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Abstract A router architecture based upon ForCES (Forwarding and Control Element Separation), which is being
standardized by IETF ForCES working group, gains its competitive advantage over traditional router architectures in
flexibility, programmability, and cost-effectiveness. In this paper, design and implementation of a ForCES-based router
(ForTER) is illustrated. Firstly, the implementation architecture of ForTER is discussed. Then, a layered software model,
which well illustrates ForCES features, is proposed. Based on the model, design and implementation of Control Element
(CE) and Forwarding Element (FE) in ForTER are introduced in detail. Moreover, security for ForTER is considered and
an algorithm to prevent DoS attacks is presented. Lastly, experiments of ForTER are illustrated for routing and running
routing protocols, network management, DoS attack prevention, etc. The experimental results show the feasibility of the
ForTER design. Consequently, the ForTER implementation basically testifies the feasibility of ForCES architecture and
some IETF ForCES specifications.
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1 Introduction

Several demands from Internet service providers and
network end-users have made a great impact upon the
equipment designs for next generation IP networks[1,2].
The demands for next generation network equipments
(formally called Network Element, NE) can be de-
scribed as: 1) being flexible enough for the deployments
of ever growing new services; 2) being open and mod-
ular enough so that the equipment market is hard to
monopolize, and the equipment prices can be reduced;
3) being capable of providing QoS services in order
to support real-time applications such as multimedia
transmissions[3].

Open programmable networks[4] are considered as
the prospective architecture to meet the above de-
mands. In open programmable networks, an NE (e.g.,
a router/switch) is systematically separated into a con-
trol plane and a forwarding/switching plane. Forward-
ing/switching plane receives packets from outer net-
works, processes the packets according to functional
requirements of the NE, and then outputs the packets
back to outer networks. Forwarding/switching plane
usually needs the ability to process packets at line

speed. Control plane controls forwarding/switching
plane by providing adequate parameter values for the
process. More importantly, the interface between the
control plane and the forwarding/switching plane is
standardized. Moreover, resources at the forward-
ing/switching plane, which are used for processing
packets, are also described in a standardized way. As
a result, control plane can access and control the for-
warding/switching plane resources in a standard way.
This makes it feasible for control plane and forward-
ing/switching plane to be separated at their product
level, i.e., control plane and forwarding/switching plane
as separate products from different vendors can work
together to form an NE with full interoperability.

Accordingly, researches on open programmable net-
works are focused on the way to standardize the in-
terface between control plane and forwarding/switching
plane and to setup a model to standardize the resources
in forwarding/switching plane.

Ideas in early Opensig[5], active networks[6], and
virtual networks[7] helped form the basic concept of
open programmable networks. Opensig emphasizes the
standardization of interfaces, active networks more on
the programmability of network functions, and virtual
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networks on providing QoS by allocation or reservation
of network resources.

Researches in the past years on the standardiza-
tion of interfaces and resources in open programmable
networks include IEEE P1520[8], Multiprotocol Over
ATM (MPOA)[9], General Switch Management Pro-
tocol (GSMP)[10] for IP Switching[11], Multi-service
Switching Forum (MSF)[12], and Forwarding and Con-
trol Element Separation (ForCES)[13]. Among them,
the ForCES, which is a working group under Routing
Area of IETF, has made the most prominent achieve-
ments for open programmable networks. Currently, it
has been widely accepted as the most typical solution
to open programmable networks. ForCES is also sup-
ported by Network Processing Forum (NPF)[14], ITUT
NGN Focus Group[15,16], and Intel IXA[17].

ForCES proposes that an NE (typically a router)
consists of several Control Elements (CEs), among
which one acts as an active controller and others
as backups and multiple Forwarding Elements (FEs).
Multiple FEs in forwarding plane are interconnected
together, forming a distributed forwarding plane FE
topology to fulfill complex packet forwarding tasks. A
standardized interface called ForCES protocol[18] is de-
fined for the communication between CEs and FEs. Up
to the present, the ForCES group has completed the
work of ForCES requirements (RFC 3654) and ForCES
Framework (RFC 3746). The work of ForCES Protocol
Specification (i.e., ForCES protocol) and ForCES FE
Model[19] is also close to completion.

