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Abstract: This study deals with the problem of adaptive control for a class of non-linear systems with parameterisable time-
varying actuator failures. An adaptive output-feedback actuator failure compensation scheme is proposed based on the
backstepping technique and the Nussbaum gain approach. The assumption on the control gain signs is removed. The
boundedness of all the closed-loop signals and the asymptotic output tracking are guaranteed in spite of the unknown actuator
failures. Finally, an example is given to show the effectiveness of the proposed design method.
1 Introduction

Most of physical systems suffer from actuator failures. Many
efforts have been devoted to providing a theory for the control
of such systems. Numerous theoretical results about this topic
have been presented (see, e.g. [1, 2], and the references
therein). Generally speaking, the control methods can be
clarified into the following types: fault detection and
diagnosis-based designs [3, 4]; multiple-model designs
[5, 6]; linear matrix inequality technique [7–9]; adaptive
approach [10, 11]. Among these design methods, adaptive
mechanism [12–19] has been extensively employed, and
adaptive control has been an effective one for actuator
failure compensation. Recent research in this area was
reported in [2]. In [20], a novel attempt was made to
compensate for the actuator failures in linear time-invariant
systems by using adaptive state feedback. Then, in [21],
an adaptive output-feedback controller was synthesised.
The above two control schemes guarantee the closed-
loop stability and asymptotic state or output tracking.
Furthermore, non-linear systems with actuator failures were
investigated. In [22, 23], adaptive state feedback failure
compensation schemes were proposed for non-linear
systems in the parametric strict-feedback form. In [24, 25],
a class of output-feedback non-linear systems were
considered. Within the framework of adaptive backstepping
technique [14], output-feedback control designs were well
developed. In [26–28], the design idea in [24] was further
extended to a class of non-linear systems with uncertain
non-linearities. However, it is noted that, in the adaptive
compensation schemes proposed in [24–28], the signs of
control gains bn∗j, bg,j or bmb,j ( j ¼ 1, 2, . . . , m) were
required.

When these signs are unknown, adaptive actuator failure
compensation control becomes much more difficult.
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Therefore new compensation schemes are needed to cope
with completely unknown control gains. Actually, the
adaptive control problem with unknown gain signs has been
extensively investigated in the existing literature (see, e.g.
[29–39]). It is well known that the high-frequency gain has
played an important role in the conventional adaptive
control for linear systems [12, 13], and some results for
relaxing the assumption on the sign of the high-frequency
gain have been reported (see, e.g. [29, 30]). It has been
shown that if the high-frequency gain sign is unknown, the
problem of adaptive control is solvable if we utilise the so-
called Nussbaum gain approach. Nussbaum-type function
was first proposed in [29], and then it was exploited for
adaptive stabilisation of linear or non-linear systems. In the
adaptive backstepping control, Nussbaum gain approach is
also expensively used. In [33, 34], the parametric strict-
feedback systems with unknown constant or time-varying
virtual control coefficients were investigated, where two
important lemmas were developed to ensure the closed-loop
stability and Nussbaum gains were incorporated into the
adaptive control design. In [35–37], output-feedback
control schemes without requiring the information of
control gain signs or control directions were proposed for
output-feedback non-linear systems. More recently,
Nussbaum gain approach was also applied in adaptive
neural control in [38, 39]. However, to the best of authors’
knowledge, there is little work to use this method to deal
with unknown actuator failures and unknown control gain
signs simultaneously.

In this paper, we further address the problem of actuator
failure compensation of non-linear systems. The goal is to
remove the restrictive assumption on the sign of bn∗j. We
focus on a more general class of non-linear systems than
those studied in [24, 25], where some additional parametric
uncertainties are considered. Moreover, compared with
1859
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[24–27], a parameterisable time-varying actuator failure
model is investigated. The proposed controller with
Nussbaum gain can guarantee the boundedness of all the
signals in the closed-loop system. The output tracking error
is proven to tend to zero asymptotically. A simulation
example is provided to demonstrate the effectiveness of the
proposed control scheme.

