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Abstract — Mining coexpression clusters across multi-
ple datasets is a major approach for identifying transcrip-

tion modules in systems biology. The main difficulty of this
problem lies in the fact that these subgraphs are buried

among huge irrelevant connections. In this paper, we ad-

dress this problem using a noise reduction strategy. It con-
sists of three processes: (1) Coarse filtering; (2) Clustering

potential subsets of graphs; (3) Refined filtering on those
subsets. Using yeast as a model system, we demonstrate

that most of the gene clusters derived from our method are

enrichment clusters. That is they are likely to be functional
homogenous entities or potential transcription modules.

Key words — Coexpression networks, Frequent dense

vertex sets, Summary graph, Clustering.

I. Introduction

A key goal in systems biology is to characterize the under-

lying molecular mechanisms governing specific cellular behav-

iors and processes. Microarray technology has revolutionized

the way of studying gene expression because of its capabil-

ity measuring the activities of thousands of genes simultane-

ously. Transcription modules, which form the building block

of genetic regulatory networks, are groups of genes regulated

by the same transcription factor(s). The main approach to

reconstruct transcription modules is identifying coexpression

clusters, which are assumed likely to be controlled by the same

transcription factors. However, it may result in a number of

subtle and false modules because of (1) cellular processes are

complex dynamical systems; (2) the transcription of genes in

different modules may be perturbed simultaneously under a

given condition; (3) the noisy nature of the high throughput

technologies leads to a significant number of false positives or

false negatives.

In order to overcome the three aforementioned problems,

Zhou first systematically studied to extract the co-expression

clusters across multiple datasets. In her seminar paper, she

developed the concept of 2nd-order expression analysis where

1st-order expression analysis refers to the extraction of co-

expression patterns from each microarray data set, and 2nd-

order expression analysis refers to analyze their correlated oc-

currence across multiple data sets[1]. Since then, Yan et al.

proposed a pattern-growth approach CloseCut, and a pattern-

reduction approach SPLAT. Both aimed at identifying the ex-

act recurrence of dense patterns in different graphs[2]. Hu

et al. developed a platform, named CODENSE, to mine

coherent dense subgraphs across multiple networks[3]. CO-

DENSE utilizes a summary graph to integrate multiple data

sets. However, such aggregation of multiple networks may

produce tremendous false dense patterns. As the number of

graphs increases, their summary graph may eventually satu-

rate as a clique. Later, Yan et al. proposed to partition the

input graphs into some potential subgroups according to their

topological similarity[4]. Chen et al. recommended to first

cluster edges with high correlated recurrence, and then mine

frequent dense subgraphs in each edge cluster. As coexpres-

sion graphs often contain hundreds of thousands of edges, they

adopted the min-hashing and locality-sensitive hashing tech-

niques to obtain possible candidate clusters[5].

As the connection of frequent dense patterns may differ

from network to network, Yan et al. relaxed the requirement

of coherence and named these patterns across multiple graphs

as Frequent dense vertexsets (FDVSs). The main difficulty

of this problem lies in the fact that the FDVSs are generally

surrounded among a huge amount of irrelative noise edges. In

this paper, we solve the FDVSs problem through iteratively

removing noise edges so that subgraphs of the FDVSs gradu-

ally come out.

The outline of this paper is organized as follows. In Sec-

tion II, we introduce the problem formulation and some defi-

nitions needed. In Section III, we propose two key algorithms

to eliminate irrelevant noise edges and then present the main

framework of mining FDVSs. In Section IV, we take an enri-
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chment analysis of FDVSs obtained from microarray datasets

of Saccharomyces cerevisiae and give an example of functional

annotation. Finally, we conclude in Section V.

II. Problem Formulation

A microarray dataset is usually modeled as a simple un-

weighted and undirected graph, where each gene is represented

by one node and two genes are connected with an edge if their

expression profiles show high and significant correlation. A

frequent densely connected subgraph across many graphs may

correspond to a possible tight coexpression cluster. The FD-

VSs problem can be formulated as: Given m graphs with n

common nodes, search all FDVSs which are densely connected

in at least in k graphs (0 < k ≤ m)). In the following, we

present some definitions needed to illustrate our method.

Definition 1 (Graph set). A graph set D = {Gi =

(V, Ei)}, 1 ≤ i ≤ m, Ei ⊂ V × V , where the graphs in this set

share a common vertex set V .

Definition 2 (Graph density). Consider a graph

G(V, E), its density is defined as σ = 2|E|/(|V |(V |−1)), where

|E| and |V | represent the number of vertices and edges respec-

tively.

