
and sometimes third-order reflections (Fig. 4b). These multiple
reflections are due to the “multiple bounces” of the signal between
the ionosphere and the Earth and do not represent additional
higher layers (Scotto and Pezzopane, 2008), which can mislead the
extraction of the F layer trace as well as the automatic scaling.
Because of the typical vertical asymptotical shape of the F2 trace,
the traces near the F layer critical frequency are usually very close
to the second-order reflections in the horizontal direction (Fig. 4a)
or even overlapped in the horizontal direction (Fig. 4b), preventing
the separation of the primary and multiple F layer traces.

However, the F layer trace and the trace of the F layer multiple
reflections are usually similar in the shape as well as the growing
trend on frequency, so that there must be such an inclined
direction along the growing trend to separate them optimally.
According to the morphological characteristics, the F layer trace
can be divided into two parts: the larger connected trace contain-
ing most of the F layer information called the main F layer trace
and the remaining trace called the trace near the F layer critical
frequency (Fig. 5c). Therefore, the inclined direction to remove
F layer multiple reflections in terms of the principle axis can be
determined by the diagonal of the minimum bounding rectangle
of the main trace.

The connected components labeling method (Samet and
Tamminen, 1988) was adopted to find the principle axis of the main
F layer trace based on the ionospheric structural characteristics.
Specifically, we used connected components labeling (Fig. 5a) to find
the maximum connected region in the range of the F layer and the
diagonal of the minimum bounding rectangle of the maximum
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Fig. 4. (a) Ionogram of the trace near the F layer critical frequency close to the second-order reflection in the horizontal direction recorded on 1st February 2010 at 11:00 am
local time by the ionosonde installed at Xinxiang station. (b) Ionogram of the trace near the F layer critical frequency overlapped with the second-order reflection in the
horizontal direction recorded on 18th February 2010 at 6:30 pm local time by the ionosonde installed at Xinxiang station.
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Fig. 5. Removing F layer multiple reflections from Fig. 4b. (a) 8-Connected components labeled F region image of ionogram Fig. 4b. (b) The principle axis (the inclined red
line) of the F layer main trace indicating the projection direction for image projection to remove the F layer multiple reflections. (c) F layer image containing F layer main
trace and the trace near F layer critical frequency. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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connected region to determine the principle axis (Fig. 5b). Then the F
region image can be projected along the principle axis direction to
identify the F layer trace and the trace of the F layer second-order
reflection according to the virtual height range and morphological
similarity. The first minimal integral value below the second-order
reflection along the projection direction was chosen to separate the
F layer trace from the trace of the F layer multiple reflections. As
shown in Fig. 5 the algorithm can eliminate the multiple reflections
from ionograms without any change of the F layer trace.

4. Extracting F layer ordinary trace skeleton

The separation of ordinary and extraordinary traces in the main
F layer trace is the key step for automatic scaling, especially for the
ionograms recorded by ionosondes in which the ordinary and
extraordinary modes are recorded together. Considering the fea-
tures of the F layer ordinary trace shown in Fig. 6a, we combined
image skeletonization (Zhang and Suen, 1984) with image analysis
techniques to extract the main F layer trace and the ordinary trace
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Fig. 6. Three standard F layer main trace configurations, where the ordinary trace always appears first and the ordinary and extraordinary traces interchange up and down
after junction points. (a) The segmented F layer main traces of ionograms from Xinxiang station recorded on 1st February 2010 at 11:30 am local time, 1st February 2010 at
11:00 am local time, and 18th February 2010 at 6:30 pm local time, from left to right. (b) The corresponding skeletons of (a). (c) The corresponding extracted ordinary trace
skeletons from (b).
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skeleton shown in Fig. 6b and c respectively. Specifically, we
detected the end points and junction points (Ji et al., 2010) of
the main F layer trace skeleton, and then scanned the skeleton
from left to right to identify and extract the ordinary trace skeleton
according to the following characteristics: (1) ordinary trace
appears first; (2) ordinary and extraordinary traces interchange
up and down after junction points.

