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The belief rule-base inference methodology using evidential reasoning (RIMER) approach has been

proved to be an effective extension of traditional rule-based expert systems and a powerful tool for

representing more complicated causal relationships using different types of information with

uncertainties. With a predetermined structure of the initial belief rule-base (BRB), the RIMER approach

requires the assignment of some system parameters including rule weights, attribute weights, and

belief degrees using experts’ knowledge. Although some updating algorithms were proposed to solve

this problem, it is still difficult to find an optimal compact BRB. In this paper, a novel updating

algorithm is proposed based on iterative learning strategy for delayed coking unit (DCU), which

contains both continuous and discrete characteristics. Daily DCU operations under different conditions

are modeled by a BRB, which is then updated using iterative learning methodology, based on a novel

statistical utility for every belief rule. Compared with the other learning algorithms, our methodology

can lead to a more optimal compact final BRB. With the help of this expert system, a feedforward

compensation strategy is introduced to eliminate the disturbance caused by the drum-switching

operations. The advantages of this approach are demonstrated on the UniSimTM Operations Suite

platform through the developed DCU operation expert system modeled and optimized from a real oil

refinery.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Expert systems (ES) are a branch of applied artificial intelli-
gence (AI), and were developed by the AI community in the mid-
1960s. The basic idea behind ES is simply that expertise, which is
the vast body of task-specific knowledge, is transferred from a
human to a computer. This knowledge is then stored in the
computer and users call upon the computer for specific advice at a
specific conclusion. Then like a human consultant, it gives advices
and explains, if necessary, the logic behind the advice (Giarratano
& Riley, 1989; Jackson, 1998). In the last five decades, a large
number of ES methodologies have been proposed in literatures,
and applications implemented in industry fields (Duan, Yang, Li,
Gui, & Deng, 2008; Liao, 2005).

Among these, the rule-based ES has been proved to be an
effective and quite understandable tool. However, it is inevitable
to deal with uncertainty caused by vagueness intrinsic to human
knowledge and imprecision or incompleteness resulting from the
ll rights reserved.
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limit of human knowledge (Yang, Liu, Wang, Sii, & Wang, 2006).
It is therefore necessary to use a scheme for representing and
processing the vague, imprecise, and incomplete information in
conjunction with precise data. These methods for representing
and reasoning with uncertain knowledge, such as Bayesian prob-
ability theory (Jensen, 1996), Dempster–Shafer (D–S) theory of
evidence (Binaghi & Madella, 1999) and rough set theory (Pawlak,
1991), have attracted much attention in academic research (Yang
Liu, Wang, Sii, & Wang, 2006). Nevertheless, it is impossible for us
to use only one of these methods to solve the real problem, which
may contain different kinds of uncertainties. In order to develop a
generalized knowledge representation scheme and inference
methodology to deal with these hybrid uncertainties, a new
approach was proposed for building a hybrid rule-base using a
belief structure and for inference in the rule-based system using
the evidential reasoning theory by Yang et al. (Wang, Yang, Xu, &
Chin, 2006; Xu et al., 2007; Yang Liu, Wang, Sii, & Wang, 2006;
Yang, Liu, Xu, Wang, & Wang, 2007). The methodology, based on
D–S theory of evidence, decision theory and fuzzy set theory, is
referred to as a generic belief rule-base inference methodology
using evidential reasoning approach – RIMER (Yang Liu, Wang, Sii,
& Wang, 2006). The RIMER approach provides a more informative
and flexible scheme than the traditional IF-THEN rule-base for
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knowledge representation, and is capable of capturing vagueness,
incompleteness, and nonlinear causal relationships. In recent
years, RIMER has already been applied to the safety analysis of
off-shore systems (Liu, Yang, Wang, & Sii, 2005), pipeline leak
detection (Xu et al., 2007; Zhou, Hu, Yang, Xu, & Zhou, 2009;
Zhou, Hu, Yang, Xu, & Zhou, 2011), clinical decision support
systems (Kong, Xu, Liu, & Yang, 2009) and stock trading expert
systems (Dymova, Sevastianov, & Bartosiewicz, 2010).

In recent years, delayed coking technology is playing a more
and more important role in modern oil refineries (Anthony, Kruse,
& Ewy, 1996; Ellis, Paul, & Session, 1998; Friedman, 2005;
Haseloff, Friedman, & Goodhart, 2007; Rodrı́guez-Reinoso,
Santana, Palazon, Diez, & Marsh, 1998; Valyavin, Khukhrin, &
Valyavin, 2007). It is a thermal cracking process used in petro-
leum refineries to upgrade and convert petroleum residuum
(bottoms from atmospheric and vacuum distillation of crude oil)
into liquid and gas product streams leaving behind a solid
concentrated carbon material, petroleum coke. With short resi-
dence time in the furnace tubes, coking of the feed material is
thereby ‘‘delayed’’ until it reaches large coking drums down-
stream of the heater.

Nevertheless, delayed coking is such a petrochemical process
with strong coupling, non-linearity, long time-delay. It is the only
main process in a modern petroleum refinery that is a batch-
continuous process (Ellis, Paul, & Session, 1998). The flow through
the tube furnace is continuous. The feed stream is switched
between two drums. One drum is on-line filling with coke while
the other one is being steam-stripped, cooled, coke removed,
pressure tested, and warmed up. Thus, it is hard to implement
effective automatic control to this unit (Friedman, 2005; Haseloff,
Friedman & Goodhart, 2007; Zhou, Wang, & Jin, 2009). First, most
of operations in drum-switching process are performed manually
based on operators’ experiences. As a result, the impact on the
downstream unit such as the fractionator varies with different
operators, fresh feed and also switching time. Second, the delayed
coking fractionator is such a complex tower with multi-compo-
nent and multi-side-draw. On one hand, there are strong non-
linearity and large time-delay. On the other hand, it can not be
ignored that great disturbance will be brought into the whole
process because of the periodic drum-switching operation, which
is hard for the traditional PID controller to eject effectively.
During the past decade, various advanced process control (APC)
technologies have been applied in DCU operations (Elliott, 2003;
Haseloff Friedman & Goodhart, 2007). For example, a multivariate
model predictive controller was designed and implemented on
the fractionator of a DCU in a refinery company in China by Zhao
et al. (Zhao, Chu, Su, & Huang, 2010). Whereas, in most APC
technologies, to the best of our knowledge, the drum-switching
disturbance has not been handled well so far (Yu, et al.,2011).
Thus, it is quite important to develop efficient and robust
techniques for such complex process. In our previous work (Yu
et al., 2011), a rule-based expert system of intelligent switching
expert system for DCU operations was established and a feedfor-
ward control strategy based on iterative learning was introduced
to eliminate disturbances arising from the drum-switching opera-
tions. While nevertheless, it is a traditional rule-based expert
system, and these simple rules can not represent more compli-
cated causal relationships with uncertainties.