Definition 3 (Edge clustering coefficient). Given a

graph G(V, E), the edge clustering coefficient of uv ∈ E

(u, v ∈ V ) is defined as Ref.[6]

ECuv =
z
(3)
u,v

max(du, dv)

where du and dv represent the degree of vertices u and v re-

spectively, z
(3)
u,v is number of triangles pass through uv.

Definition 4 (Edge induced subgraph). Given a graph

G(V, E) and an edge uv ∈ E (u, v ∈ V ), the subgraph induced

by uv is defined as guv(V
′, E′), where V ′ ⊂ V is the vertex set

connected with u or v, E′ ⊂ E is the edge set between vertices

in V ′.
Definition 5 (Edge density coefficient). Given a graph

G = (V, E), the edge density coefficient of uv ∈ E (u, v ∈ V )

is defined as

EDuv =

√
(du − 1)(dv − 1)

(du + dv − 2)/2
σ(guv)

where du and dv represent the degree of vertices u and v re-

spectively, guv is the subgraph induced by edge uv.

Graph partitioning is a common way in complex networks

analysis. Girvan and Newman proposed a global measure-

edge betweenness, which counts the number of the shortest

paths running through an edge[7]. Obviously, edges bridg-

ing dense communities tend to have higher edge betweeness

score than those inside communities. However, its computa-

tion complexity is O(|E‖V |), which hinders its application to

large scale networks. Radicchi introduced the edge clustering

coefficient, which counts the number of triangles containing a

given edge[7]. Recently, we proposed the edge density coeffi-

cient to measure the local density around an edge, and it is

anti-correlated with the edge betweeness. This means an edge

must be sparsely connected with other edges if this measure is

very low[8].

Definition 6 (Frequent dense vertex set). Given a graph

set D = {Gi = (V, Ei)}, a set of vertices V ′ ⊂ V is a fre-

quent dense vertex set if the density of its induced subgraphs

δ(gi(V
′)) is larger than or equal to δ at least in k graphs.

Definition 7 (Summary graph). Given a graph set

D = {Gi = (V, Ei)}, its summary graph is a graph S(V, Ê)

where the average edge density coefficient of each edge e ∈ Ê

is larger than a user-defined threshold.

Summary graph was originally used to conserve all the rel-

evant edges and eliminate some irrelevant ones at the same

time. In this paper, we use the edge density coefficient to

build summary graph . Obviously, it is more suitable than the

frequency of edges used in previous papers[3−5], and can be ap-

plied to efficiently filter out irrelevant edges. As the deletion of

an edge will affect its neighboring edges’ density coefficients,

we can iteratively eliminate irrelevant edges by returning the

summary graph S to each graph Gi ∈ D (see diction III.2)

Definition 8 (Edge support vector). Given a graph set

D = {Gi = (V, Ei)} and its summary graph S(V, Ê), the sup-

port vector of an edge e ∈ Ê, written as ve, is a binary vector

of length m. The ith element of ve indicates whether e appears

in Gi or not.

The edge support vector actually indicates the occurrence

of an edge across the graph set D, it can be used to find po-

tential subsets of D containing at least one common FDVS.

Because of the complexity and noise of biological networks,

the support vectors of edges within the same FDVS may be

very different. For example, the Hamming distance between

support vectors 1111100000 and 1111101011 is 3. However, the

most important information is they both appear in G1, · · · , G5.

In order to capture this feature, we define the similarity of two

support vectors as

s(ve, ve′) =
〈ve, ve′〉

min(h(ve), h(ve′))

where 〈·, ·〉 and h(·, ·) denote the inner product and the Ham-

ming weight of two vectors respectively.

III. Mining Frequent Dense Vertex Sets

1. Motivation

The difficulty of mining FDVSs mainly comes from the fact

that they are buried among a huge amount of irrelevant edges.

Here we define the irrelevant edges as those having no contri-

bution to the formation of FDVSs. If we can effectively filter

out most of those irrelevant or noise edges, the FDVSs will

become easily detected. Then, the key issue is how to identify

those noise edges. Intuitively, we have following observations:

(1) If an edge e ∈ Ei is sparsely connected with its neigh-

bor edges, then it has no contribution to the FDVSs.

(2) If an edge e ∈ Ei is densely connected only in a few

graphs, then it has no contribution to the FDVSs because of

the frequency requirement.

(3) If an edge e ∈ Ê bridges two densely connected sub-

graphs in summary graph S, then it has no contribution to

the FDVSs.