The rest of the paper is organised as follows. After
introducing the class of the considered system in Section 2,
we establish a linearly parameterised model with actuator
failure information and present the adaptive controller
design in Section 3. Then, we give the stability analysis in
Section 4. In Section 5, an example with simulation is
presented to illustrate the effectiveness of the design
method. Finally, this paper is concluded by Section 6.

2 Problem formulation

Consider a class of non-linear systems in the following form

ẋi = xi+1 + w0,i(y) +
∑q

j=1

ajwj,i(y), i = 1, . . . , r− 1

ẋr = xr+1 + w0,r(y) +
∑q

j=1

ajwj,r(y) +
∑m

j=1

bn∗,jbj(y)uj

..

.

ẋn−1 = xn + w0,n−1(y) +
∑q

j=1

ajwj,n−1(y) +
∑m

j=1

b1,jbj(y)uj

ẋn = w0,n(y) +
∑q

j=1

ajwj,n(y) +
∑m

j=1

b0,jbj(y)uj

y = x1 (1)

where uj [ R, j ¼ 1, 2, . . . , m, are the control inputs whose
actuators may fail during operation; x ¼ [x1, x2, . . . ,
xn]T [ Rn is the state vector; y [ R is the system output; aj,
j ¼ 1, 2, . . . , q, br,j, r ¼ 0, 1, . . . , n∗ ¼ n 2 r, j ¼ 1, 2, . . . ,
m, are unknown constant parameters; the sign of control
gain bn∗ ,j is unknown, j ¼ 1, 2, . . . , m; w0,i( y), i ¼ 1,
2, . . . , n, wj,i( y), i ¼ 1, 2, . . . , n, j ¼ 1, 2, . . . , q, bj( y),
j ¼ 1, 2, . . . , m, are known smooth non-linear functions;
bj( y) = 0 for ∀y [ R. Only the output y is available for
measurement.

A time-varying actuator failure can be modelled as [20]

uj(t) = �uj + �dj(t), t ≥ tj, j [ {1, 2, . . . , m} (2)

where the failure value �uj, the failure time instant tj and the
failure index j are unknown; �dj(t) is given by

�dj(t) =
∑h

l=1

�djl fjl(t) (3)

for some unknown scalar constants �djl and known bounded
scalar signals fjl(t), j ¼ 1, 2, . . . , m, l ¼ 1, 2, . . . , h, h ≥ 1.

Suppose that pk actuators fail at a time instant tk, k ¼ 1,
2, . . . , q, t0 , t1 , t2 , s , tq , 1. That is, at time
t [ (tk,tk+1), k ¼ 0, 1, . . . , q, with tq+1 ¼ 1, there are
p =

∑k
i=1 pi failed actuators. Thus, the actuator failure
1860
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mode is

uj(t) =
�uj + �dj(t), j = j1, . . . , jp
nj(t), j = j1, . . . , jp

{
(4)

where nj(t), j ¼ 1, 2, . . . , m, are applied control signals
from a feedback control design. For the adaptive
compensation control scheme, we use the following
actuation scheme

nj(t) =
1

bj(y)
n0, j = 1, 2, . . . , m (5)

where n0 will be determined later.
The control task is that all the closed-loop signals remain

bounded, while the plant output y(t) asymptotically tracks a
prescribed signal yr(t) despite the presence of unknown
actuator failures, unknown plant parameters and unknown
control gain signs. The reference signal yr(t) and its first r
derivatives are known and bounded.

Remark 1: In the absence of actuator failures, system (1) is in
the output-feedback form with multiple inputs (see, [14,
pp. 327]). Here, it is worth pointing out that we can extend
the proposed design idea to the non-linear systems with
unknown virtual control coefficients considered in [33, 34].
Of course, for the actuator failure compensation problem,
the control input in [33, 34] should be linearly augmented.

The following assumptions are made for the plant (1) with
actuator failures:

Assumption 1: The plant (1) is such that for any up to m–1
actuator failures, the remaining actuators can still achieve a
desired control objective, when implemented with the
knowledge of the plant parameters and failure parameters.

