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Analysis of Modularly Composed Nets by Siphons

MuDer Jeng and Xiaolan Xie

Abstract—This paper uses siphons to analyze the class of Petri nets
constructed by a modular approach in [5] for modeling manufacturing
systems with shared resources. A resource point of view is taken. First the
behavior of each resource is modeled using resource control nets, strongly
connected state machines with one place being marked initially. Inter-
actions among the resources are modeled through merging of common
transition subnets. This paper provides conditions, expressed in terms of
siphons, under which reversibility and liveness of the integrated model
are obtained. Relations between siphons and circular-wait are formally
established. Superiority of the siphon-based analysis over a previous
analysis using circular wait is shown.

Index Terms—Analysis, Petri nets, synthesis.

I. INTRODUCTION

Modular approach is an efficient way to cope with the complexity
in modeling a large-scale system. It consists in decomposing it
into simple subsystems called modules, modeling each module and
integrating the module models together to obtain the model of the
whole system.

A major concern, when modeling a real-life system, is to check
whether the Petri net model has desired qualitative properties such
as liveness, boundedness, and reversibility. As long as manufacturing
systems are concerned, the liveness ensures that blocking will never
occur, the boundedness guarantees that the number of in-process parts
is bounded, the reversibility enables the system to come back to its
initial state from whatever state it reaches.

Due to the complexity of real-life systems, classical property
checking methods such as coverability tree, invariant analysis and
algebraic analysis (see [10]) hardly apply. There are two classes of
methods for analyzing a large Petri net model. The first one is the
reduction of Petri nets while preserving properties. Reduction rules
have been proposed [2], [9]. The main disadvantage of this approach
lies in the difficulty of finding reducible subnets.

The second class of methods includes synthesis methods which
build the models systematically and progressively such that the
desired properties are preserved all along the design process. Two
synthesis approaches: top-down approach and bottom-up approach,
have been proposed.

The top-down approach begins with an aggregate model of the
system which is refined progressively to introduce more and more de-
tails. The basic refinement is the substitution of a place or a transition
by a so-called well-formed block [12], [13], [15]. Conditions, under
which the desired properties are preserved, are given. This approach
is well suited to model systems composed of almost independent
sub-systems. However, this approach loses its efficiency in case of
strongly coupled sub-systems since it is impossible to find small
aggregate models.

The bottom-up approach [1], [4], [5], [7], [8], [11], [14] starts from
sub-system models and integrate them by merging some places and/or
transitions. The disadvantage of the general bottom-up approach lies
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mainly in the extreme difficulty of checking whether an integration
preserves the desired properties. Modular modeling approaches can
be considered as bottom-up approaches.

In this paper, we adopt the modular approach proposed in [5]. It
is a resource-oriented approach and contains three steps. The first
step consists in modeling the dynamic behavior of each resource
using Resource Control Nets. An RCN is a strongly connected state
machine with one place being marked initially. It is bounded, live and
reversible. The second step consists in modeling the interactions be-
tween various resources by merging common transitions and common
transition subnets. The third step checks whether the properties of the
module models are preserved. Contributions of this paper concern
step 3, the most difficult step. Siphons, structural properties of the
net, are used to characterize the reversibility and the liveness of the
integrated model. In particular, it is shown that the integrated model
is reversible iff no siphon in it can eventually become empty. The
latter condition of large resource control systems can be checked
using various mathematical programming techniques proposed in [3].
Results of this paper are compared with those based on circular-wait
proposed in [5].

This paper is organized as follows. Section II presents basic notions
of Petri nets used in this paper. Section III introduces RCN’s and
RCN-merged nets. Section IV is devoted to the analysis of RCN-
merged nets using siphons. Section V establishes relations between
siphons and circular-wait. Section VI presents a manufacturing ex-
ample.

II. BASIC NOTIONS OF NETS

Consider an ordinary Petri netG = (P; T; F;M0) whereP is the
set of places, T is the set oftransitions, F � (P � T ) [ (T � P )
is the set ofdirected arcs, andM0 : P ! N is the initial marking,
whereN is the set of nonnegative integers. The set of input (resp.
output) transitions of a placep is denoted by�p (resp.p�). Similarly
the set of input (resp. output) places of a transitiont is denoted by�t
(resp.t�). For any subset of placesS, �S (resp.S�) denotes the set of
transitions with at least one output (resp. input) place belonging toS.