The concept of ForCES was investigated quite in-
tensively in recent years. R. Haas et al.[20,21] proposed
Web Service-Based CE architecture, in which Web Ser-
vice interfaces were mapped to ForCES messages for
dynamic service deployment. C. Chrysoulas et al.[22]

presented a modular node architecture and specified the
description interface of nodes. Their aim is to make new
services easily added by inserting modules that have the
appropriate functionality. The work of [20–22] is part of
the FlexiNET IST project. On the ForCES-based dis-
tributed router in [23, 24], Hidell et al. presented mea-
surements on the distribution of large routing tables
in an experimental platform consisting of one CE and
up to 16 FEs. J. Fu et al.[25] specified a programming
model for FE. This programming model attempted to
uniform the API of processing blocks in FE. In [26],
J. Fu et al. used the simulation environment to evalu-
ate throughput, latency, and utilization between pooled
and pipelined processing blocks approaches.

In comparison with previous researches, pre-
sented in this paper is an implementation of an
open programmable router that is based on ForCES

architecture and ForCES protocol[27]. The implemen-
tation is called ForTER — a ForCES-based rouTER.
Key design issues for ForTER are discussed and im-
plementation details of the key elements are presented
in this paper. Background of this paper is highly re-
lated to IETF ForCES work. As key participants in
the ForCES work and authors of the ForCES protocol,
we set the motivation of the ForTER implementation
as the evaluation of the ForCES protocol and the as-
sociated ForCES architecture. ForCES is currently in
urgent need of such an implementation to evaluate its
protocol designs.

Section 2 describes the architecture of ForTER. Sec-
tion 3 presents the implementation details of key ele-
ments in ForTER. Section 4 introduces some experi-
ments and test results. Section 5 is the conclusion.

2 Architecture

2.1 Forwarding and Control Element
Separation

Forwarding and Control Element Separation is the
key for the architecture of ForTER. We show the ar-
chitecture as in Fig.1, which complies with the ForCES
Framework defined in RFC 3746. In this architecture,
there exists one primary CE. There may also be some
redundant CEs for system high availability purpose.
There are multiple FEs (may be up to hundreds of FEs
for core routers), which are separated from CEs. The
interface between CE and FE is to be standardized and
the communication protocol upon it is called “ForCES
protocol”. The CE is responsible for the management of
FEs by use of the ForCES protocol. The Fr is the inter-
face connecting CEs, and the Fi connecting FEs. Outer
networks connect ForTER via Fi/f interfaces. After the
ForCES protocol has been standardized, it will make
possible CE and FE being manufactured by different
vendors.

Fig.1. Architecture of ForTER.
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FE is further standardized by ForCES FE Model[19].
The resources in an FE are represented by various kinds
of standardized Logical Function Blocks (LFBs), each
of which has specific functions for IP packet forwarding.
Typical LFBs are classifier LFB, scheduler LFB, IPv4
or IPv6 forwarder LFB and so on. Multiple LFBs are
interconnected via datapaths to form an LFB topology
in FE, so that the FE can carry out a complex pro-
cess on packets. CE is responsible for the management
of LFBs in FE. The management of LFBs includes the
configuration and query of LFB attributes, capabilities,
or events. ForCES protocol makes it possible for CE to
dynamically manage the LFBs and the associated LFB
topology, such as to add/remove/modify some LFBs,
their attributes, and the associated LFB topology. In
this way, CE is able to provide various IP forwarding
services in an “on the fly” way by configuring the very
bottom resources of FE. Note that this management
ability of CE to FE resources is far beyond the man-
agement ability that ordinary router console or IOS can
provide. This makes ISPs able to configure new services
in a very handy, economic, and flexible way.