Assumption 2: The polynomials
∑

j=j1, ... , jp
Bj(s) are stable,

∀{j1, . . . , jp} , {1, 2, . . . , m}, ∀p [ {0, 1, . . . , m 2 1},
where for each j ¼ 1, 2, . . . , m, Bj(s) is defined as

Bj(s) = bn∗ , js
n∗ + bn∗−1, js

n∗−1 + · · · + b1, js + b0, j (6)

Remark 2: Assumption 1 is common (see [20–28]).
Assumption 2 can be found in [24–28]. It is noted that the
assumption on control gain signs has been made in the
existing literature (see (A3) in [24], Assumption 3 in [25],
(A4) in [26], (A4) in [27] and Assumption 5 in [28],
respectively). However, in this paper, this assumption is not
needed. Moreover, the knowledge of sign[bn∗j] does not
appear in (5) and Assumption 2.

To deal with the unknown control gain signs, we introduce
the knowledge of Nussbaum-type gain. A smooth function
N(k): R 7! R is called Nussbaum-type gain if it has the
following properties [29]

lim
s�+1

sup
1

s

∫s

0

N (z)dz = +1

lim
s�+1

inf
1

s

∫s

0

N (z)dz = −1

For instance, k2cos(k), k2sin(k) and ek2

cos((p/2)k) belong to
this class of functions. In this paper, an even Nussbaum-type
function k2cos(k) is used.
IET Control Theory Appl., 2011, Vol. 5, Iss. 16, pp. 1859–1867
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3 Parameterised model with actuator failure
information and adaptive control design

Combining (1)–(5), we represent the plant (1) with p failed
actuators as

ẋi = xi+1 + w0,i(y) +
∑q

j=1

ajwj,i(y), i = 1, . . . , r− 1

ẋr = xr+1 + w0,r(y) +
∑q

j=1

ajwj,r(y) +
∑

j=j1,...,jp

bn∗,j�ujbj(y)

+
∑

j=j1,...,jp

bn∗,jbj(y)
∑h

l=1

�djl fjl(t) +
∑

j=j1,...,jp

bn∗ ,jn0

..

.

ẋn−1 = xn + w0,n−1(y) +
∑q

j=1

ajwj,n−1(y) +
∑

j=j1,...,jp

b1,j�ujbj(y)

+
∑

j=j1,...,jp

b1,jbj(y)
∑h

l=1

�djl fjl(t) +
∑

j=j1,...,jp

b1,jn0

ẋn = w0,n(y) +
∑q

j=1

ajwj,n(y) +
∑

j=j1,...,jp

b0,j�ujbj(y)

+
∑

j=j1,...,jp

b0,jbj(y)
∑h

l=1

�djlfjl(t) +
∑

j=j1,...,jp

b0,jn0

y = x1 (7)

For a linear parametric model with actuator failures, we define

k1,r =
∑

j=j1,...,jp

br,j, r = 0, 1, . . . , n∗ (8)

k2,rj =
br,j�uj, r = 0, 1, . . . , n∗, j = j1, . . . , jp
0, r = 0, 1, . . . , n∗, j = j1, . . . , jp

{
(9)

k3,rjl

=
br,j

�djl , r = 0, 1, . . . , n∗, j = j1, . . . , jp, l = 1, 2, . . . , h

0, r = 0, 1, . . . , n∗, j = j1, . . . , jp, l = 1, 2, . . . , h

{

(10)

Applying (8)–(10) to (7), we have

ẋi = xi+1 + w0,i(y) +
∑q

j=1

ajwj,i(y), i = 1, . . . , r− 1

ẋr = xr+1 + w0,r(y) +
∑q

j=1

ajwj,r(y) +
∑m

j=1

k2,n∗jbj(y)

+
∑m

j=1

∑h

l=1

k3,n∗jlbj(y)fjl(t) + k1,n∗n0

..