(4) If e �∈ Ê ∧ e ∈ Ei(1 ≤ i ≤ m), then it has no contribu-

tion to the FDVSs.
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(5) If V ′ ⊂ V is a FDVS in a subset of graphs SUB(D),

then their connections in each graph of D − SUB(D) have no

contribution to this FDVS.

2. Algorithms

In order to address the five kind of noisy edges listed in

above, we designed two algorithms: FILTER and GCLUS-

TER. FILTER contains 4 steps to single out those edges listed

in above, and its workflow is illustrated in Fig.1.

Algorithm 1 FILTER

Input: Graph set D = {Gi = (V, Ei)} (1 ≤ i ≤ m),

Minimal density threshold δ,

Minimal frequent support k,

User defined parameter f , p, q;

Output: Summary graph S(V, Ê) and the resulted graph

dataset D′ = {Gi = (V, E′
i)};

1. filter out edges with EDe < δ/f in each graph Gi

2. build summary graph S with edges satisfying
∑

i EDe ≥
pkδ(1 ≤ i ≤ m);

3. filter out edges with ECe < q in summary graph S;

4. return S to Gi by only keeping edges satisfying e ∈
Ê ∧ e ∈ E′

i;

5. repeat 1 to 4 until the summary graph S does not change

any more.

Fig. 1. Schematic illustration of the workflow of FILTER,
dashed lines represent those to be deleted by previ-

ous step

Fig.1. shows a cartoon of four graphs processed by FIL-

TER. Compared with the original graph set D, the resulted

graph set D′ contains less noise edges. However, we can’t ex-

tract those FDVSs directly from the resulted summary graph

S at this time. For example, the dense subgraph formed by

vertices {a, b, c, d} in S actually represents two FDVSs {a, b, d}
and {b, c, d}. As a FDVS only appears in a subset of graphs, it

can be easily identified if we know in which subsets it appears.

For m = 20 and k = 6, there are 38760 possible subsets of

graphs. Obviously, it is impractical to test each of them.

GCLUSTER is designed to cluster the potential subsets of

D including at least one FDVS based on those edges in the fi-

nal summary graph S. Concerning the frequency requirement,

we take vectors with Hamming weight k or k + 1 as the pos-

sible seeds to cluster. It is because we don’t know the precise

subsets containing at least one FDVS. GCLUSTER consists

of two processes: (1) project all vectors to seed vectors; (2)

select a seed vector to cluster.

Algorithm 2 GCLUSTER

Input: Summary graph S(V, Ê), Graph number m, Mini-

mal frequent support k,

Minimal Hamming distance threshold τ ;

Output: Cluster center set C;

1. assign the support vector of each edge e ∈ Ê a weight

w(ve) = 1, and puts those with Hamming weight k or k + 1

to set A and others to set B;

2. merge the same vectors in set A and B by adding their

weight and leave only one vector;

3. for each edge ve ∈ B do

find a subset SUB(A)⊂A where each vector having the

maximal similarity score s(ve, ve′) with ve;

update the weight of ve′ ∈SUB(A) by w(ve′) = w(ve′) +

w(ve) ∗ w(ve′)/
∑

w(ve′);

remove ve from B;

4. move those vectors in A with Hamming weight k to set

B;

5. repeat step 3;

6. A=A∪B

7. sort vectors v ∈A in a decreasing order according to

their weight w(v);

8. do{
set T=NULL

move the first vector from A to T;

for each v ∈A do

if
∑

t∈T h(v, t)/|T| < τ , then move v from A to T;

decide a cluster center c based on vectors in T and w(c) =∑
t∈T w(t);

add c to set C;

} while (A!=NUKK)

Not only does the projecting significantly reduce the clus-

tering space, but also makes GCULSTER working like a soft

clustering. In step 7, the majority rule is used to determine a

cluster center based on the vectors in T. Specifically, we just

count the weight of 1s and 0s in each bit. If the weight of 1s is

larger than that of 0s, then it is 1 and vice versa. The weight of

those centers can be understood as the number of edges they

may represent. The larger it is, the more FDVSs they may

contain. Fig.2 illustrates the workflow of GCLUSTER based

on the final graph set in Fig.1. GCLUSTER projects those vec-

tors to seed vectors with Hamming weight 2 or 3, and finally

results in three cluster centers 1110, 1101 and 0011, which cor-

respond to the subset of graphs containing {a, b, d}, {e, f, g, h}
and {b, c, d} respectively.