A transition t is enabledand can befired under a markingM iff
M(p) � 1;8p 2 �t. The firing results in removing one token from
each of its input places and adding one token to each of its output
places. A markingM 0 is reachablefrom M iff there exists a firing
sequence� of transitions fromM toM 0. This givesM 0 = M+C��,
whereC = [cij ] is called theincidence matrixsuch thatcij = 1 if
tj 2 �pinpi�; cij = �1 if tj 2 pi � n � pi, andcij = 0, otherwise;
and ��, called thefiring count vector, is a vector whosei-th entry
denotes the number of occurrences ofti in �. The reachability set
R(M) denotes all the markings that are reachable fromM .

A transition t is said to belive if for any M 2 R(M0), there
exists a sequence of transitions firable fromM that containst. A
Petri net is said to be live if all the transitions are live. A Petri net is
said to bedeadlock-freeif at least one transition is enabled at every
reachable marking. A placep is said to beboundedif there exists a
constantK such thatM(p) � K for all M 2 R(M0). A Petri net
is said to be bounded if all the places are bounded. It is said to be
structurally boundedif it is bounded whatever the initial marking is.
A Petri net is said to bereversibleif, for any M 2 R(M0); M0 is
reachable fromM .

State machinesare Petri nets such that8t 2 T : jt � j = j � tj = 1.
Marked graphsare Petri nets such that8p 2 P : jp � j = j � pj = 1.
A state machine componentG0 = (P 0; T 0; F 0;M 0

0) of a Petri netG
is a state machine and is a subnet ofG consisting of places inP 0,
their input and output transitions, and the related arcs. A Petri net
is saidstate machine decomposableif it is covered by state machine
components.

Fig. 1. Petri net.

A subset of placesS is called asiphonif �S � S�, i.e., any input
transition ofS is also an output transition ofS. It is called atrap if
�S � S�. A siphon isminimal if it does not contain other siphons.
The net of Fig. 1 has four siphons:fp2; p3; p4; p5g, fp1; p3; p4g;
fp1; p3; p4; p5g; fp1; p2; p3; p4; p5g and 4 traps:fp2; p3; p4; p5g;
fp1; p2; p3g; fp1; p2; p3; p4g, fp1; p2; p3; p4; p5g. fp2; p3; p4; p5g
and fp1; p3; p4g are minimal siphons.

The following property (see [10]) shows the importance of siphons
and traps in the detection of deadlocks.

Property 1: A siphon free of tokens at a marking remains token-
free whatever the transition firings; A trap marked by a marking
remains marked; For any marking such that no transition is enabled,
the set of empty places forms a siphon.

In the following, a markingM such that no transition is enabled
is calleddead marking. A siphonS that eventually becomes empty
is calledpotential deadlock. From Property 1 and from the definition
of minimal siphons,

Property 2: A Petri net is deadlock-free if no minimal siphon
eventually becomes empty.

Condition of Property 2 holds if every siphon contains a trap
marked byM0, i.e., theCommoner conditionholds. Unfortunately,
it does not hold for most Petri net models of many systems with
shared resources. Deadlock-freeness of Petri net models of systems
with shared resources has been extensively studied in [3]. Results
needed in this paper can be summarized as follows.

Property 3: A siphonS can never become empty if either it con-
tains a marked trap orF (S) > 0 with F (S) = minf

p2S
M(p) j

M = M0 + CY;M � 0; Y � 0g.
Note that a mathematical programming approach was proposed

in [3] as well to avoid explicit enumeration of siphons. It allows
one to check large Petri net models using powerful mathematical
programming software packages.