.
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ẋn−1 = xn + w0,n−1(y) +
∑q

j=1

ajwj,n−1(y) +
∑m

j=1

k2,1jbj(y)

+
∑m

j=1

∑h

l=1

k3,1jlbj(y)fjl(t) + k1,1n0

ẋn = w0,n(y) +
∑q

j=1

ajwj,n(y) +
∑m

j=1

k2,0jbj(y)

+
∑m

j=1

∑h

l=1

k3,0jlbj(y)fjl(t) + k1,0n0

y = x1 (11)

Define

a = [a1, a2, . . . , aq]T [ Rq (12)

k2,r = [k2,r1, k2,r2, . . . , k2,rm]T [ Rm (13)

k3,rj = [k3,rj1, k3,rj2, . . . , k3,rjh]T [ Rh (14)

k3,r = [kT
3,r1, kT

3,r2, . . . , kT
3,rm]T [ Rmh (15)

wi(y) = [w1,i(y), w2,i(y), . . . , wq,i(y)]T (16)

b(y) = [b1(y), b2(y), . . . , bm(y)]T (17)

fj(y, t) = [bj(y)fj1(t), bj(y)fj2(t), . . . , bj(y)fjh(t)]T (18)

f (y, t) = [f T
1 (y, t), f T

2 (y, t), . . . , f T
m (y, t)]T (19)

where r ¼ 0, 1, . . . , n∗, j ¼ 1, 2, . . . , m, i ¼ 1, 2, . . . , n.
Then, some terms on the right hand of (11) can be rewritten as

∑q

j=1

ajwj,i(y) = wT
i (y)a, i = 1, 2, . . . , n (20)

∑m

j=1

k2,rjbj(y) = bT(y)k2,r, r = 0, 1, . . . , n∗ (21)

∑m

j=1

∑h

l=1

k3,rjlbj(y)fjl(t) =
∑m

j=1

f T
j (y, t)k3,rj

= f T(y, t)k3,r, r = 0, 1, . . . , n∗

(22)

Substituting (20)–(22) into (11), we have

ẋi = xi+1 + w0,i(y) + wT
i (y)a, i = 1, . . . , r− 1

ẋr = xr+1 + w0,r(y) + wT
r (y)a + bT(y)k2,n∗

+ f T(y, t)k3,n∗ + k1,n∗n0

..

.

ẋn−1 = xn + w0,n−1(y) + wT
n−1(y)a + bT(y)k2,1

+ f T(y, t)k3,1 + k1,1n0

ẋn = w0,n(y) + wT
n (y)a + bT(y)k2,0 + f T(y, t)k3,0 + k1,0n0

y = x1 (23)
1861

& The Institution of Engineering and Technology 2011



www.ietdl.org
Furthermore, we can describe (23) as

ẋ = Ax + w0(y) +Fa(y)a +Fk2
(y)k2 +Fk3

(y, t)k3

+
0(r−1)×1

k1

[ ]
n0

y = eT
1 x (24)

where e1 denotes the first coordinate vector in Rn

x = [x1, x2, . . . , xn]T (25)

k1 = [k1,n∗ , k1,n∗−1, . . . , k1,0]T [ Rn∗+1 (26)

k2 = [kT
2,n∗ , kT

2,n∗−1, . . . , kT
2,0]T [ R(n∗+1)m (27)

k3 = [kT
3,n∗ , kT

3,n∗−1, . . . , kT
3,0]T [ R(n∗+1)mh (28)

w0(y) = [w0,1(y), w0,2(y), . . . , w0,n(y)]T (29)

Fa(y) = [w1(y), w2(y), . . . , wn(y)]T (30)

A =
0

..

. In−1

0 . . . 0

⎡
⎢⎣

⎤
⎥⎦ (31)

Fk2
(y) =

0(r−1)×[(n∗+1)m]

bT(y) 0 · · · 0
0 bT(y) · · · 0

. .
. . .

.

0 0 · · · bT(y)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(32)

Fk3
(y, t) =

0(r−1)×[(n∗+1)mh]

f T(y, t) 0 · · · 0
0 f T(y, t) · · · 0

. .
. . .

.