In this paper, a novel iterative learning belief rule-base
inference methodology using evidential reasoning (IL-RIMER) is
proposed and applied to construct a DCU operation expert system
for providing optimal operating information for the field opera-
tors. Then a feedforward compensation strategy is incorporated
into this expert system and implemented to smooth the operating
process while drum-switching. In the following Section 2, the
RIMER theory will be reviewed briefly, followed by a detailed
description of the IL-RIMER scheme in Section 3. Then Section 4
shows how a DCU operation expert system can be developed
using the IL-RIMER methodology proposed, based on the field
data from a real oil refinery. And the effectiveness and efficiency
of this expert system is illustrated on the UniSimTM Operations
Suite platform subsequently. Finally the paper is concluded in
Section 5, followed by some acknowledgments. The basic idea of
our algorithm was previously explored by Yu et al. (Yu, Huang,
Jiang, & Jin, 2011). This paper represents a significant extension in
terms of experimental methodology, parameterization, and
analysis.
2. The RIMER theory

2.1. Belief rule-base

A BRB, which captures the dynamic of a system, consists of a
collection of belief rules defined as follows (Yang Liu, Wang, Sii, &
Wang, 2006):

Rk : IF x1 is Ak
14x2 is Ak

2. . .xTk
is Ak

Tk
THEN

fðD1,b1kÞ, ðD2,b2kÞ,. . .,ðDN ,bNkÞg ð1Þ

with a rule weight yk and attribute weight dk1,dk2,. . .,dkTk
, where

x1,x2,. . .,xTk
represents the antecedent attributes in the kth rule

Rk, Ak
i ði¼ 1,2,. . .,Tk,k¼ 1,2,. . .LÞ is the referential value of the ith

antecedent attribute in the kth rule Rk, Ak
i AAi,Ai ¼ fAij,j¼

1,2,. . .,Jig is a set of referential value of the ith antecedent
attribute, Ji is the number of the referential value, yk(ARþ ,k¼1,2,
y,L) is the relative weight of the kth rule Rk, dk1,dk2,. . .,dkTk

are
the relative weights of the Tk antecedent attributes used in the kth
rule Rk, and bik (i¼1,2,y,N,k¼1,2,y,L) is the belief degree
assessed to Dj which denotes the jth consequent. If

PN
i ¼ 1 bik ¼ 1,

the kth rule Rk is said to be complete; otherwise, it is incomplete.
Note that ‘‘4’’ is a logical connective to represent the ‘‘AND’’
relationship. In addition, suppose that T is the total number of
antecedent attributes used in the rule base.

2.2. Belief rule-base inference methodology using evidential

reasoning approach

Given an input to the system, U(t)¼{Ui(t),i¼1,2,y,Tk}, how
can the rule-base be used to inference and generate an output? As
mentioned earlier, Tk is the total number of antecedents in the
rule-base, Ui(t)(i¼1,2,y,Tk) is the ith attribute, which can be one
of the following types (Yang Liu, Wang, Sii, & Wang, 2006):
continuous, discrete, symbolic and ordered symbolic.

Before the start of an inference process, the matching degree of
an input to each referential value in the antecedents of a rule
needs to be determined so that an activation weight for each rule
can be generated. This is equivalent to transforming an input into
a distribution on referential values using belief degrees and can
be accomplished using different techniques such as the rule or
utility-based equivalence transformation techniques (Yang, 2001;
Yang, Liu, Xu, Wang & Wang, 2007).

Using the notations provided above, the activation weight of
the kth rule Rk, wk, is calculated as (Yang Liu, Wang, Sii, & Wang,
2006):

ok ¼
ykakPL

i ¼ 1 yiai

ð2Þ

where ak is called the normalized combined matching degree,
which can be calculated by

ak ¼
YTk

i ¼ 1

ðak
i Þ
dki ð3Þ
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with dki ¼ dki=maxi ¼ 1,...,Tk
fdkig, ak

i Afai,j, i¼ 1,2,. . .,Tk, j¼ 1,2,. . .,Jig

is the individual matching degree to which the input xiAU

matches the ith referential value Ak
i of the packet antecedent Ak

in the kth rule Rk, and ak
i Z0 and

PTk

i ¼ 1 ak
i r1.

In the RIMER, ak
i can be generated using various ways depend-

ing on the different types of the input information. In Yang’s
paper (Yang, 2001), an important technique, i.e., rule-based
information transformation technique was proposed to deal with
the input information that includes qualitative assessment and
quantitative data. In this paper, Appendix A gives a brief review of
this technique for the quantitative data.

Having determined the activation weight of each rule in the
rule-base, the ER approach can be directly applied to combine the
rules and generate final conclusions. Suppose the outcome of the
combination yields the following:

OðUðtÞÞ ¼ byðtÞ ¼ fðDj,bjÞ, j¼ 1,. . .,Ng ¼
XN

j ¼ 1

uðDjÞbj ð4Þ

The outcome expressed by Eq. (4) reads that if the input is
given by U(t)¼{Ui(t),i¼1,2,y,Tk}, then the consequent is D1 to a
degree of b1, D2 to a degree of b2,y, and DN to a degree of bN.
Using the analytical format of the ER algorithm (Wang, Yang, Xu,
Chin, 2006) the combined belief degree bj in Dj can be generated
as follows:

bj ¼
mn½
QL

k ¼ 1 okbjkþ1�ok

QN
i ¼ 1 bik�

QL
k ¼ 1ð1�ok

PN
i ¼ 1 bikÞ�

1�mn½
QL

k ¼ 1ð1�okÞ�
,

j¼ 1,. . .,N ð5Þ

where

m¼
XN

i ¼ 1

YL

k ¼ 1

okbjkþ1�ok

XN

i ¼ 1

bik

 !
�ðN�1Þ

YL

k ¼ 1

1�ok

XN

i ¼ 1

bik

 !
ð6Þ

and ok is as given in Eq. (2).