Fig. 2. Schematic illustration of the workflow of GCLUSTER

by graphs in Fig.1
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3. The main framework

Based on the above two algorithms, the mining process for

FDVSs can be formulated as follows:

(1) Invoke FILTER to perform a coarse filtering of irrele-

vant edges on graph set D;

(2) Invoke GCLUSTER to find potential cluster centers

C based on the resulted graph set D and the corresponding

summary graph S;

(3) Build a graph set SUB(D) based on each cluster center

c ∈ C, and invoke FILTER to perform a refined filtering of

irrelevant edges.

(4) Detect dense subgraphs in the resulted summary

graphs and output their vertex sets.

(5) Merge identical vertex sets and separate some large

vertex sets.

Concerning the user-defined parameters in FILTER and

GCLUSTER, Our simulation results show that parameter f

can be set from 4 to 10. The parameter p can be set from

0.1 to 0.2 for coarse filtering and from 0.8 to 0.9 for refined

filtering. It is because the FDVSs appear in most graphs of

SUB(D) in the latter case. The parameter q can be set as

a constant 0.334. The Hamming distance threshold is set as

τ = 2, that means the Hamming distance between any two

vectors in T is no more than 2.

If the frequency of a FDVS is larger than k, then it can be

extracted from not only one SUB(D). For example, {a, b, d}
can be obtained both from cluster centers 1110 and 1101 in

Fig.2. Therefore, there exist some identical FDVSs from dif-

ferent center c ∈ C. In this paper, two FDVSs are identical if

they differ less than 2 vertices and we can merge them as one.

On the other hand, a large FDVS may contain a small one.

This situation can be addressed by checking their occurrence

in D. If they are highly correlated then they should be merged

as one; otherwise the large FDVS should be broke into two

small FDVSs.

Finally, the overlapping problem between FDVSs can be

easily addressed by our method if their occurrences are not

high related. For example, {a, b, d} and {b, c, d} in Fig.1 share

a common pair of vertex {b, d} and form a dense subgraph in

summary graph S, they can be easily distinguished from two

cluster centers 1110 and 0011 respectively.

IV. Experimental Study

We use 10 datasets of Saccharomyces cerevisiae from

Stanford microarry dataset (http://smd.stanford.edu) and the

NCBI Gene expression omnibus (http://www.ncbi.nlm.nih.

gov/geo/). According to the experimental conditions, they

are partitioned into 20 datasets with at least 7 experiment

data (see Table 1 for detailed information.). The similarity

between two genes in one dataset is measured by Pearson’s

correlation between their expression profiles. We transform

the Pearson’s correlation (denoted as r) into another quan-

tity,
√

(n − 2)r2/(1 − r2), and model it as a t-distribution with

n−2 degrees of freedom, where n is the number of data points

used. Two genes are connected if the Pearson’s correlation

of their expression patterns is significant at a = 0.001 level.

Finally, we build 20 co-expression networks comprising 5672

common genes.

Table 1. The sources of microarray files

Experimental conditions
Data

References
points

1 Alpha factor release 18 Spellman

2 Elutriation 14 et al. (1998)

3 DNA damage (MMS) response 17 Gasch

4 Gamma radiation 17 et al.

5 Mock irradiation 8 (2001)

6 Diamide 8

7 Heat shock 22

8 Nitrogen depletion 9 Gasch

9 Nutrition limitation 10 et al. (2000)

10 Sorbitol effects 6

11 Steady state 8

12 Cell cycle alpha factor 13 Zhu et al.

13 Fkh1 2 alpha fator 13 (2000)

14 Nutrition 8
Sudarsanam

et al. (2000)

15 Sporulation 7
Chu et al.

(1998)

16 Diauxic shift timecourse 7
DeRisi

et al. (1997)

17
Signaling and circuitry

56
Roberts

of multiple MARK pathways et al. (2000)

18
Glucose pulse on

26
Ronen

galactose chemostat et al. (2006)

19
Calcineurin/Crzlp signaling

24
pathway for Ca Yoshimoto

20
Calcineurin/Crzlp

8
et al. (2002)

signaling pathway for Na

1. The distribution of edges

We first study the performance of FILTER on the 20 coex-

pression graphs. At beginning, there are about 820967 edges

whose frequencies are larger than 3 across these graphs. After

processed by FILTER with δ = 0.6 and k = 6, only 348222

edges remain. The coarse filtering process actually eliminates

more than half of the original edges which are irrelevant edges.