Mostly, FE forwards packets from some Fi/f to some
other Fi/f, but in some cases, FE also have to redirect
some packets to CE. Packets of these are usually pack-
ets for routing protocols or network management pro-
tocols. These packets will be encapsulated as ForCES
protocol messages and redirected to CE then. A special
security issue called DoS attack from redirect messages
is induced by the redirect packets[28]. Subsection 3.3
will describe it and provide a solution to it.

2.2 Layered Model

IETF ForCES proposed the architecture and the
protocol for forwarding and control element separation.
However, a detailed software model based on the ar-
chitecture is essential for any ForCES implementations
and has not been presented yet. We present here a lay-
ered software model which is applied to ForTER and is
also fit for other ForCES implementations.

The layered software model of ForTER is shown in
Fig.2. As in the figure, the model is coarsely layered as
CE and FE, while FE is divided into FE SlowPath and
FE FastPath. FE FastPath is responsible for the packet
processing that needs running at line speed. The be-
havior of FE FastPath is flexibly controlled by CE via
FE SlowPath.

The Application Module Layer inside the CE
contains independent software modules for ForCES ap-
plications. Typical application modules include routing
protocol modules, network management module, mod-
ules for QoS, and modules for other services. Routing

Fig.2. Layered model of ForTER.

protocol module includes routing protocol stack soft-
ware like RIP, OSPF, etc. Network management mod-
ule provides core software for network management pro-
tocols. The modular design makes it able to widely use
third-party software modules as the ForCES application
modules. In the ForTER implementation, we adopt Ze-
bra routing module as the routing protocol module, and
AgentX++ and NetSNMP as the SNMP module.

Service API Layer in CE is a bridge between up-
per softwares and ForCES-specific layers. On the one
hand, Service APIs in CE convert a service (e.g., Diff-
Serv) from upper application softwares to a sequence of
operation on LFBs. On the other hand, Service APIs
in CE provide call back functions, which are interfaces
to third-party network software, for underlying func-
tion APIs in CE. In this way, Service API Layer has
hidden the feature of ForCES for upper application
and third-party network software. Service API Layer
provides sets of function calls and data structures for
various upper softwares, e.g., sets of function calls for
SNMP, routing, DiffServ, etc. Service API Layer is im-
plemented based on APIs in underlying Function API
Layer.

Function API Layer in CE contains function
calls and data structures for direct operation (i.e.,
configuration, inquiry, and event report) on every
attribute and capability of all the LFBs. On the one
hand, function APIs in CE will call functions in ForCES
Layer to realize actual operation on LFBs in FEs. On
the other hand, functions in Function API Layer of CE
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will be called by ForCES Layer when received protocol
messages from FE are executed.

The CE ForCES Layer includes PL (Protocol Layer)
and TML (Transport Mapping Layer). PL provides
generation and execution of ForCES protocol messages
for certain operations on LFBs in FEs. TML supports
the transportation of ForCES messages over various
transport media, like Ethernet, IP, ATM, etc. In most
cases, the TML is over an IP-based media.

A CE Management Layer is set for the purpose of
the whole CE management. This layer traverses all CE
functional layers, providing a management interface for
all the layers. In ForTER, we set a GUI interface for
CE management purpose, which provides friendly in-
terface for management of the whole ForCES Network
element.

In FE, the FE ForCES Layer is identical to the
ForCES layer in CE, which also consists of PL and TML
sub layers for ForCES protocol.

According to ForCES FE Model[19], LFBs in FE are
logical functional blocks that are abstracted and syn-
thesized from FE physical resources. In the layered
model of ForTER as in Fig.2, the physical resources in
FE are described by microblocks. A microblock is a
physical component with a single function, which usu-
ally runs at line speed to process packets, hence belongs
to FE fastpath layer. To summarize, microblocks are
described more from the implementation and physical
point of view and not directly related to the ForCES
structure, while LFBs in ForCES are modeled more
from the logically abstract point of view. LFBs in FE
are constructed on the basis of the microblocks.