2.3. Optimization methods for training a BRB

As mentioned earlier, a BRB can be constructed by extracting
knowledge from experts directly. Still, it is also true that the
performance of this kind of expert system can be improved if the
rules are well adjusted through learning from new available data
(Xu et al., 2007). Furthermore, in practical situations, it is difficult
to accurately determine the parameters of a BRB entirely subjec-
tively, particularly, for a large-scale BRB with hundreds or even
thousands of rules. In addition, a change in rule weight or attribute
weight may lead to changes in the performance of a BRB (Yang
et al., 2007). As such, there is a need to develop a supporting
mechanism that can be used to train, in a locally optimal way, the
BRB that is initially built using expert knowledge.

In Yang’s paper (Yang, Liu, Xu, Wang & Wang, 2007), the
process of training a BRB was sketched as Fig. 1, where U is a
given input, ~O the corresponding observed output either mea-
sured using instruments or assessed by experts, O the simulated
output generated by the BRB system, x(P) the difference between
Fig. 1. Illustration of optimal learning process for a BRB.
~O and O, and

P¼ ðbik,yk,dj; i¼ 1,2,. . .,N; k¼ 1,2,. . .,L; j¼ 1,2,. . .,TkÞ ð7Þ

are the adjustable parameters. The objective of the training is to
minimize the difference x(P) by adjusting the parameters P. This
objective is difficult to achieve manually even by experts, how-
ever there are computer algorithms available to solve the pro-
blem. Several new optimization models for locally training a BRB
were developed by Yang et al. (Yang, Liu, Xu, Wang & Wang,
2007).
3. A novel iterative learning algorithm of updating a RIMER
model for batch processes

3.1. Preliminaries
Definition 1. A BRB is said to be complete, if and only if for every
set of premises G, any formula which semantically follows from G
is derivable from G. That is,

GFs|-G‘s| ð8Þ

Definition 2. A rule is said to be redundant, if and only if any set
derived from the original rule-base is neither reduced nor
expanded when this rule is removed.

Obviously, repeating rules are redundant. Moreover, it should
be noted that there are always two different forms of redundant

rules in an expert system. That is,

Definition 2.1. A redundant rule is said to be explicit, if and only if
this rule can never be quoted in any inference procedure. In other
words, there is no any benefit to the entire system with the
existence of this rule.

Definition 2.2. A redundant rule is said to be implicit, if and only if
this rule can sometimes be activated under certain conditions,
however, there is little impact to any reasoning results with the
existence of this rule.

Definition 3. A BRB is said to be compact, if and only if the BRB is
complete without any redundant rules. Namely, a compact BRB is a
complete one with the least non-redundant rules.

With a predetermined structure of the initial BRB, the RIMER
approach requires the assignment of some system parameters
including rule weights, attribute weights, and belief degrees using
experts’ knowledge, which is hard for engineers to decide objec-
tively and precisely. As such, some optimization models have
been proposed to train a BRB (Yang, Liu, Xu, Wang & Wang, 2007).
Because these models are off-line trained and in essence are
locally optimal, it is very expensive and time consuming to train
and re-train them (Zhou et al., 2010). In order to solve these
problems, the recursive algorithms for online updating the BRB
systems have also been developed and they are fast to converge,
which is very important for training systems that have a high
level of real-time requirement (Zhou, Hu, Yang, Xu, & Zhou, 2009).
However, these optimal algorithms are all based on a predeter-
mined structure of BRB with all the combination of the ante-
cedent attributes (Dymova, Sevastinov, & Bertosiewicz, 2010; Xu
et al., 2007; Zhou et al., 2009, 2010). Due to vagueness intrinsic to
human knowledge and imprecision or incompleteness resulting
from the limit of human knowledge, the prior knowledge for a
real complex system may be incomplete, or even inappropriate,
which may produce some redundant rules, and consequently
leads to a complete, but not compact structure of BRB. To achieve
an global optimal BRB, it is not sufficient to just statistically tune
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the parameters for a given BRB, but the structure of a BRB need to
be adjusted as well (Zhou et al., 2010). With this end in view, a
sequential learning algorithm was proposed for online construct-
ing more compact BRB systems by Zhou et al. (Zhou et al., 2010).
Based on the definition of the new concept of statistical utility for
a belief rule, a belief rule can be automatically added into a BRB or
pruned from the BRB. Unfortunately, if the available training data
is not perfect, a possible drawback of this algorithm is that the
newly constructed BRB might not provide a representative set of
rules for simulating the original system (Zhou et al., 2010).
Meanwhile, Zhou’s BRB is updated from an initial structure with
just two rules, and the newly added ones depend entirely on the
training data. As a result of this, the new referential values of both
the antecedent attribute and the consequent attribute may not be
representative, which may achieve atypical rules for the BRB.
Therefore, although compact comparatively, this BRB system is
not optimal, even may leads to a non-compact one.

3.2. The basic scheme of IL-RIMER algorithm

In this section, a novel iterative learning belief rule-base
inference methodology using evidential reasoning for batch
processes is proposed. As is shown in Fig. 2, this model mainly
consists of two modules: the modified RIMER model and IL
training module. In our paper, a statistical utility for each belief
rule defined by Zhou et al. (2010) is introduced into the tradi-
tional RIMER model. The initial BRB is constructed with all the
combinations of the referential values of all the antecedent
attributes. Based on each batch, the parameters of the constructed
RIMER are updated with iterative learning strategy, including the
rule weights, the attribute weights, the belief degrees of the BRB
system, and the statistical utilities for all the belief rules. The
recursive algorithm based on the recursive expectation maximi-
zation (EM) algorithm proposed by Zhou et al. (Zhou, Hu, Yang,
Xu, & Zhou, 2009) is introduced into batch processes here and run
along the batch direction. Then the pruning operation is imple-
mented in each batch, according to the statistical utilities of the
belief rules, which is briefly reviewed in Appendix B. Due to the
fact that the initial BRB is constructed with all the possible
combinations using prior expert knowledge, rather than only
two rules determined by the data constraints in Zhou’s paper
(Zhou et al., 2010), it is most likely to generate an optimal
compact BRB.

As a result of the earlier mentioned discussion, the procedure
of the proposed IL-RIMER algorithm can be summarized as the
following steps:

Step 1: Determine the antecedent attributes and consequent
attributes for a real problem.

Step 2: Set appropriate referential values of both antecedent
attributes and consequent attributes.
Fig. 2. The structure of IL-RIMER algorithm.
Step 3: Construct the initial BRB with all the combination of
the referential values of all the antecedent attributes, and calcu-
late the belief degrees.

Step 4: For the Kth batch iteration:
Step 4.1: Update the parameters of the constructed RIMER as

Eq. (9) with iterative learning strategy, including the rule weights,
the attribute weights, the belief degrees of the BRB system, and
the statistical utilities for all the belief rules.