The information we used to separate the ordinary and extra-
ordinary traces is the upper and lower structural relation of the
traces divided by their junction points, which makes it still valid if
the two components are dissimilar. But if unusual situation occurs,
such as the ordinary and extraordinary traces are parallel without
any junction point, the error of separation will be caused by this
method. And we will consider using the morphological character-
istics of the traces to recognize these unusual situations in the future.

5. F layer automatic scaling

foF1, h'F and h'F2 can be scaled from the extracted F layer
ordinary trace skeleton by fitting the least squares polynomial
model (Fig. 7).

foF2 and fxI can be scaled from the trace near the F layer critical
frequency of the ordinary and extraordinary waves by the image
projection method based on mathematical morphology (Gonzalez
and Woods, 2008, Chapter 9) and line detection according to the

typical vertical asymptotical shape of the F2 trace. We applied a
larger elongated structuring element to dilate and a smaller
elongated structuring element to erode sequentially on the trace
near the F layer critical frequency completing the disconnected
trace, and used the radon transform (Deans, 2007) to detect the
vertical asymptotical lines, then adopted the image projection to read
the parameters. If two vertical asymptotical lines are detected, they
will be identified as ordinary and extraordinary traces; but if only one
vertical asymptotical line is detected, the distance from this line to the
extracted F layer ordinary trace will be calculated to determine
whether it belongs to the ordinary trace or not.

The automatic scaling results of the F layer are shown in Fig. 8
and the scaled parameters are marked in blue horizontal and
vertical lines.

6. Comparison with the manual method and discussion

To test the performance of the proposed method, we randomly
selected a wide dataset of ionograms recorded by the digital
ionosondes installed at three ionospheric stations (Xinxiang, Xi'an
and Kunming) in different seasons and time listed below:

1. Subset A: 240 ionograms of Xinxiang station (35.267N,
113.934E) from 1st, 8th, 15th, 22nd, 30th April 2011 and 1st,
8th, 15th, 22nd, 31st October 2011.
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Fig. 7. The corresponding curve fitting results of the three standard F layer ordinary trace skeletons Fig. 6c.
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Fig. 8. F layer automatic scaling results with scaled parameters marked in blue horizontal and vertical lines. (a) A daytime ionogram from Xinxiang station at 11:30 am local
time on 1st February 2010. (b) A nighttime ionogram from Xinxiang station at 6:30 pm local time on 18th February 2010. (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this paper.)
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2. Subset B: 216 ionograms of Xi'an station from (34.13N,
108.827E) 1st, 15th, 30th August 2011, 1st, 15th, 30th November
2011 and 1st, 15th, 29th February 2012.

3. Subset C: 240 ionograms of Kunming station (25.637N,
103.718E) from 1st, 8th, 15th, 22nd, 31st March 2011 and 1st,
8th, 15th, 22nd, 31st December 2011.

These random datasets, including the ionograms in different
ionospheric conditions without any artificial selection or classifi-
cation for different qualities, are automatically scaled by our
method and manually scaled by an experienced operator. As the
performance measures foF2 and h'F that appear in most day- and
night-time ionograms are chosen to show the comparison as
follows.

6.1. Comparison in errors

From Figs. 9b and 10b it can be shown that the number of foF2
errors above 0.1 MHz and h'F errors above 10 km are quickly
reduced, which means that most of the errors are distributed in
the nearby of 0.1 MHz for foF2 and 10 km for h'F.

From Fig. 9a, it can be seen that the errors of foF2 always
appear temporally continuous, which may be caused by the
ionosonde or other constant interference. As for the comparison
of h'F from Fig. 10a, the lower part indicates the scaling errors of
our method in the daytime resulting from the skeleton and fitting
procedures as well as the discontinuity of the F layer trace.