Microblock API layer provides management APIs to
underlying microblocks. The layer will exploit as much
as possible programmability from the microblocks. The
programmability of microblocks is an essence for pro-
grammability of whole FE.

A Function API Layer is necessary for connecting
ForCES Layer and microblock API Layer in FE. The
layer implements the converting task between LFB op-
erations and microblock operations.

The layered model in Fig.2 is featured as being lay-
ered and modular, which helps exploit the generic fea-
tures of ForCES as being open, programmable, modu-
lar, and standardized.

3 Design and Implementation

ForTER is implemented based on the layered model
shown in Fig.2. We further present the design and im-
plementation of elements of ForTER. We also present
a security consideration regarding DoS attacks and

propose an algorithm to prevent the attacks.

3.1 Control Element (CE)

Fig.3 shows the implementation structure of CE in
ForTER. The main platform of CE is based on Win-
dows OS, while third-party network software (includ-
ing routing protocol software Zebra and SNMP soft-
ware NetSNMP) run on a separate Linux OS platform,
which is called the Routing & SNMP server.

As described in the layered model, CE PL supports
the generation, encapsulation, decapsulation, and pro-
cessing of ForCES protocol messages. The messages
and associated modules include: 1) messages for asso-
ciation, e.g., AssociationSetup message, AssociationSe-
tupResponse message, AssociationTeardown message;
2) messages for configure and query, e.g., Config mes-
sage, ConfigResponse message, Query and QueryRe-
sponse message; 3) event notification message; 4) heart-
beat message, 5) redirect message. Among the mes-
sages above, 1) to 4) messages are called ForCES control
messages. Redirect message is the message that con-
tains data packets that are to or from outer networks
via FEs but that need to be processed by the CE, in-
cluding packets for routing protocols and SNMP proto-
col. ForCES just encapsulates these packets directly in
the redirect messages and transport them between CE
and FEs. Different sub-modules in PL are used for pro-
cessing different ForCES messages, like the sub-module
for association, and the sub-module for redirection, as
shown in Fig.3.

We use the TCP+UDP based TML, which is based
on a proposed ForCES TML specification[29] that we
have submitted to IETF, as the TML scheme for
ForTER. In this scheme, TCP is applied to the trans-
mission of ForCES control messages and UDP to redi-
rect message. According to ForCES requirements
in RFC 3654, the transmission of control messages
should be reliable and congestion-controllable, while
redirect messages do not need to be reliably trans-
mitted. We will discuss the TML security problem in
Subsection 3.3.

CE Management Layer as described in Fig.2 is repre-
sented by Management GUI (Graphical User Interface),
as shown in Fig.3. The GUI is provided in ForTER for
management of every part in CE. In the GUI, we de-
signed an FE description tree and an LFB topology
diagram for very handy operation of FEs and the LFBs
inside. An FE consists of multiple LFBs, and an LFB
contains its attributes and capabilities. We use XML
to describe LFBs and use a tree-like structure to show
them.
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Fig.3. Structure of control element.