P¼ ðbK
ik,yK

k ,dK
j ,SUK

k , i¼ 1,2,::,N; k¼ 1,2,. . .,L; j¼ 1,2,. . .,TkÞ

ð9Þ

Step 4.2: If the criteria as Eq. (10) is satisfied, the kth rule is
removed, and the RIMER model is updated. Then the dimension-
ality of the BRB is reduced. Otherwise, go back to the (Kþ1)th
iteration.PK

i ¼ K�4 SUi
k

5
oedelete, k¼ 1,2,. . .,L; ð10Þ

4. IL-RIMER for DCU operation expert system

4.1. Problem description

A simplified diagram of DCU is shown in Fig. 3. The unit takes
fresh feed, heats it and injects it into the bottom of the main
fractionator, where it is mixed with an internal reflux recycle of
heavy cracked material. The total fresh and recycled feed are
heated in the DCU furnace to a high cracking temperature. Hot
partially cracked feed flows from the DCU furnace into the coke
drum, where the reaction continues. Cracked distillate vapor
ascends in the coke drum and flows into the fractionator for
separation.

Coke remains in the drum and is periodically removed. That
is the main reason for DCU process being such a difficult unit to
operate. Twice daily filled coke drum are switched off for coke
removal and the empty one are connected. The drum that was
just filled then goes through a cycle of steaming out, cooling,
opening, coke removing, closing, steaming, pressure testing,
warming up and finally reconnecting to the furnace and
fractionator.

DCU is the most effective process to decarbonize and deme-
tallize heavy petroleum residues. However, inevitable periodic
drum-switching operation makes DCU process quite different
from other petrochemical processes. All the drum-switching
operations are performed based on the field operators’ experi-
ences. As a result, the impact on the downstream unit such as the
fractionator varies with the different operators. The main objec-
tive of DCU system operation is to keep the system stable as best
as we can. In more specific terms, how to eliminate the drum-
switching disturbance to the main fractionator is a difficult
challenge we must handle.

4.2. Constructing the IL-RIMER for DCU

Step 1: Set the initial BRB.
The antecedent and consequent attributes:
Table 1 shows the drum-switching operation and the effect to

the fractionator summarized from on-site data in an oil refinery.
According to the field operators’ expert knowledge, when operat-
ing on a DCU, some drum-switching data can be obtained. These
data include the opening of the feed valve 1 and 2, and the steam
flow, denoted by Valve1, Valve2, and Flow, respectively. They are
the three antecedent attributes of the BRB and are defined as
follows:

U1 ¼Valve1ðtÞ ð11Þ



Table 1
The drum-switching operations of delayed coking unit in a refinery.

Drum 1 Drum 2 Opening of

the feed

valve 1 (%)

Opening of

the feed

valve 2 (%)

Steam

flow

(kg/h)

Time

(h)

Effect

(Y/N)

Steaming Coking 100 100 6,000 2 Y

Steaming

out

0 20,000 2 N

Cooling 0 6.5

Coke

removing

5

Pressure

testing

10,000 0.5

Warming

up 1

30 0 1 Y

Warming

up 2

70 1

Warming

up 3

100 6

Coking Steaming 100 100 6,000 2 Y

Steaming

out

0 20,000 2 N

Cooling 0 6.5

Coke

removing

5

Pressure

testing

10,000 0.5

Warming

up 1

30 0 1 Y

Warming

up 2

70 1

Warming

up 3

100 6

Fresh feed

Water

Coke
furnance

Coke
Drums

Main
fractionator

Coke

Gas

Gasoline

Diesel

CGO

Fig. 3. The technologic flow-chart of the delayed coking unit.
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U2 ¼Valve2ðtÞ ð12Þ

U3 ¼ FlowðtÞ ð13Þ

The two consequent attributes are the percent of the differ-
ences during a time interval of the bottom temperature and
bottom level of the fractionator, denoted by TempDiff and
LevelDiff, which are calculated as follows:

D1 ¼ TempDiffðtÞ ¼
TempðtÞ�Tempðt�1Þ

Tempðt�1Þ
ð14Þ
D2 ¼ LevelDiffðtÞ ¼
LevelðtÞ�Levelðt�1Þ

Levelðt�1Þ
ð15Þ

The referential points of antecedent and consequent attributes:
The number of referential points used of each antecedent

attributes decides the size of the BRB. If the number is too large,
there will be too many rules in the BRB, and the subsequent
training and inference process will be more demanding. If it is too
small, the points may not be able to cover the value range of an
antecedent attribute. Normally 5–9 referential points are used for
a conventional BRB (Dymova, Sevastinov, & Bertosiewicz, 2010;
Xu et al., 2007). The number of referential points for a consequent
attribute is also comparable to those of the antecedent attributes.
In this paper, we use 3 points for Valve1 and Valve2, which are
Zero(Z), Medium(M), Large(L). That is

Ak
1AfZ,M,Lg ð16Þ

Ak
2AfZ,M,Lg ð17Þ

Similarly we use 4 points for Flow and they are Z, M, L, and VL, i.e.,

Ak
3AfZ,M,L,VLg ð18Þ

For the consequent attributes, TempDiff and LevelDiff, seven
referential points are used: Negative Very Large(NVL), Negative
Large(NL), Negative Small(NS), Zero(Z), Positive Small(PS), Positive
Large(PL), Positive Very Large(PVL), i.e.,

D1AfNVL,NL,NS,Z,PS,PL,PVLg ð19Þ

D2AfNVL,NL,NS,Z,PS,PL,PVLg ð20Þ

In order to use the field data, the referential points defined
above for the antecedent and consequent attributes are in linguis-
tic terms and need to be quantified. By examining the calculated
TempDiff and LevelDiff, and the recorded Valve1, Valve2, and Flow
values, the following equivalent relationships between the linguis-
tic terms and numerical values are assumed so that the values
roughly cover the corresponding attribute value range.