III. RCN-MERGED NETS

The modeling methodology proposed in [5] is resource oriented
and is modular. The main steps include the modeling of the behavior
of each resource using Petri nets, and the integration of resource net
modules by taking into account interactions among resources. In [5]
as well as in this paper, each resource is modeled using Resource
Control Nets and the integration is realized through merging of
common transition subnets

Definition 1: A Resource Control Net (RCN) is a strongly con-
nected state machine(P; T; F;M0) in which there exists one and
only one placepr 2 P , calledresource place, such thatM0(pr) 6= 0.
The remaining places are calledoperation places.

Definition 2: A transition subnetG� = (P�; T�; F�;M�0) of a
Petri netG is a subnet ofG such that input transitions and output
transitions of any placep 2 P� are transitions inT�. In other words,
the places of a transition subnet are local.

Definition 3: A Petri netG = (P; T; F;M0), obtained by merging
n RCN’s fGs j Gs = (Ps; Ts; Fs;Ms0), s = 1; . . . ; ng through
common transitions and common transition subnets, is a net such
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Fig. 2. An example (from [5]).

that: P = P1 [ � � � [ Pn; T = T1 [ � � � [ Tn; F = F1 [ � � � [ Fn;

M0(p) = Ms0(p) if p 2 Ps. Clearly, in the integrated modelG, the
common elements of any two RCN’s form a transition subnet. In the
following, G will be called anRCN-merged net.

Fig. 2 is an example taken from [5]. It allows us to illustrate the
approach of this paper and to compare our results with those obtained
in [5]. The net is obtained by merging 7 RCN’s. Placesp1; p4; p7;

p8; p9; p12 and p15 are resource places and the other places are
operation places.

By construction, an RCN-merged net is State Machine Decom-
posable. Each RCN is a state machine component. The number of
tokens in any state machine component remains constant whatever
transition firings. Hence,

Property 4: An RCN-merged net is conservative and structurally
bounded.

In the following, additional restrictions concerning the merging of
RCN’s are considered.

Restriction 1:At each common transition, there exists at most one
input place that is an operation place.

Restriction 2:Common transition subnets should not include re-
source places.

Restriction 3:The Petri netG� derived from the inetgrated model
G by removing the resource places is an acyclic graph.

Restrictions 1 and 2 were considered in [5] as well. We repeat
explanations given in [5] for completeness. A transition that has more
than one operational input place corresponds to the synchronization
of parallel processes or the assembly of several components. As a
result, Restriction 1 is restrictive and its relaxation is an issue of
future research.

Restriction 2 is natural for our approach that is resource-oriented.
Since each type of resources is represented by an RCN where the
resource place corresponds to the resource availability, it is then
reasonable to associate with each type of resources a resource place,
leading to Restriction 2. From this perspective, it seems restrictive to
assume that, in each RCN, only the resource place is initially marked.
Notice that a token in an operation place implies that a resource is in
use. In most manufacturing systems, there exists a state such that all
resources are available and there is no work-in-process. We choose
such a state as the initial state. It is then natural that only the resource
places are initially marked.

Restriction 3 is motivated by the fact that the netG�, obtained by
removing resource constraints, models flows of material or informa-
tions. These flows are usually acyclic and situations of Fig. 3 should
not happen. Unfortunately, Restriction 3 rules out the possibility
of rework and resource failures. Nevertheless, some common RCN
models with rework and resource failures (see Fig. 4) can still be
taken into account. For the model of Fig. 4, the reduction of places

Fig. 3. Model that does not satisfy Restriction 3.

Fig. 4. Usual model for failures and rework.

p and q does not change the properties of the model and eliminate
the loop containingp and q.

IV. PROPERTIES

It is interesting to see that reversibility of an RCN-merged net
can be easily checked using siphons, properties usually used to
characterize deadlocks.

Theorem 1: Suppose that Restrictions 1–3 hold. ThenG is re-
versible iff no siphon ofG can become empty.

Proof: ()) Obvious since any siphon contains at least one
resource place, any resource place is marked atM0 and the net is
reversible.

(() Consider a markingM1 reachable fromM0. We show that
M0 can be reached starting fromM1. Consider as well the netG�.
From the structure of the netG and Restriction 3,G� is an acyclic
graph and its extremity nodes are transitions. LetH be the set of
source transitions ofG�. Clearly,H is a subset of transitions of net
G and the input places of any transition inH are resource places inG.