Fig.4 shows an instance for such an FE and LFB
description tree in the GUI, where the FE attributes
like ID, IP address, and associated LFBs like FE Ob-
ject LFB and FE Protocol LFB[18] are shown. LFBs in
an FE are interconnected and form an LFB topology.
We represent the LFB topology in the CE GUI with
an LFB topology diagram. This diagram looks like a
circuit diagram, where an LFB is like an electronic ele-
ment. Fig.5 shows an example of the LFB topology di-
agram, where every node represents an LFB in the FE
and the lines represent the datapaths connecting them.
By the diagram, we can clearly see the LFBs and their
interconnection relationship inside the FE, hence pro-
vide the ability to see the functions and services of a
router, which is very hard to do for traditional routers.
Moreover, via ForCES configuration messages, CE is
also able to dynamically add or remove some LFBs in
the diagram, in order to modify the functions or ser-
vices that FE provides. This makes FE quite open at
its resources level and very flexibly programmable at
the functional level. For example, by configuring and
modifying the LFBs and the topology, we can change
the ForTER from IPv4 routers to IPv4/IPv6 double
stack routers in a very handy way. Management GUI
also provides the operation on Service API Layer, e.g.,
start/ stop/ restart of routing, SNMP, and QoS ser-
vice, parameter configuration of interfaces to routing
software, SNMP software, etc. We also provide dialog
boxes for TML management like TML parameter (e.g.,
transport protocols, service ports) configurations. This
actually provides the functions as a CE manager does.

As described before, ForTER is flexible to include
third-party software modules as the CE application
module. In the implementation, Zebra is taken as the

Fig.4. Example of an FE and LFB description tree in CE GUI.
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Fig.5. Example of LFB topology diagram in CE GUI.

routing protocol software module, and NetSNMP as
the SNMP module. As mentioned before, routing pro-
tocol packets and SNMP packets are encapsulated in
ForCES redirect messages so as to be transported be-
tween FE and CE. The redirect messages are further
transported between CE main platform and Routing &
SNMP server by use of IP tunnels, as shown in Fig.3.

A VIDD (Virtual Interface Device Driver) is used in
the Routing & SNMP server to mirror FE real network
interfaces (described in Fig.1 as Fi/f) to the server, in
which the routing protocol and SNMP protocol soft-
wares run. It makes all FE network interfaces just
like network interfaces locally on this server. Redirect
messages that contain routing protocol or SNMP pro-
tocol messages are transported over IP tunnel to the
VIDD, and the VIDD recovers them back to routing or
SNMP protocol messages and outputs them to routing

protocol or SNMP software modules for use. In this
way, the third-party software modules can just treat
VIDD as network interfaces that they interact.

3.2 Forwarding Element

ForTER implements FEs based on Intel IXP network
processors. In this case, FE SlowPath and FE FastPath
in Fig.2 layered model are exactly referred to Intel XS-
cale Layer and MicroEngine (ME) Layer. Structure of
FE in ForTER is shown in Fig.6.

The FE Management module in Fig.6 is a manual in-
terface to provide some necessary manual management
for modules in the FE. The FE Management is based
on CLI (Command Line Interface).

Upon receiving control messages from CE, the FE
may be triggered to call LFB operations in the Func-
tions API Layer. The operations on LFBs are further
converted to the operations on microblocks, which are
carried out by the Microblock API Layer.

We have built Microblock API layer and Microblock
layer in ForTER based on Intel IXP environment, where
Microblock API Layer matches Core Component (CC)
Layer, Core Component Infrastructure Layer, and Re-
source Manager Layer, while Microblock layer to IXP
ME layer.

A set of typical LFBs have been accordingly con-
structed in ForTER. The LFBs include IPv4 LPM for-
warding LFB, DSCP classifier LFB, Tagged Interface
LFB, scheduler LFB, etc.

Fig.6. Structure of forwarding element.
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3.3 Security Consideration

Because of the separation of control and forward el-
ements, we must consider a special security problem
for a ForCES router. As described before, FE may re-
ceive some packets from outer networks that have to
be delivered to CE for processing. In this case, FE
just forwards the packets to the CE over the ForCES
channel and via ForCES redirect messages. This leaves
a hole for malicious attackers. Attackers may try to
send a huge amount of such packets to FE and make
FE forward them to CE. As a result, bandwidth of the
ForCES channel that connects FE and CE is easy to
exhaust, making the CE loses control on FEs, and sub-
sequently making the ForCES router totally down. We
call such an attack as a DoS attack from redirect data.