For Valve1 and Valve2, it is assumed that

fZ ¼ 0, M¼ 50, L¼ 90g ð21Þ

For Flow, it is assumed that

fZ ¼ 0, M¼ 5000, L¼ 8000, VL¼ 15,000g ð22Þ
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For TempDiff, it is assumed that

fNVL¼�5%, NL¼�1%, NS¼�0:1%,

Z ¼ 0, PS¼ 0:1%, PL¼ 1%, PVL¼ 5%g ð23Þ

For LevelDiff, it is assumed that

fNVL¼�50%, NL¼�20%, NS¼�5%, Z ¼ 0,

PS¼ 5%, PL¼ 20%, PVL¼ 50%g ð24Þ

Rules:
Because Valve1 and Valve2 are both divided into 3 terms,

respectively and Flow 4 terms, there are 36 combinations of the
3 antecedents leading to 36 rules in total in the initial BRB. In our
case, there is no previous rule-base to start with. Rules are
extracted by examining the on-site data and using field engineers’
experiences, and are used as the starting point for updating
online. Table 2 lists the initial 36 belief rules provided by
analyzing the field data and operating experiences. For example,
Rule 9 in Table 2 is stated as follows:

R9 : IF Valve1 is Z4Valve2 is L4Flow is Z

THEN TempDiff isfðZ,0:6890Þ,ðPS,0:3110Þg

4LevelDiff is fðZ,0:9729Þ,ðPS,0:0271Þg ð25Þ

Step 2: Construct a BRB for DCU online.
Yang’s updating strategy for the initial BRB was also imple-

mented in this paper for a comparison. Table 3 shows the updated
BRB without batch iterative learning and all the 36 rules’ para-
meters were updated. It should be noted that, as a result of the
shortage of structure updating strategy for the entire BRB, some
redundant rules were also trained. This phenomenon brings us not
Table 2
Initial BRB provided by analyzing the field data and operating experiences.

Rule No. U D Value (%)

{U1,U2,U3} D1 D2

1 {Z, Z, Z} 0 0

2 {Z, Z, M} 0 0

3 {Z, Z, L} 0 0

4 {Z, Z, VL} 0 0

5 {Z, M, Z} 0 0

6 {Z, M, M} 0 0

7 {Z, M, L} 0 0

8 {Z, M, VL} 0 0

9 {Z, L, Z} 0.0311 0.1356

10 {Z, L, M} 0 0

11 {Z, L, L} 0.5981 0.5216

12 {Z, L, VL} �0.0981 0.1951

13 {M, Z, Z} 0 0

14 {M, Z, M} 0 0

15 {M, Z, L} 0 0

16 {M, Z, VL} 0 0

17 {M, M, Z} 0 0

18 {M, M, M} 0 0

19 {M, M, L} 0 0

20 {M, M, VL} 0 0

21 {M, L, Z} �2.3925 �18.6005

22 {M, L, M} 0 0

23 {M, L, L} 0 0

24 {M, L, VL} 0 0

25 {L, Z, Z} 0.0109 0.2098

26 {L, Z, M} 0 0

27 {L, Z, L} 0.6251 0.4306

28 {L, Z, VL} �0.1108 0.2156

29 {L, M, Z} �2.5009 �22.0130

30 {L, M, M} 0 0

31 {L, M, L} 0 0

32 {L, M, VL} 0 0

33 {L, L, Z} �0.5816 �0.5483

34 {L, L, M} 1.9325 0.2569

35 {L, L, L} 0 0

36 {L, L, VL} �0.1097 0.2129
only the burden of computation and waste of time, but also the
approximation error. Due to the imprecision of the field data,
some redundant rules which have definite results in essence were
trained and updated with an uncertain consequent output. Take
Rule 1 for example, the operation condition of this combination of
the 3 antecedents never happens in the on-site DCU operating
procedure. Obviously, Rule 1 is a redundant one, and there is no
need to take into consideration. Unfortunately, belief degrees
for the 2 consequents were assigned and updated in Table 3 as
follows,

TempDiff is fðZ,0:9922Þ,ðPS,0:0078Þg

4LevelDiff is fðNS,0:0892Þ,ðZ,0:9108Þg ð26Þ

which leads to an unreasonable output of fD1 ¼ 0:008, D2 ¼

�0:4462g.
Table 4 shows the updated BRB after 10 batches iterative

learning with our strategy proposed in Section 3.2. It is noted that
there is a significant reduction of the BRB, from 36 rules to only 11
ones. And the Rule No. in Table 4 is the original Rule No. in Table 2
and Table 3, which was for the sake of correspondence of
each rule.

In addition, through a further analysis of the rules remaining in
Table 4, it is interesting to note that these rules all describe a
specific status of the DCU operation, respectively. Take Rule 21 for
an example, the {M, L, Z} combination of the antecedent attri-
butes, which means that there is no steam flow and one of the
feed valve is opened moderately while the other is opened totally
simultaneously, represents the operation conditions of ‘‘warming
up’’. From the technical point of view and a closer look at the field
D1¼{NVL,NL,NS,Z,PS,PL,PVL} D2¼{NVL,NL,NS,Z,PS,PL,PVL}