0 0 · · · f T(y, t)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(33)

where Fk2
(y) [ Rn×[(n∗+1)m], Fk3

(y, t) [ Rn×[(n∗+1)mh]. By
this, we define

u1 = [kT
2 , kT

3 , aT]T [ R(n∗+1)m(h+1)+q (34)

u = [kT
1 , uT

1 ]T [ R(n∗+1)[m(h+1)+1]+q (35)

F(y, t) = [Fk2
(y), Fk3

(y, t), Fa(y)] (36)

F(y, t, n0)T = 0(r−1)×(n∗+1)

In∗+1

[ ]
n0, F(y, t)

[ ]
(37)

Combining (24) and (34)–(37), we finally obtain a compact
form

ẋ = Ax + w0(y) +F(y, t)u1 +
0(r−1)×1

k1

[ ]
n0

= Ax + w0(y) + F(y, t, n0)Tu

y = eT
1 x (38)
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Remark 3: Here, we establish a linear parametric model (38).
The underlying idea for introducing this new model is that the
unknown plant parameters aj, j ¼ 1, 2, . . . , q, br, j, r = 0,
1, . . . , n∗, j ¼ 1, 2, . . . , m, and the actuator failure
parameters �uj, �djl, j ¼ 1, 2, . . . , m, l ¼ 1, 2, . . . , h, are
lumped together; that is, they are included in the parameter
u (see (35)), which will be estimated online. To achieve
this, a new parameter k3,rjl (see (10)) is defined as a result
of introducing the time-varying actuator failure model (see
(2)). Moreover, it should be emphasised that (23) or (38) is
very useful for the parameter estimations and adaptive
control design.

Remark 4: It is noted that the parametric model (38) is very
similar to (8.3) and (8.7) in [14]. However, unlike
Assumption (8.1) in [14], the sign of k1,n∗ is not always
known, which implies that the design procedure in [14] is
not applicable in this paper. This can be seen from the
following explanations. Clearly, the definition of k1,r,
r ¼ 0, 1, . . . , n∗, in this paper (see (8)) is different from
that in [24–28] where k1,r is defined as

k1,r =
∑

j=j1,...,jp

sign[bn∗,j]br,j, r = 0, 1, . . . , n∗ (39)

If sign[bn∗ ,j] is known, it follows from the above definition
(39) that k1,n∗ =

∑
j=j1,...,jp

|bn∗,j| . 0, that is, the sign of
k1,n∗ is known. Nevertheless, as mentioned in Remark 2, the
knowledge of sign[bn∗,j] has not been assumed. On the
other hand, it follows from (8) that k1,n∗ =

∑
j=j1,...,jp

bn∗,j,
from which we cannot draw any conclusions on the sign of
k1,n∗ . So, following the design steps in [14] is invalid.

Remark 5: Fortunately, the adaptive control problem for the
system considered in [14] (see, Chapter 8, [14]) which does
not require a prior knowledge of the control gain signs has
been successfully solved in [36]. Therefore we can follow
the same steps as those in [36] to design the controller.
Here, we only present the design procedure. For the
detailed deduction, please see [36].

We first present the filters design. The following K-filters
[14] is employed

j̇ = A0j+ ly + w0(y)

J̇ = A0J+F(y, t)

l̇ = A0l+ enn0

vj = Aj
0l, j = 0, 1, . . . , n∗

VT = [vn∗ , . . . , v0, J]

(40)

where l ¼ [l1, l2, . . . , ln]T is chosen such that A0 = A − leT
1 is

Hurwitz. Thus, x̂ = j+VTu is an observer for x and the
estimation error

1 = x − x̂ (41)

satisfies

1̇ = A01 (42)
IET Control Theory Appl., 2011, Vol. 5, Iss. 16, pp. 1859–1867
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Then, combining (38), (40) and (41) gives

ẏ = v0 + vTu+ 12

= k1,n∗vn∗,2 + v0 + �vTu+ 12 (43)

where

v = [vn∗,2, . . . , v0,2, F(1) +J(2)]
T (44)

�v = [0, vn∗−1,2, . . . , v0,2, F(1) +J(2)]
T (45)

v0 = w0,1(y) + j2 (46)

By this, adaptive control design is described as follows.