In order to showM0 2 R(M1), starting fromM1, we apply the
firing policy F which consists in not firing transitions inH. When
applying to the netG�, the firing policyF stops after a finite number
of firings. SinceG� is obtained fromG by removing resource places,
any sequence of transitions firable inG is also firable inG�. As
a result, a marking at which none transition ofG can fire under
firing policy F is reached in a finite number of steps. LetM be this
marking.

From the definition ofM , no transition inT �H is firable atM
in the netG. If M 6= M0, we show in the following that there exists
an empty siphon. This contradicts the assumption of the theorem and
concludes the proof.

In the remainder of the proof, we assume thatM 6= M0 and
construct the empty siphon. The construction starts from the setR of
RCN’s with empty resource places atM , i.e. R = fs j M(psr) =
0; s = 1; . . . ; ng. We first prove by contradiction thatR 6= �.
Assume thatR = �, i.e. every resource place is marked atM . Since
M 6= M0, at least one operation placep is marked. According to
Restriction 1,p is the unique input place of all its output transitions
that is an operation place. As a result, any transition inp� is firable
atM . Since transitions inp� do not belong toH, this contradicts the
assumption that no transition inT �H is firable atM and implies
that R 6= �.
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For each elements in R, let Ss be the set of placesp of Ps such
that M(p) = 0 and that there exists a path
 in Gs connectingp
to placepsr with M(
) = 0. For any input transitiont of a place
p in Ss, sincet cannot be fired using policyF , the following three
cases are possible:Case 1: t 2 ps r� for somes0 2 R including the
cases0 = s, i.e. t is an output transition of an empty resource place;
Case 2: t 2 q� for someq 2 Ps such thatM(q) = 0 which implies
q 2 Ss, i.e. t is an output transition of a place inSs; and Case 3:
t 2 H, i.e. all input places oft are resource places, which leads to
t 2 psr� since t is a transition ofGs.

From the above reasoning, any input transition of a place belonging
to S =

s2R
Ss is an output transition of a place inS. HenceS is

a siphon and is empty atM .
Consider the Petri net of Fig. 2. It has three minimal siphons

that do not contain marked traps:S1 = fp8; p3; p6; p11; p14; p15;
p7g; S2 = fp8; p3; p6; p11; p14; p15; p5g and S3 = fp8; p3; p6;
p11; p14; p10; p7g. From Property 3, the condition of Theorem 1 holds
if F (S1) > 0; F (S2) > 0 andF (S3) > 0. As in [3], these conditions
can be expressed explicitly in terms of the initial marking. For this
purpose, conditionF (Si) = 0 is considered. It corresponds to a
set of equations/inequalities. Solving the equations and replacing the
results into the other relations prove thatF (S1) > 0; F (S2) > 0
and F (S3) > 0 iff

(nE > nG) _ (nA > nC)_ (nB > nF + nD); (1)

(nE > nG) _ (nB > nF ); (2)

(nA > nC) _ (nB > nD): (3)

It can be shown that conditions (1–3) are necessary as well. These
conditions are less restrictive than the following condition obtained in
[5] using circular-wait:((nA > nC)_(nB > nF +nD))^((nE >

nG)_(nB > nF +nD)). The superiority of siphon-based approach
will be confirmed in Section V.

Clearly, if the net is reversible, then any token in an operation
place can be brought back to its related resource places and the net is
deadlock-free. Furthermore, if tokens in a given place can no longer
moved forward, using the same arguments, it can be shown that:

Corollary 1: Suppose that Restrictions 1–3 hold. Then there exists
a markingM 2 R(M0) and a placep such thatM(p) > 0 and tokens
in p can no longer move forward iff siphons ofG can become empty.

Finally, let us notice that conditions of Theorem 1 and Corollary
1 can be checked using Property 3.

Under the reversibility, the RCN-merged netG is deadlock-free iff
the initial marking is not a dead marking, i.e. at least one transition
can fire. Furthermore, the liveness of the integrated model reduces to
its potential liveness, a property easier to check.