In Subsection 3.1, we proposed adopting the TCP
+ UDP TML for ForTER. In the TML, TCP is for
PL control messages and UDP for redirect messages.
As is known, UDP is more aggressive than TCP, which
leads to unfair bandwidth allocation and TCP conges-
tion when TCP and UDP are in the same link. In the
ForCES case, this will leave space for DoS attacks from
redirect data.

We propose an algorithm here to avoid the DoS at-
tack from redirect data. In the algorithm, we try to
suppress UDP stream in some way that the UDP will
not completely block TCP control message transmis-
sion. Note that in the algorithm, we do not try and do
not need to setup a very strict and full congestion con-
trol for the UDP stream, and the main purpose of the
algorithm is only to guarantee a minimum bandwidth
for control message transmissions between CE and FE.

The key idea of the algorithm is to try to control
UDP stream with reference to TCP stream regarding its
congestion status, i.e., to roughly bind UDP to TCP for
the congestion control. We call TCP and UDP, binding
each other in this way, a TCP-UDP pair. In this way,
we expect the UDP stream not going into a status that
the UDP stream completely blocks the TCP stream.

Fig.7 shows the diagram for the algorithm. Two
parallel threads are established in the ForCES TML to
send ForCES messages from FE to CE, one for con-
trol message sending and another for redirect message
sending. Control message sending thread uses TCP as
the transport protocol, and redirect message sending
thread uses UDP. A sending buffer is respectively set
in the threads to temporarily store sending messages.
A flag called ControlMsgSent flag is used as a global
variable for these two threads, indicating the state
for control message sending. In the control message
sending thread, whenever the sending buffer is checked

Fig.7. Diagram of algorithm to protect redirect data DoS attack.

unempty, a control message is sent using TCP, and
the ControlMsgSent flag is set. In the redirect mes-
sage sending thread, the local redirect message buffer
is first checked to see if there is any redirect message
to send. If so, the sending buffer in the control mes-
sage thread is further checked to see if, at the moment,
there are control messages waiting for sending. If no,
the redirect message sending thread just picks one redi-
rect message and sends it by UDP. If yes, the thread
must further check the ControlMsgSent flag state to
decide if it is allowed to send a redirect message right
now. When the flag is set, it actually means at least
one control message has been sent before last time the
redirect message was sent. In this case, the thread is al-
lowed to send one redirect message over UDP at the mo-
ment. Otherwise, when the ControlMsgSent flag is not
set, it actually means no control message has been sent
since the thread sent one redirect message last time. In
this case, the thread is not allowed to send any redi-
rect message over the UDP channel and has to wait
for the control message sending thread to send at least
one control message. Whenever a redirect message is
sent, the ControlMgSent flag is cleared so as to block
the redirect message sending, till the flag has been set
again by the control message sending thread.

4 Experiments

4.1 Purposes

The nature of the ForTER implementation is for the
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evaluation of the IETF ForCES architecture and the
associated protocol, so we specifically list the purposes
of the experiments we have made based on ForTER as
follows.

1) To see the feasibility of the ForCES architecture
as defined in RFC 3654 and RFC 3746.

2) To see the feasibility of ForCES protocol as de-
fined in ForCES Protocol Specification[18].

We go with our experiments for above purposes by
means of constructing several basic applications on CE.
The applications include:

1) routing function and associated routing protocols,
which are fundamental for routers;

2) SNMP network management.
Besides the purposes above, we also made an exper-

iment on the algorithm presented in this paper for the
prevention of DoS attacks from redirect data.

The ForTER used for the experiments consists of one
CE and three FEs. CE includes a CE platform on Win-
dows and a routing and SNMP server on Linux, struc-
tured as Fig.3. FE is structured as in Fig.6. Among the
three FEs, two FEs run on Intel IXMB2401, and one
FE on IXMB2851, which contain IXP2400 and IXP2850
Intel Network Processors, respectively. CE and FEs are
interconnected by the ForCES protocol which runs over
TCP+UDP TML. ZX5000 — an ATCA-based switch
board is used as the switch fabric to connect these three
FEs.