{b11,b12,b13,b14,b15,b16,b17} {b21,b22,b23,b24,b25,b26,b27}

{0, 0, 0, 1, 0, 0, 0} {0, 0, 0, 1, 0, 0, 0}

{0, 0, 0, 1, 0, 0, 0} {0, 0, 0, 1, 0, 0, 0}

{0, 0, 0, 1, 0, 0, 0} {0, 0, 0, 1, 0, 0, 0}

{0, 0, 0, 1, 0, 0, 0} {0, 0, 0, 1, 0, 0, 0}

{0, 0, 0, 1, 0, 0, 0} {0, 0, 0, 1, 0, 0, 0}

{0, 0, 0, 1, 0, 0, 0} {0, 0, 0, 1, 0, 0, 0}

{0, 0, 0, 1, 0, 0, 0} {0, 0, 0, 1, 0, 0, 0}

{0, 0, 0, 1, 0, 0, 0} {0, 0, 0, 1, 0, 0, 0}

{0, 0, 0, 0.689, 0.311, 0, 0} {0, 0, 0, 0.9729, 0.0271, 0, 0}

{0, 0, 0, 1, 0, 0, 0} {0, 0, 0, 1, 0, 0, 0}

{0, 0, 0, 0, 0.4466, 0.5534, 0} {0, 0, 0, 0.8957, 0.1043, 0, 0}

{0, 0, 0.981, 0.019, 0, 0, 0} {0, 0, 0, 0.961, 0.039, 0, 0}

{0, 0, 0, 1, 0, 0, 0} {0, 0, 0, 1, 0, 0, 0}

{0, 0, 0, 1, 0, 0, 0} {0, 0, 0, 1, 0, 0, 0}

{0, 0, 0, 1, 0, 0, 0} {0, 0, 0, 1, 0, 0, 0}

{0, 0, 0, 1, 0, 0, 0} {0, 0, 0, 1, 0, 0, 0}

{0, 0, 0, 1, 0, 0, 0} {0, 0, 0, 1, 0, 0, 0}

{0, 0, 0, 1, 0, 0, 0} {0, 0, 0, 1, 0, 0, 0}

{0, 0, 0, 1, 0, 0, 0} {0, 0, 0, 1, 0, 0, 0}

{0, 0, 0, 1, 0, 0, 0} {0, 0, 0, 1, 0, 0, 0}

{0.3481, 0.6519, 0, 0, 0, 0, 0} {0, 0.9067, 0.0933, 0, 0, 0, 0}

{0, 0, 0, 1, 0, 0, 0} {0, 0, 0, 1, 0, 0, 0}

{0, 0, 0, 1, 0, 0, 0} {0, 0, 0, 1, 0, 0, 0}

{0, 0, 0, 1, 0, 0, 0} {0, 0, 0, 1, 0, 0, 0}

{0, 0, 0, 0.891, 0.109, 0, 0} {0, 0, 0, 0.958, 0.042, 0, 0}

{0, 0, 0, 1, 0, 0, 0} {0, 0, 0, 1, 0, 0, 0}

{0, 0, 0, 0, 0.4166, 0.5834, 0} {0, 0, 0, 0.9139, 0.0861, 0, 0}

{0, 0.012, 0.988, 0, 0, 0, 0} {0, 0, 0, 0.9569, 0.0431, 0, 0}

{0.3752, 0.6248, 0, 0, 0, 0, 0} {0.0671, 0.9329, 0, 0, 0, 0, 0}

{0, 0, 0, 1, 0, 0, 0} {0, 0, 0, 1, 0, 0, 0}

{0, 0, 0, 1, 0, 0, 0} {0, 0, 0, 1, 0, 0, 0}

{0, 0, 0, 1, 0, 0, 0} {0, 0, 0, 1, 0, 0, 0}

{0, 0.5351, 0.4649, 0, 0, 0, 0} {0, 0, 0.1097, 0.8903, 0, 0, 0}

{0, 0, 0, 0, 0, 0.7669, 0.2331} {0, 0, 0, 0.9486, 0.0514, 0, 0}

{0, 0, 0, 1, 0, 0, 0} {0, 0, 0, 1, 0, 0, 0}

{0, 0.0108, 0.9892, 0, 0, 0, 0} {0, 0, 0, 0.9574, 0.0426, 0, 0}



Table 3
Updated BRB with training data without batch iterative learning.