In view of Theorem 1, it is obvious that:
Theorem 2: Suppose that Restrictions 1–3 hold, thenG is live and

reversible iff no siphon ofG can become empty and every transition
can fire at least once, i.e. every transition ispotentially firable.

The following results can be used to check the potential firability
of the transitions.

Restriction 4:At any common transition, there is at most one output
place that is an operation place.

Theorem 3: Suppose that Restrictions 1–4 hold, then any transi-
tion of G is potentially firable.

Proof: Under the ongoing conditions,G� is an acyclic Petri net
such that all extremity nodes are transitions and that any transition
has at most one input place and at most one output place.

For any transitiont, there exists at least one elementary path
t1p1t2p2 . . . tkpkt in G� connecting a source transition tot. Consider
now the Petri netG. Clearly,t1p1t2p2 . . . tkpkt is an elementary path
in G as well and all input places oft1 are resource places. As a result,
t1 is firable atM0 and letM1 be the marking obtained by firingt1.

Fig. 5. RCN-merged net that is reversible but not live.

Fig. 6. An FCF-component.

Fig. 7. Counter example.

Fig. 8. BOM of U1; U2, andU3.

Let us show thatt2 is firable atM1. First, M1(p1) = 1. From
Restriction 4,p1 is the only operation place marked atM1. This
together with the conservation of RCN’s implies thatM1(psr) =
M0(psr) for all s such thatp1 62 Ps. From Restriction 1, any input
place oft2 exceptp1 is a resource placepsr. Clearly,p1 62 Ps, for
all Gs such thatpsr 2 �t2. This implies thatt2 is firable atM1. Let
M2 be the marking obtained by firingt2.

Similarly, it can be shown thatt3 is firable atM2; . . . ; and t is
firable atMk.

Consider now the case where Restriction 4 does not hold. Checking
potential firability becomes difficult as firing any transition not ful-
filling Restriction 4 creates parallel processes. The potential firability
is not always true as shown by the net of Fig. 5. It is obtained by
merging two RCN’s. Restrictions 1–3 hold but Restriction 4 does not
hold. The net is reversible but transitiont3 cannot fire.

One way of verifying the potential firability of a given transitiont is
to check whether a sequence of transitions containingt can be found
by either explicit enumeration or heuristic search. In the following,
we use instead structural properties of the net. The basic idea is to
remove the nondeterminism of the RCN-merged net by choosing for
each operation place an output transition and to study the liveness of
the resulting nets. This leads to the notion ofForward-Conflict-Free
components(or FCF components).

Formally speaking, an FCF-componentN1 of a net N is a
subnet generated by a subsetT1 of transitions having the following
properties: i) each place inN1 has one output transition and at least
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Fig. 9. RCN modules.

one input transition; ii) a subnet generated byT1 is the net consisting
of transitions inT1, all of their input and output places, and their
connecting arcs.

Fig. 6 is an FCF-component of the netG� generated by transitions
ft1; t2; t3; t4; t5g. It is conflict-free because it does not containt6.
From this examples, an FCF-component is not always a marked graph
and a place in it may have more than one input transition.

Since G� is an acyclic graph and all its extremity nodes are
transitions, any FCF-component ofG� is an acyclic FCF whose
extremity nodes are extremity nodes ofG�. Further,

Lemma 1: Suppose that Restrictions 1–3 hold, the Petri netG� is
covered by FCF-components with root nodes.

Proof: Let t� be any transition ofG�. We construct an FCF-
component containingt�. First, there exists at least one elementary
path t1p1t2p2 . . . tkpkt� in G� connecting a source transition tot�.
SetP � = fp1; p2; . . . ; pkg andT � = ft1; t2; . . . ; tk; t

�g. Repeat the
following recursions until convergence ofP � andT �:

• For everyt 2 T �, setP � = P � [ t�;
• For everyp 2 P � such thatp � \T � = �, setT � = T � [ ftg

with any t 2 p�.

The set of places of the subnetN� generated by transitions inT �

is P � since any transition inG� has at most one input place. From
the construction, any place inN� has one outgoing arc and at least
one incoming arc.N� has a unique source transitiont1. Furthermore,
any node inN� can be reached fromt1 and t1 is a root.