Fig.3 shows the distribution of edge numbers before and after

filtered versus the Hamming weight of support vectors. The

number of edges roughly obeys a power law distribution before

filtered and this means the frequency of most edges is relative

small, of which about 90% of edges are less than 8. It changes

to a biased bell shape after a coarse filtering. Concerning the

Fig. 3. The distribution of edges in graph set D before and
after invoking FILTER for coarse filtering with k = 6,

δ = 0.6
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Fig. 4. The number of GO terms significantly shared by ob-

tained clusters appearing in at least 6 graphs. Plots
(a), (b) and (c) correspond to δ = 0.6, 0.7, 0.8 respec-

tively

FDVSs appearing in at least k = 6 graphs, GCLUSTER

project all other edge vectors to those with Hamming weight

6 or 7. As they are about 22% of the total edges, using them

as seed vectors to project is reasonable. Fig.3 also presents

the distribution of combinatorial numbers for choosing k from

n = 20. Having a further look at Hamming weight 3, 4 and 5,

we can see that the number of edges is extraordinarily larger

than the corresponding combinatorial number. This demon-

strates there are huge amount of edges sharing the same sup-

port vectors at each Hamming weight. And the number of

vectors to be projected and then clustered by GCLUSTER

will be relatively small.

2. Enrichment analysis of FDVSs

Applying the framework in Section III.3, we obtained 43,

35 and 35 FDVSs when δ is 0.6, 0.7, and 0.8 respectively and

k is 6. To quantify the functional homogeneity, we submit-

ted those clusters to GOEAST (http://omicslab.genetics.ac.cn

/GOEAST/)[9]. For each cluster, GOEAST returns a list of

GO terms in three categories: Biological process (BP), Molec-

ular function (MF) and Cellular component (CC). In this pa-

per, an enrichment cluster is defined as if more than 80% of its

genes significantly share at least one GO term with a = 0.001

level. Biologically, enrichment clusters tend to be regulated by

the same transcription factor(s), and thus form a transcription

module. Fig.4 shows the number of GO terms significantly

shared by each cluster. Obviously, most of the clusters are en-

richment clusters. The average numbers of GO terms shared

by each cluster are 25.14, 30.77 and 30.83 when δ is 0.6, 0.7,

and 0.8 respectively. This means the increasing of threshold δ

can improve the functional homogeneity of clusters.

3. Functional annotation

Fig.5 presents one cluster containing seven genes

YGR118W, YPR043W, YPL079W, YOR167C, YJL136C,

YLR388W, YNL303W across the 20 graphs. They are densely

connected in 11 graphs. When submitted to GOEAST, it re-

turns three directed graphs corresponding to GO terms signif-

icantly shared by six genes except for YNL303W in blue color,

which has no functional annotation now yet. Fig.6 shows the

relation of the significantly shared GO terms in three catalogs:

Biological process (BP), Cellular component (CC) and Molec-

ular function (MF). Apart from MF, the terms in BP and CC

are densely related, and the two leaf nodes GO0006412 (trans-

lation) and GO-0022626 (cytosolic ribosome) have a depth 6

and 9. This indicates they share high functional homogeneity.

The degree of gene YNL303W in the 11 dense subgraphs is 5,

6, 5, 6, 6, 3, 5, 6, 6, 4, and 6 respectively. This indicates it is

Fig. 5. A potential transcription module which is tightly coexpressed in 11 out of 20

datasets

highly related with other six genes. Thus, we

can speculate that gene YNL303W has same

functions with other six genes.

V. Conclusions

We developed a new framework to mining

frequent dense vertex sets in multiple coex-

pression networks. The main idea is to fil-

ter out irrelevant edges and identify FDVSs

in some potential subsets of networks. In or-

der to achieve this aim, we designed two algo-

rithms: FILTER and GCLUSTER. Combined

with the summary approach, FILTER just
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uses the edge density coefficient and the edge clustering coeffi-

cient to detect and delete irrelevant edges iteratively. Through

a projecting technique, GCLUSTER can achieve a simple

fuzzy clustering. Our method is scalable in the number and

size of graphs to be mined. And it is also extendable to

weighted and directed

Fig. 6. The relation between GO terms significantly shared

by six genes in Fig.5 in three catalogs: BP, CC and

MF

graphs. We demonstrated its application in identifying coex-

pression clusters across 20 microarray dataset of yeast. Most

of the identified gene clusters are enrichment clusters which

significantly share a number of GO terms. Therefore, the dis-

covered clusters can be used to predict functions of unknown

genes, construct transcription modules and infer potential bi-

ological mechanisms.
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