A SmartBits600 and the TeraRouting Tester soft-
ware are used as the test flow generator and the mea-
sure tool.

The following subsections explain the individual ex-
periments and show the results.

4.2 Routing and Running Routing Protocols

As described before, routing protocols run on the
routing server. Via the ForCES protocol, the routing
protocol software cooperatively works with resources on
FEs to make ForTER a router. In this way, we have
implemented RIP and OSPF routing protocols on the
ForTER.

A TeraRouting Tester based on SmartBits600 with a
LAN3321A port module is used for testing ForTER for
its running of RIP and OSPF. TeraRouting Tester es-
tablishes a simulated network topology, which contains
many simulated routers to send the messages of routing
protocol via SmartBits600 ports. ForTER exchanges
the routing protocol messages with the SmartBits600.
The CE of ForTER learns the topology of the simu-
lated network and generates the routing table. Then
the routing table is distributed to all FEs of ForTER.

In the test scenario, another interface of SmartBits600
sends IP traffic, whose destination IP address is in the
range of the simulated network to ForTER. According
to the generated routing table, FEs of ForTER forward
the IP traffic to its output port which is connected back
to another interface of SmartBits600. If ForTER cor-
rectly runs the routing protocols, SmartBits600 then
can receive all IP traffic which is sent by itself. More-
over, through TeraRouting Tester, lost IP packets along
the paths can be shown. In such a ForCES-based ar-
chitecture, it is expected the TeraRouting Tester should
show the returned traffic with no lost packets.

Fig.8. Result of routing and routing protocol experiment.

Fig.8 shows the final results for testing the routing
protocol and the routing ability of the ForTER. Area
① of Fig.8 shows information of all IP traffic streams
that are generated. Area ② selects the tested rout-
ing protocol type (OSPF as in the experiment), and
shows the information associated with the routing pro-
tocol. At last, area ③ shows the state of IP traffic
streams that are making round trips between Smart-
Bits600 and ForTER, in which the lost frames and the
% loss show the loss state for the streams. Our exper-
iment has shown no packet loss here. This can only
be achieved when the ForTER has run the routing pro-
tocol well, and has correctly produced routing tables
and forwarded packets according to the tables in the
FEs. ForCES protocol is the basis for the CE and
FEs to interactively run the whole routing protocol.
The ForCES protocol messages like configure message,
query message, association message, and redirect mes-
sage are frequently used in the process. As a result, this
routing ability and routing protocol experiment has also
well evaluated the feasibility of ForCES protocol and
ForCES architecture for routers.
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4.3 SNMP-Based Network Management

As Fig.3 explains, SNMP agent runs on the SNMP
server. The server collects information on CE and FEs
to form MIB information. Information on FEs is actu-
ally collected by means of the ForCES protocol.

The experiment is to show the ability of ForTER to
support SNMP. It has been tested that the SNMP agent
in ForTER can configure and query the information on
the FEs to correctly form various MIB information, and
it can also form SNMP trap messages to report events
that happened on FEs. We use Getif software module
as an SNMP management browser, which is located in
the outer network of ForTER. Fig.9 is the experimental
result on the Getif that shows the IP traffic of a specific
port in an FE of the ForTER. This is done by means of
SNMP to GET the ifOutUcastPkts and ifinUcastPkts
MIB on the FE. We still use SmartBits600 as the traffic
generator of the port, and use SmartBits600 start/stop
button to switch the traffic. Then, we monitor the traf-
fic got by the Getif. Fig.9 shows a snapshot of the traffic
diagram, where ifOutUcastPkts and ifinUcastPkts are
recorded.

Fig.9. Result of testing SNMP.