Let R be the set of FCF-components with root nodes ofG�. For
each of its elementŝN = (P̂ ; T̂ ; F̂ ; M̂0), let f(N̂) be the subnet

of G generated by transitions in̂T . Clearly, f(N̂) can be derived
from N̂ by adding resource places that are input or output places of
transitions inT̂ .

Theorem 4: Suppose that Restrictions 1–3 hold, a transition
t is potentially firable if there exists an element̂N in R
such that t is in N̂ and that no siphon off(N̂) can become
empty.

Proof: From Lemma 1, there exists an FCF-componentN̂
containingt. Let us notice thatf(N̂) is also a net that results from
merging a set of netŝC = fĜs j Ĝs = (P̂s; T̂s; F̂s; M̂0s);8s=psr 2
f(N̂)g. EachĜs is the intersection ofGs and f(N̂), and has the
following properties:

• T̂s = T̂ \ Ts; P̂s = P̂ \ Ps;
• For any t 2 T̂s, since N̂ is a subnet ofG� generated by

transitions inT̂ , the input (resp. output) place oft in Gs is
a place inP̂ if it is an operation place. In any case, both the
input and output places oft in Gs belong toP̂s;

• For any p 2 P̂ \ Ps, all its input and output transitions in
N̂ are transitions inGs due to the merging through common
transition subnets. Hence, it has one outgoing arc and at least
one incoming arc inĜs.

These properties together with Restriction 3 imply that any node
in Ĝs can be reached frompsr and vice versa. Hence,̂Gs is an RCN
and f(N̂) can be considered as a net that results from merging a
set of RCN’s through common transition subnets under Restrictions
1–3. According to Theorem 1,f(N̂) is reversible if no siphon in it
can become empty.
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Fig. 10. System model.

Let us show that it is live as well. It is enough to show that every
transitiont is potentially firable. From the property of̂N , there exists
a path t1p1t2p2 . . . tkpkt in N̂ where t1 is the root transition of
N̂ . Clearly it is firable atM0. Let M1 be the marking obtained
by firing t1. Sincef(N̂) is reversible, there exists a sequence� of
transitions leadingM1 to M0. SinceN̂ is an FCF,ti+1 is the unique
output transition ofpi for i = 1; . . . ; k in both N̂ andf(N̂). Hence,

k

i=1
M1(pi) �

k

i=1
M0(pi)+��[t]. From the definition ofM1 and

M0; M1(p1) = 1;M1(pi) = M0(pj) = 0;81 < i � k; 1 � j � k.
Finally, ��[t] � 1 which implies that every transition off(N̂) is
potentially firable.

V. SIPHONS, CIRCULAR STRUCTURE, AND CIRCULAR-WAIT

The notions of circular structure and circular-wait were introduced
in [5], [6] for analyzing liveness and reversibility of RCN-merged
nets. Our purpose here is to show relationship between siphons and
these notions. First, recall that a circular structure is a set of places
CS= fp1; ps r; p2; ps r; . . . ; pk; ps rg such thatp1 2 Gs r; pi+1 2
Gs r; 81 � i < k, and pi and ps r share at least one common
output transition. Acircular-wait is defined by a set of circular
structuresCS1; . . . ;CSm and a markingM 2 R(M0) such that:

p2P
M(p) = M0(prx); 8x 2 W whereW is the set of RCN’s

whose resource places belong to the circular structures andPox is the
set of operation places ofGx that belong to the circular structures.

Theorem 5: Suppose that Restrictions 1–3 hold. If there exists a
siphonS0 that can become empty, then:

1. there exist M 2 R(M0) and a circular structure
fp1; ps r; p2; ps r; . . . ; pk; ps rg such that M(pi) > 0

andM(ps r) = 0, for all i;
2. there exists a circular-wait.

Proof: Let M1 2 R(M0) be a marking at which siphonS0

is empty. Similar to the proof of Theorem 1, it possible to find a
marking M such that any transitiont 62 H, whereH is the set
of source transitions ofG�, is not firable atM . Further, the set
R = fs j M(psr) = 0; s = 1; . . . ; ng is not empty.