Step 1:

z1 = y − yr (47)

a1 = N (k)(c1z1 + d1z1 + v0 − ẏr + �vTû ) (48)

k̇ = gz1(c1z1 + d1z1 + v0 − ẏr + �vTû ) (49)

t1 = �vz1 (50)

where N(k) is Nussbaum gain; û is an estimate of u with the
estimation error ũ = u− û ; c1, d1 and g are positive
constants. ci, di, i ¼ 2, . . . , r, which will be used later, are
positive design parameters.

Step 2:

z2 = vn∗,2 − a1 (51)

t2 = t1 −
∂a1

∂y
vz2 + [z1z2, 0, . . . , 0]T (52)

a2 = −k̂1,n∗z1 − c2z2 − d2

∂a1

∂y

( )2

z2 + l2vn∗ ,1

+ ∂a1

∂y
(v0 + vTû )

+ ∂a1

∂j
(A0j+ ly + w0(y)) + ∂a1

∂J
(A0J+F(y, t))

+
∑2

j=1

∂a1

∂y(j−1)
r

y(j)
r

+
∑n∗+1

j=1

∂a1

∂lj

(−ljl1 + lj+1) + ∂a1

∂û
Gt2 +

∂a1

∂k
k̇ (53)

Step i ¼ 3, . . . , r

zi = vn∗,i − ai−1 (54)

ti = ti−1 −
∂ai−1

∂y
vzi (55)
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ai = −zi−1 − cizi − di

∂ai−1

∂y

( )2

zi + livn∗,1

+ ∂ai−1

∂y
(v0 + vTû )

+ ∂ai−1

∂j
(A0j+ ly + w0(y)) + ∂ai−1

∂J
(A0J+F(y, t))

+
∑i

j=1

∂ai−1

∂y(j−1)
r

y(j)
r +

∑n∗+i−1

j=1

∂ai−1

∂lj

(−ljl1 + lj+1)

+ ∂ai−1

∂û
Gti +

∂ai−1

∂k
k̇ −

∑i−1

j=2

∂aj−1

∂û
G
∂ai−1

∂y
vzj (56)

Finally, the actual control signal and parameter adaptive laws
are respectively designed as

n0 = ar − vn∗,r+1 (57)

˙̂
u = Gtr (58)

where G ¼ GT . 0 is the adaptive gain.

4 Stability analysis

To prepare for the stability analysis, a candidate Lyapunov
function for the closed-loop system is chosen as

V = 1

2
zTz + 1

2
ũ

T
G
−1ũ+

∑r
j=1

1

4dj

1
TP1 (59)

where P . 0 satisfies the Lyapunov equation
PA0 + AT

0 P = −I . Following the same line as that in [36],
we can obtain the time derivative of V as

V̇ ≤ g−1(k1,n∗N (k) + 1)k̇ −
∑r
j=1

cjz
2
j (60)

≤ g−1k1,n∗N (k)k̇ + g−1k̇ (61)

We are now at the position to establish the following theorem
on the stability of adaptive control system.

Theorem 1: The closed-loop adaptive system consisting of
the plant (1) under Assumptions 1 and 2, the control law
(5), (57), the parameter update laws (49), (58) and the
filters (40) has the properties that all the signals are
bounded, and the asymptotic output tracking is achieved:
limt�1( y(t) 2 yr(t)) ¼ 0.

Proof: For each time interval (tk, tk+1), k ¼ 0, 1, . . . , q, we
have a Lyapunov function V defined in (59). Starting from
the first time interval and integrating (61) on the interval
(t0, t), t [ [t0, t1), we obtain

∫t

t0

V̇ (t)dt ≤ g−1k1,n∗

∫t

t0

N (k(t))k̇(t)dt+ g−1

∫t

t0

k̇(t)dt

(62)
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Thus, we have

V (t) ≤ g−1k1,n∗

∫k(t)

k(t0)

N (u)du + g−1k(t) − g−1k(t0) + V (t0)

(63)