Besides, the big discontinuity of the F layer trace, the appearance
of the Es blanketing as well as the Es layer multiple reflections can
result in big errors of the F layer parameters such as the error over
1 MHz for foF2 in Fig. 9b and the error over 50 km for h'F in
Fig. 10b.

6.2. Correct rates in different confidence levels

Different confidence levels (0Δ� 710Δ, Δ is the reading
accuracy, frequency is 0.1 MHz and height is 5 km) are used to
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foF2. (For interpretation of the references to color in this figure caption, the reader
is referred to the web version of this paper.)
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Table 1
Correct rate of foF2 in different confidence levels (Δ¼ 0:1 MHz).

Confidence level Correct Incorrect Correct rate (%)

0Δ 22 820 2.6
1Δ 338 504 40.1
2Δ 524 318 62.2
3Δ 591 251 70.2
4Δ 633 209 75.2
5Δ 679 163 80.6
6Δ 704 138 83.6
7Δ 720 122 85.5
8Δ 732 110 86.9
9Δ 737 105 87.5
10Δ 746 96 88.6
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evaluate the performance of our automatic scaling method in
comparison with the manual scaling method. Because empty
scaling results of parameters that the corresponding traces may
not present in the ionograms were not considered in this experi-
ment, the number of available ionograms (total 912) for foF2 and
h'F are 842 and 728 respectively.

In this work an acceptable value is considered to lie within
75Δ of the manual value. Such limits of acceptability were
adopted in line with the URSI limits of 75Δ (Pezzopane and
Scotto, 2005). The results in Tables 1 and 2 show that the correct
rate of foF2 and h'F within 75Δ is all over 80%, which are valid
and acceptable.

6.3. Discussion

The experimental results compared with the manual method
show that the method we proposed in this paper is feasible to scale
the F layer from ionograms automatically, but it needs further
improvement to replace an experienced manual scaler. The accuracy
of parameters (e.g. foF2) published from the other working automatic
procedures such as ARTIST (Galkin and Reinisch, 2008) and Autoscala
(Krasheninnikov et al., 2010) indicates a better scaling results. There
are two factors that may affect the accuracy of automatic scaling: the
datasets for test and the method. Although the empirical model can
perform well, it is hard to be applied in a new ionospheric station
directly as well as hard to “know” the specific situations that the
model did not consider, which is a goal of this research work. Further
efforts in this development might be directed toward the combina-
tion of image analysis and pattern recognition to “see” and “know”

various ionospheric layer traces from ionograms.
There exist some problems that may impact the automatic scaling

method presented in this paper: ionospheric disturbances causing
multiples and magnetoionic components to differ; sporadic E multi-
ples; spread-F; excessive interference and weak traces; poorly defined
F1–F2 discontinuity due to ill-defined F1 cusp. For the multiples, the
multiple relation of virtual heights and the similarity of the shape can
be used to separate them; the density of the echo signals may be
useful for identifying the spread F, then the edge detection technique
can be adopted to scale the parameters; as for the excessive
interference and weak or discontinuous traces, it may be useful to
refer to the scaling results of the ionograms before and after, which is
also adopted by the experienced manual scaler.

7. Conclusions

The long term goal of this work is a robust automated system for
identification, extraction, and scaling of ionospheric layers on iono-
grams from different ionosondes at different longitudes and latitudes
in different seasons and time. This paper is mainly concerned with

the automatic scaling of the F layer from ionograms recorded by the
digital ionosondes developed at China Research Institute of Radio-
wave Propagation. Special emphasis was placed on scaling the
ionospheric F layer automatically without any empirical data or
model and polarization information. Tests were performed compar-
ing with the manual method and the obtained results were rather
encouraging, which indicate that our method is feasible and will be
used to develop a robust automated scaling system. Automatic
scaling of the E layer from ionograms and applications to a wider
range of ionograms containing specific disturbed ionospheric condi-
tions will be our future work.
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