Rule No. U D Value (%) D1¼{NVL,NL,NS,Z,PS,PL,PVL} D2¼{NVL,NL,NS,Z,PS,PL,PVL}

{U1,U2,U3} D1 D2 {b11,b12,b13,b14,b15,b16,b17} {b21,b22,b23,b24,b25,b26,b27}

1 {Z, Z, Z} 0.0008 �0.4462 {0, 0, 0, 0.9922, 0.0078, 0, 0} {0, 0, 0.0892, 0.9108, 0, 0, 0}

2 {Z, Z, M} �0.0019 �0.3697 {0, 0, 0.0187, 0.9813, 0, 0, 0} {0, 0, 0.0739, 0.9261, 0, 0, 0}

3 {Z, Z, L} 0.0010 0.0690 {0, 0, 0, 0.9896, 0.0104, 0, 0} {0, 0, 0, 0.9862, 0.0138, 0, 0}

4 {Z, Z, VL} 0.0077 �0.3775 {0, 0, 0, 0.9226, 0.0774, 0, 0} {0, 0, 0.0755, 0.9245, 0, 0, 0}

5 {Z, M, Z} 0.0025 �0.2129 {0, 0, 0, 0.9746, 0.0254, 0, 0} {0, 0, 0.0426, 0.9574, 0, 0, 0}

6 {Z, M, M} �0.0091 0.3404 {0, 0, 0.0914, 0.9086, 0, 0, 0} {0, 0, 0, 0.9319, 0.0681, 0, 0}

7 {Z, M, L} 0.0051 0.2691 {0, 0, 0, 0.9492, 0.0508, 0, 0} {0, 0, 0, 0.9462, 0.0538, 0, 0}

8 {Z, M, VL} 0.0050 0.2039 {0, 0, 0, 0.9504, 0.0496, 0, 0} {0, 0, 0, 0.9592, 0.0408, 0, 0}

9 {Z, L, Z} 0.0311 0.1356 {0, 0, 0, 0.689, 0.311, 0, 0} {0, 0, 0, 0.9729, 0.0271, 0, 0}

10 {Z, L, M} 0.0031 0.1035 {0, 0, 0, 0.9687, 0.0313, 0, 0} {0, 0, 0, 0.9793, 0.0207, 0, 0}

11 {Z, L, L} 0.5981 0.5216 {0, 0, 0, 0, 0.4466, 0.5534, 0} {0, 0, 0, 0.8957, 0.1043, 0, 0}

12 {Z, L, VL} �0.0981 0.1951 {0, 0, 0.981, 0.019, 0, 0, 0} {0, 0, 0, 0.961, 0.039, 0, 0}

13 {M, Z, Z} 0.0017 �0.2358 {0, 0, 0, 0.9827, 0.0173, 0, 0} {0, 0, 0.0472, 0.9528, 0, 0, 0}

14 {M, Z, M} �0.0039 �0.3718 {0, 0, 0.039, 0.961, 0, 0, 0} {0, 0, 0.0744, 0.9256, 0, 0, 0}

15 {M, Z, L} �0.0006 0.1579 {0, 0, 0.0063, 0.9937, 0, 0, 0} {0, 0, 0, 0.9684, 0.0316, 0, 0}

16 {M, Z, VL} �0.0060 �0.0842 {0, 0, 0.0597, 0.9403, 0, 0, 0} {0, 0, 0.0168, 0.9832, 0, 0, 0}

17 {M, M, Z} �0.0022 �0.1000 {0, 0, 0.0217, 0.9783, 0, 0, 0} {0, 0, 0.02, 0.98, 0, 0, 0}

18 {M, M, M} 0.0036 �0.4873 {0, 0, 0, 0.964, 0.036, 0, 0} {0, 0, 0.0975, 0.9025, 0, 0, 0}

19 {M, M, L} �0.0057 0.4210 {0, 0, 0.0573, 0.9427, 0, 0, 0} {0, 0, 0, 0.9158, 0.0842, 0, 0}

20 {M, M, VL} �0.0070 0.0139 {0, 0, 0.0699, 0.9301, 0, 0, 0} {0, 0, 0, 0.9972, 0.0028, 0, 0}

21 {M, L, Z} �2.3925 �18.6005 {0.3481, 0.6519, 0, 0, 0, 0, 0} {0, 0.9067, 0.0933, 0, 0, 0, 0}

22 {M, L, M} �0.0017 �0.2350 {0, 0, 0.017, 0.983, 0, 0, 0} {0, 0, 0.047, 0.953, 0, 0, 0}

23 {M, L, L} �0.0031 �0.2123 {0, 0, 0.0312, 0.9688, 0, 0, 0} {0, 0, 0.0425, 0.9575, 0, 0, 0}

24 {M, L, VL} �0.0092 0.4147 {0, 0, 0.0918, 0.9082, 0, 0, 0} {0, 0, 0, 0.9171, 0.0829, 0, 0}

25 {L, Z, Z} 0.0109 0.2098 {0, 0, 0, 0.891, 0.109, 0, 0} {0, 0, 0, 0.958, 0.042, 0, 0}

26 {L, Z, M} 0.0091 0.2529 {0, 0, 0, 0.9091, 0.0909, 0, 0} {0, 0, 0, 0.9494, 0.0506, 0, 0}

27 {L, Z, L} 0.6251 0.4306 {0, 0, 0, 0, 0.4166, 0.5834, 0} {0, 0, 0, 0.9139, 0.0861, 0, 0}

28 {L, Z, VL} �0.1108 0.2156 {0, 0.012, 0.988, 0, 0, 0, 0} {0, 0, 0, 0.9569, 0.0431, 0, 0}

29 {L, M, Z} �2.5009 �22.0130 {0.3752, 0.6248, 0, 0, 0, 0, 0} {0.0671, 0.9329, 0, 0, 0, 0, 0}

30 {L, M, M} 0.0002 0.1564 {0, 0, 0, 0.9985, 0.0015, 0, 0} {0, 0, 0, 0.9687, 0.0313, 0, 0}

31 {L, M, L} �0.0047 0.0433 {0, 0, 0.047, 0.953, 0, 0, 0} {0, 0, 0, 0.9913, 0.0087, 0, 0}

32 {L, M, VL} �0.0079 �0.0444 {0, 0, 0.0792, 0.9208, 0, 0, 0} {0, 0, 0.0089, 0.9911, 0, 0, 0}

33 {L, L, Z} �0.5816 �0.5483 {0, 0.5351, 0.4649, 0, 0, 0, 0} {0, 0, 0.1097, 0.8903, 0, 0, 0}

34 {L, L, M} 1.9325 0.2569 {0, 0, 0, 0, 0, 0.7669, 0.2331} {0, 0, 0, 0.9486, 0.0514, 0, 0}

35 {L, L, L} 0.0056 0.4822 {0, 0, 0, 0.9441, 0.0559, 0, 0} {0, 0, 0, 0.9036, 0.0964, 0, 0}

36 {L, L, VL} �0.1097 0.2129 {0, 0.0108, 0.9892, 0, 0, 0, 0} {0, 0, 0, 0.9574, 0.0426, 0, 0}

Table 4
Updated BRB after 10 batches iterative learning.

Rule No. U D Value (%) D1¼{NVL,NL,NS,Z,PS,PL,PVL} D2¼{NVL,NL,NS,Z,PS,PL,PVL}

{U1,U2,U3} D1 D2 {b11,b12,b13,b14,b15,b16,b17} {b21,b22,b23,b24,b25,b26,b27}

9 {Z, L, Z} 0.0311 0.1356 {0, 0, 0, 0.689, 0.311, 0, 0} {0, 0, 0, 0.9729, 0.0271, 0, 0}

11 {Z, L, L} 0.5981 0.5216 {0, 0, 0, 0, 0.4466, 0.5534, 0} {0, 0, 0, 0.8957, 0.1043, 0, 0}

12 {Z, L, VL} �0.0981 0.1951 {0, 0, 0.981, 0.019, 0, 0, 0} {0, 0, 0, 0.961, 0.039, 0, 0}

21 {M, L, Z} �2.3925 �18.6005 {0.3481, 0.6519, 0, 0, 0, 0, 0} {0, 0.9067, 0.0933, 0, 0, 0, 0}

25 {L, Z, Z} 0.0109 0.2098 {0, 0, 0, 0.891, 0.109, 0, 0} {0, 0, 0, 0.958, 0.042, 0, 0}

27 {L, Z, L} 0.6251 0.4306 {0, 0, 0, 0, 0.4166, 0.5834, 0} {0, 0, 0, 0.9139, 0.0861, 0, 0}

28 {L, Z, VL} �0.1108 0.2156 {0, 0.012, 0.988, 0, 0, 0, 0} {0, 0, 0, 0.9569, 0.0431, 0, 0}

29 {L, M, Z} �2.5009 �22.0130 {0.3752, 0.6248, 0, 0, 0, 0, 0} {0.0671, 0.9329, 0, 0, 0, 0, 0}

33 {L, L, Z} �0.5816 �0.5483 {0, 0.5351, 0.4649, 0, 0, 0, 0} {0, 0, 0.1097, 0.8903, 0, 0, 0}

34 {L, L, M} 1.9325 0.2569 {0, 0, 0, 0, 0, 0.7669, 0.2331} {0, 0, 0, 0.9486, 0.0514, 0, 0}

36 {L, L, VL} �0.1097 0.2129 {0, 0.0108, 0.9892, 0, 0, 0, 0} {0, 0, 0, 0.9574, 0.0426, 0, 0}
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data, this period will bring out significant negative disturbance to
the consequent attributes, the temperature and level at the
bottom of the fractionator, which is verified by the belief degrees
assigned to the consequent attributes as shown in Table 4.

Step 3: Test the newly constructed BRB with a feedforward
compensation strategy.

In order to verify this expert system built above, a simulated
DCU was constructed on the UniSimTM Operations Suite platform,
which is customized to exactly replicate the actual plant and
operate effectively in real-time.

Fig. 4 shows the different operation statuses of this DCU
identified by the proposed BRB. The inflection points of the bold
blue polyline in the second sub-figure indicate the change of
different operation statuses, which are coincident with the real
operations.