To prove Claim (1), consider anys1 2 R. Clearly, there exists
p1 2 Ps with M(p1) > 0. Consider any output transitiont1 of p1.
Sincet1 62 H, it is not firable and has at least one input place that is
an empty resource place. Letps r be this place. Repeating the above
process leads to a set of placesfps r; p1; . . . ; ps r; pk; ps rg such
thatM(ps r) = 0; M(pi) > 0; pi 2 Gs r andpi andps r share
common output transitions. The process stops whenpl 2 Ps for
some1 � l � k. The circular structure that we are looking for is
fpl; ps r; . . . ; ps r; pk; ps rg.

Consider now Claim (2). We first construct a directed graph(V;A).
The set of nodes corresponds to empty resource places and their
marked operation places, i.e.V = Vr [ Vo with Vr = fpsr j s 2 Rg

andVo = fp 2
s2R

Ps j M(p) > 0g. There is an arc from any
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TABLE I
MEANINGS OF PLACES IN RCN MODULES.

resource placepsr to every marked place inGs. There is also an arc
from a placep 2 Vo to a resource placepsr if they have a common
output transition. Clearly, any node inVr has at least one outgoing
arc and any node inVo has at least one incoming arc. Further, since
any output transition of places inVo is not a source transition, it is
not firable and has an input place that is an empty resource place. As
a result, any node inVo has at least one outgoing arc. Clearly, any
circuit in (V; A) corresponds to a circular structure.

We now define another graph(V 0; A0) as follows. Starting from
(V;A) and a nodepsr 2 Vr that is a source node, we removepsr
and nodesp 2 Vo having onlypsr as predecessor. This process is

Fig. 11. FCF component of the system net.

repeated until no node can be removed. Clearly, the iterative process
cannot remove nodes belonging to a circuit in(V;A). The final graph
(V 0; A0) is not empty as a consequence of Claim (1). Furthermore,
for any nodepsr 2 V 0, all marked places inGs remain inV 0.

Since (V 0; A0) has not source nor sink node, every node be-
longs to an elementary circuit. Hence, the set of circular struc-
turesCS1; . . . ;CSm corresponding the set of elementary circuits of
(V 0; A0) contains all resource placespsr 2 V 0 and their related
marked places. From the property of RCN’s,

p2P
M(p) =

M0(psr). CS1; . . . ;CSm andM form a circular-wait.
We notice that Theorem 5 holds as well for Petri nets generated

by FCF-components, i.e.f(N̂). Furthermore, any circular structure
(resp. circular-wait) off(N̂) is a circular structure (resp. circular-
wait) of G. As a result,

Corollary 2: Suppose that Restrictions 1–3 hold. The Petri netG

is live and reversible if it does not contain any circular structure or
there is no circular-wait.

From Theorem 5, the existence of a siphon that can become empty
implies the existence of a circular-wait. However, the converse is
not true and the existence of a circular-wait does not implies the
existence of deadlocked situations. This is true when an operation
place has more than one output transition and at least one of them
is not involved in the circular-wait. A counter-example is given in
Fig. 7. The reachable markingM = (0; 1; 0; 0; 1; 0)T and the circular
structurefp2; p4; p5; p1g form a circular-wait. However, the net is
live and reversible. It can be checked using results of this paper. First,
Restriction 4 holds, which implies that every transition is potentially
firable. There are two minimal siphonsfp1; p2; p3g andfp4; p5; p6g.
Each of them is a marked trap as well. Hence, by Theorem 2, the
RCN-merged net is live and reversible. From the above comments,
we conclude that the results of this paper are stronger than those of
[5], [6]. Furthermore, siphon-based conditions can be checked using
Property 3 or mathematical programming techniques proposed in [3].