Since k(t) is a continuous function, k(t) is bounded on [t0, t1].
By this, it follows that V (t) is bounded on [t0, t1], which
further implies that z, û , 1 are all bounded on [t0, t1].
Moreover, from (6) and (8), we have

k1,n∗sn∗ + k1,n∗−1sn∗−1 + · · · + k1,1s + k1,0

=
∑

j=j1,...,jp

(bn∗ ,js
n∗ + bn∗−1,js

n∗−1 + · · · + b1,js + b0,j)

=
∑

j=j1,...,jp

Bj(s) (64)

This together with Assumption 2 implies that the polynomial
k1,n∗sn∗ + · · · + k1,1s + k1,0 is stable, which corresponds to
Assumption (8.2) in [14]. As a result, as discussed in [14],
the boundedness of all the closed-loop signals for
t [ [t0, t1) can be obtained.

Next, at time t ¼ t1, p1 actuator failures occur, which
results in the abrupt change of u. Since the change of
values of these parameters is finite and z, û , 1 are
continuous, it follows from (63) that

V (t+1 ) = V (t−1 ) + �V 1

≤ g−1k1,n∗

∫k(t−1 )

k(t0)

N (u)du + g−1k(t−1 )

− g−1k(t0) + V (t0) + �V 1 (65)

with a positive constant �V 1, which is similar to (62) in [26].
For all t [ (t1, t2), integrating (61) on the interval (t+1 , t) gives

∫t

t+
1

V̇ (t)dt ≤ g−1k1,n∗

∫t

t+
1

N (k(t))k̇(t)dt+ g−1

∫t

t+
1

k̇(t)dt

(66)

that is

V (t) ≤ g−1k1,n∗

∫k(t)

k(t+
1

)

N (u)du + g−1k(t) − g−1k(t+1 ) + V (t+1 )

(67)

Substituting (65) into (67) and using the continuity of k(t),
that is, k(t−1 ) = k(t+1 ), we have

V (t) ≤ g−1k1,n∗

∫k(t)

k(t+
1

)

N (u)du + g−1k(t) − g−1k(t+1 )

+ g−1k1,n∗

∫k(t−1 )

k(t0)

N (u)du + g−1k(t−1 )

− g−1k(t0) + V (t0) + �V 1
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= g−1k1,n∗

∫k(t)

k(t0)

N (u)du + g−1k(t)

− g−1k(t0) + V (t0) + �V 1 (68)

By repeating the same arguments as those on the first time
interval, we can prove the boundedness of all the signals
for the time interval (t1, t2).

Continuing in the same manner, we finally obtain

V (t) ≤ g−1k1,n∗

∫k(t)

k(t0)

N (u)du + g−1k(t) − g−1k(t0)

+ V (t0) +
∑q

i=1

�V i, t [ (tq, 1) (69)

with some positive constants �V k , k = 1, 2, . . . , q. On the last
time interval (tq,1), the boundedness of k(t) can be proved by
following the same way as that in [36]. In view of the finite
times of actuator failures, it can be obtained that V (t) is
bounded for ∀t ≥ t0, and so are all the closed-loop signals.

To prove the asymptotic output tracking, we consider the
last time interval (tq,1). From (60) together with the
boundedness of k(t), we have z1 [ L2. Furthermore, it
follows from the boundedness of all the closed-loop signals
that ż1 [ L1. So by using Barbalat’s lemma [12], we have
limt�1z1(t) ¼ limt�1( y(t) 2 yr(t)) ¼ 0. This completes the
proof. A

5 Simulation studies

To verify our results by simulation, we apply the control
scheme to a two-axis positioning stage system, which is
driven by two linear motors. Actually, this system has been
studied in [40, 41], and its mathematical model is described
as follows (see [41])

ẋ1 = x2 − a1x1

ẋ2 = qT(y)c + b0,1u1 + b0,2u2 + b0,3u3

y = x1 (70)

where

q(y)= [cos(2py/P), sin(2py/P), cos(6py/P), sin(6py/P)]T

c= [a2, a3, a4, a5]T (71)

x1 and x2 are the states; y represents the position of the inertia
load of the linear motor; u1, u2 and u3 are the voltage signals
to the driving motor, which are introduced as redundant
actuators for adaptive actuator failure compensation study;
ai, i ¼ 1, 2, 3, 4, 5, b0,i, i ¼ 1, 2, 3, are unknown
constants; P is the motor magnet’s pitch and P ¼ 60 mm.
For the simulation purpose, we consider two actuator failure
cases.