For testing the newly constructed BRB with a feedforward
compensation strategy, operation data in 5 day of this simulated
DCU were used to complete the iterative learning strategy. With
the help of the BRB obtained here, the relationship between
different operation statuses and the temperature or level at the
bottom of the fractionator can be easily found out. Then taking
the upper fresh feed in Fig. 3 as the manipulated variable, the
different operation statuses obtained in the BRB proposed above
as the disturbance variables, the temperature and level at the



Fig. 4. The operation statuses of DCU identified by the proposed BRB.
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Fig. 5. The bottom temperature of the fractionator with and without the compensated operations using IL-RIMER methodology.
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Fig. 6. The bottom level of the fractionator with and without the compensated operations using IL-RIMER methodology.

Table 5
The STD of one day’s bottom temperature of the fractionators.

a b c

The experienced operation 5.2061 4.0144 5.2061

The IL-RIMER strategy 4.9707 3.2140 4.5311

Table 6
The STD of one day’s bottom temperature of the fractionators just during the

drum-switching period.

a b c

The experienced operation 4.1916 2.2485 4.1916

The IL-RIMER strategy 1.7648 2.9128 2.7108

Table 7
The STD of one day’s bottom temperature of the fractionators.

a b c

The experienced operation 0.0062 0.0092 0.0091

The IL-RIMER strategy 0.0045 0.0072 0.0083

Table 8
The STD of one day’s bottom temperature of the fractionators just during the

drum-switching period.

a b c

The experienced operation 0.0054 0.0100 0.0054

The IL-RIMER strategy 0.0026 0.0049 0.0061
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bottom of the fractionator as the controlled variables, a feedfor-
ward compensation strategy is incorporated into this expert
system and implemented to smooth the operating process while
the drum-switching.

Fig. 5 shows the temperature at the bottom of the fractionator
in 3 day. It is observed from Fig. 5 that the performance with this
feedforward compensation of the IL-RIMER proposed above is
much better than the one without it. When the operation status of
DCU changes, a certain compensation strategy is implemented
immediately according to the relationship modeled by the newly
constructed BRB. As a result, the great disturbance to the material
and heat of the fractionator brought about by the drum-switching
operation is eliminated by about 4 1C. Fig. 6 shows that it also
works well in the performance of the bottom level of the
fractionator. It should also be noticed that the outputs in Fig. 5
do not use the same units with the ones in the BRB dealt with
above (Fig. 5 use the real units of the temperature and level at the
bottom of the fractionator, while the BRB use the percent of the
differences). So does Fig. 6.

The standard deviation (STD) of one day’s bottom temperature
of the fractionator with and without the compensated operation
using IL-RIMER methodology proposed in our paper is shown in
Table 5. A closer look at the standard deviation of the temperature
just during the drum-switching period in Table 6 reveals that the
expert system developed in this paper is much capable of
eliminating the great disturbance brought about by the drum-
switching operations.
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Tables 7 and 8 show the statistical characteristics of the
bottom level control performance of the the fractionator. It is
consistent with the good behavior in bottom temperature control
described above.
5. Conclusions

In this paper, a novel updating algorithm for RIMER model is
proposed based on iterative learning strategy for DCU. Daily DCU
operations under different conditions are modeled by a BRB,
which is then updated using iterative learning methodology,
based on a novel statistical utility for every belief rule. Compared
with the other learning algorithms, our methodology can lead to a
more optimal compact final BRB. Obtaining the congruent rela-
tionship between the different operation statuses and the dis-
turbance to the fractionator modeled by the optimized BRB, a
feedforward compensation strategy is introduced to eliminate the
disturbance caused by the drum-switching operations. A DCU
operation expert system is also developed using the methodology
proposed above based on the field data from a real oil refinery.
The simulation results with a better performance on the Uni-
SimTM Operations Suite platform demonstrate the effectiveness
and efficiency of this approach proposed in our paper.
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Appendix A

In most cases, the input of a quantitative antecedent attribute is
given by numerical values. Then an input value xiðtÞ is represented
using the following equivalent expectation (Zhou et al. 2010):

SðxiðtÞÞ ¼ fðAi,j,ai,jðxiðtÞÞÞ, i¼ 1,2,. . .,Tk, j¼ 1,2,. . .,Jig ðA:1Þ

where ai,jðxiðtÞÞ can be calculated by

ai,jðxiðtÞÞ ¼
Ai,jþ1�xiðtÞ

Ai,jþ1�Ai,j
if Ai,jrxiðtÞrAi,jþ1, j¼ 1,2,. . .,Ji�1

ðA:2Þ

ai,jþ1ðxiðtÞÞ ¼ 1�ai,jðxiðtÞÞ

if Ai,jrxiðtÞrAi,jþ1, j¼ 1,2,. . .,Ji�1 ðA:3Þ

ai,sðxiðtÞÞ ¼ 0, s¼ 1,2,. . ., Ji,sa j,jþ1 ðA:4Þ

It should be noted that there are some remarks as follows:
(1)
 A large value Ai,jþ1 is supposed here to be preferred over a
small value Ai,j. Ai,Ji

and Ai,1 are assumed to be the largest and
smallest feasible values, respectively.
(2)
 When the quantitative antecedent attribute, xiðtÞ, comes as a
random variable with some probabilities, the corresponding
rule-based information transformation technique has also
been studied in Yang’s paper (Yang, 2001).
Appendix B

Based on the definition of utility and the neuron’s ‘‘signifi-
cance’’ concept of RBF, Zhou et al. (2010) gave a statistical utility’s
definition for a belief rule.
Suppose that the quantitative antecedent attribute, xiðtÞ ði¼

1,2,. . .,TkÞ, changes in the interval [ai,bi] and obeys some distribu-
tion with the sampling density function piðxiðtÞÞ. Define

Ek � yk

YTk

i ¼ 1

Ik
i ðA

k
i Þ ðB:1Þ

where Ik
i ðA

k
i Þ ¼

R bi

ai
ðak

i ðxiðtÞÞÞ
dki piðxiðtÞÞdxiðtÞ. Ak

i AfAij, i¼ 1,2,. . .,Tk,
j¼ 1,2,. . .,Jig denotes the referential value of the ith antecedent
attribute in the kth belief rule. Then with the definition of
EkðAkÞ9Ek, where Ak ¼ ½A

k
1,. . .,Ak

Tk
�T represents the referential vec-

tor of the antecedent attributes in the kth belief rule, we get

lim
n-þ1

UðkÞ �
EkðAkÞ

PN
j ¼ 1 uðDjÞbjPL

l ¼ 1 ElðAlÞ
ðB:2Þ

where, Eq. (B.2) is considered as the statistical utility of the kth
belief rule. It was also investigated under the assumption of the
uniform distribution in Zhou’s paper (Zhou et al., 2010).
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