VI. A N EXAMPLE

This section presents an example that does not satisfy Restriction 4.
Consider a simple manufacturing system that produces three product
types,U1; U2, and U3, from three raw part types,W1; W2, and
W3. Fig. 8 shows the BOM (Bill of Material) ofU1; U2, andU3.
There are six machine typesMi; i = 1; . . . ; 6 with 2, 1, 2, 2, 1, and
2 identical machines, respectively, two intermediate buffersB1 and
B2 with capacities ofb1 andb2, respectively, andv identical AGV’s.
M1 andM2 have a special requirement that after each operation is
finished, they may be maintained by a shared robotR for replacing
a consumable component (this maintenance process is often found in
semiconductor manufacturing). AGV’s handle the unloading ofU1;

U2, andU3. The production ofU1; U2, andU3 is controlled by a
Kanban system with three types of kanbans,K1; K2, andK3, for
U1; U2, andU3, respectively. The numbers of initial free kanbans
for K1; K2, and K3 are k1; k2, and k3, respectively. From the
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manufacturing resources and their respective processes in the BOM,
we can construct their RCN modules, as shown in Fig. 9, where
dotted areas are common transitions and common transition subnets,
denoted with the same labels. Table I shows the meanings of the
places while the transitions denote the start and/or end of some
operation. After merging the modules, we obtain a system model
in Fig. 10.

It can be verified that the system net only has one minimal
siphon that does not contain a marked trap:S1 = fp6; p12; p26;
p27; p28; p29; p30g. From Property 3, the condition of Theorem 1
holds if F (S1) > 0. After some algebraic manipulations, it can be
shown thatF (S1) > 0 iff

(k1 < b2) _ (k2 < 2): (4)

It can be shown that condition 4 is necessary as well.
Thus, the net is reversible iff condition 4 holds. If it
does not hold, i.e.,(k1 � b2) and (k2 � 2), then the
sequence tk

1
(t2t4)

b ta2t
minfk �b �a;2g
3

t
k
9
t210t

minfk �2;1g
11

, where
a = minfk1 � b2; 1g, leads to a deadlock such that all transitions
except those related toU3 (i.e., t17; t18; t19; t20; t21; t22, andt25)
are not firable forever. Since Restriction 4 is not satisfied, we must
generate FCF components to check the potential firability of each
transition. For example, the net of Fig. 11 is an FCF component
N1 of the resultant netG� after the resource places are removed
from the system net.f(N1) is the resultant net after the resource
places are added toN1. It is a marked graph and is live iff every
resource place is initially marked. As a result, every transition in
N1 is potentially firable. Similarly, it can be shown that transitions
not in N1 are potentially firable as well. Therefore, the system net
is live if condition 4 holds.

VII. CONCLUDING REMARKS

In this paper, we have analyzed Petri nets resulting from merging
Resource Control Nets introduced in [5]. Our analysis has been based
on siphons. It has been shown that a RCN-merged net is reversible
iff no siphon in it can become empty. Under the reversibility, the
liveness of the RCN-merged net reduces to its potential liveness. If
each transition in the net does not create parallel processes, the net
is proven to be potentially live. Otherwise, the analysis is based on
the notion of FCF components. Finally, relations between siphons,
circular structure, and circular-wait have formally been established.
The results in this paper have been compared with those in [5]. The
superiority of the former has been shown.

We notice that the number of siphons to be examined grows
exponentially with the number of RCN’s involved. Therefore, to
apply the results of this paper to synthesizing large resource control
systems, one could use the mixed-integer programming approach
proposed in [3] for checking, without explicit enumeration of siphons,
the existence of potential deadlocks.
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Assessing Determinism of Photo-plethysmographic Signal

Joydeep Bhattacharya and Partha Pratim Kanjilal

Abstract—A study was performed to analyze the signal obtained
from a noninvasive photo-plethysmographic device from four subjects
in different clinical conditions. With the help of the theory of nonlinear
dynamics, it is verified that the cardiovascular dynamics is dominated
by an underlying chaotic attractor. A new robust and computationally
efficient method is presented for the detection of the hidden deterministic
structure of a time series. It is shown that the degree of chaos as well
as the underlying determinism is directly related to the subject’s clinical
stability.

Index Terms—Blood pressure waveform, cardiovascular systems, de-
terminism, nonlinear dynamics, singular value decomposition.

I. INTRODUCTION

The analysis of physiological time series can be used to iden-
tify hidden dynamical information leading to new insights into the
understanding of physiological mechanisms or state. Physiological
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