Case 1: No failures occur, that is

u1(t) = n1(t) = n0, t [ [0, 1)

u2(t) = n2(t) = n0, t [ [0, 1)

u3(t) = n3(t) = n0, t [ [0, 1)

(72)
IET Control Theory Appl., 2011, Vol. 5, Iss. 16, pp. 1859–1867
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The simulation parameters are as follows

a1 = 12, a2 = −1, a3 = 1, a4 = −1, a5 = 1,

b0,1 = 2, b0,2 = 3, b0,3 = 2

f11(t) = 0.02 cos(t), f21(t) = 0.02 sin(t), f31(t) = 0.01 sin(t)

l = [1, 1]T, c1 = d1 = 1, c2 = d2 = 5

g = 20, G = diag{10, 10, 5, 5, 5, 5, 1, 1, 1, 1, 1, 1}

x(0) = [0.1, −0.1]T, k(0) = 0

û (0) = diag{0, 0, 0, 0, 0, 0, 0, 3, −0.4, 0.4, −0.5, 0.5}

(73)

The simulation results are shown in Figs. 1 and 2 for yr ¼ 0.1
sin(0.5t) and Figs. 3 and 4 for yr ¼ 0.1, respectively.
Case 2: We consider the case where u2, u1 fail at the 20th
second and the 40th second, respectively, whereas u3 does

Fig. 1 Case 1: plant output y and reference signal
yr ¼ 0.1 sin(0.5t)

Fig. 2 Case 1: control inputs with yr ¼ 0.1 sin(0.5t)
IET Control Theory Appl., 2011, Vol. 5, Iss. 16, pp. 1859–1867
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not fail; that is

u1(t) =
n1(t), t [ [0, 40)

�u1 + �d11f11(t), t [ [40, 1)

{

u2(t) =
n2(t), t [ [0, 20)

�u2 + �d21f21(t), t [ [20, 1)

{

u3(t) = n3(t), t [ [0, 1)

(74)

Failure parameters are selected to be

�u1 = 2, �u2 = 1.5, �d11 = 2, �d21 = 2 (75)

and other parameters are same as those in Case 1. The
response curves are shown in Figs. 5 and 6 for
yr ¼ 0.1sin(0.5t) and Figs. 7 and 8 for yr ¼ 0.1, respectively.

When we apply the proposed adaptive controller in
Theorem 1 to system (70), the above figures show that the
closed-loop systems can be stabilised. Then, from this
example we conclude that the presented control scheme can
work effectively for non-linear systems with or without
failures in actuators. Furthermore, from Figs. 5 and 7, we
can see that the asymptotical tracking of non-linear system

Fig. 3 Case 1: plant output y and reference signal yr ¼ 0.1

Fig. 4 Case 1: control inputs with yr ¼ 0.1
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Fig. 6 Case 2: control inputs with yr ¼ 0.1 sin(0.5t)

Fig. 5 Case 2: plant output y and reference signal
yr ¼ 0.1 sin(0.5t)

Fig. 7 Case 2: plant output y and reference signal yr ¼ 0.1
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(70) with actuator failures (74) is achieved although output
tracking errors jump when the actuator failures occur.
Figs. 6 and 8 indicate the boundedness of control inputs
although they are large in the initial stage.

6 Conclusion

In this paper, an adaptive actuator failure compensation
scheme based on the backstepping method has been
proposed. A linearly parameterised model with unknown
system parameters and actuator failure parameters has been
established. The Nussbaum gain approach has been
exploited to relax the assumption on the control gain signs.
Simulations have been conducted to verify the effectiveness
of the proposed control algorithm.
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14 Kristić, M., Kanellakopoulos, I., Kokotović, P.V.: ‘Nonlinear and
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