The experiment shows that SNMP is well supported
in the implementation of ForTER. It also shows the fea-
sibility of ForCES architecture and ForCES protocol
from another point of view, as ForTER has ForCES-
based architecture.

4.4 DoS Attack Prevention Algorithm

The algorithm to prevent the redirect data DoS at-
tack, which is to bind UDP to TCP regarding its con-
gestion control, as proposed in Fig.7, is tested, and its
feasibility of using a platform is shown in Fig.10. There
is only one CE and one FE simulated. Connecting CE
and FE is a 10Mbps Ethernet link.

The send rate of packets from SmartBits600 can be
easily configured, and the receive rate of packets can be

Fig.10. Dos attack testing platform.

accurately counted in SmartBits600. Also, the send
rate and receive rate of packets can be detailedly com-
pared in SmartBits600. Therefore SmartBits600 is used
for generating two rate-adjustable UDP flows (called
Flow I and Flow II) that are input to FE. Once FE
receives one packet of UDP Flow I from SmartBits600,
FE would send one simulated ForCES control message
using the TCP socket. When FE receives one packet
of UDP Flow II from SmartBits600, FE would send
one simulated ForCES redirect message using the UDP
socket. In this way, the UDP Flow I triggers ForCES
control message flows that have to be sent from FE to
CE via a TCP TML, and the UDP Flow II triggers
ForCES redirect messages that also have to be deliv-
ered to CE from FE via the UDP TML. For simplicity,
simulated ForCES control messages have the same size
as simulated ForCES redirect messages. We have tried
different-sized (ranging from 64 bytes to 1500 bytes)
ForCES messages. The experimental results are very
similar.

By changing rates from SmartBits600, we can then
adjust the control and redirect messages rates respec-
tively. At the CE side, it is designed to recover two
UDP flows again when CE has received the flows, and
then returns the flows back to SmartBits600. In this
way, in SmartBits600, we then can monitor how the
TCP flow or the UDP flow has been transported from
FE to CE, or in other words, how the throughput is
over the CE-FE link for the two flows, to see if some of
them are blocked or not.

We test the feasibility of the DoS attack algorithm by
means of comparing the throughput status of the flows
when the algorithm is applied and not. TCP sending
traffic keeps 5Mbps, and UDP sending traffic changes
from 1Mbps to 20Mbps for simulating the DoS attack
from redirect data. The throughput is represented by
a percentage, indicating the relative throughput.

Fig.11 shows the throughput status when no DoS
attack prevention means is applied. In this case, the
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UDP flow is independent of the TCP flow regarding
the congestion. Fig.11 shows the throughput changes
of the two flows following the UDP traffic changes. A
little more than 1.0 of the relative throughput is from
the system rounding error. From the figure, we can
clearly see the TCP throughput decreases along with
the UDP traffic increases. This means, in the ForCES
case, the ForCES control messages become harder and
harder to deliver to CE when ForCES redirect message
traffic floods.

Fig.11. UDP independent of TCP.

Fig.12 shows the different result at the time when
the redirect DoS attack prevention algorithm applies.
As described, the algorithm binds UDP traffic to TCP
traffic. Fig.12 shows that when the UDP traffic in-
creases from 1M to 20M, the TCP relative throughput
can roughly keep at 100% status, meaning the ForCES
control messages are not blocked. This also means at-
tackers are unable to destroy the communications be-
tween CE and FE.

Fig.12. UDP binding to TCP.

5 Conclusion

In this paper, we introduce the design and implemen-
tation of the ForTER, an IETF ForCES-based router.
The architecture and the layered software model for

ForTER are described. The detailed design schemes
for the Control Element and the Forwarding Element
are presented, and an algorithm to prevent DoS attacks
from ForCES redirect data is proposed.

Experiments have shown the feasibility of ForTER
with its designs regarding the ability to develop rout-
ing and to run routing protocol, and the ability to sup-
port SNMP network management. More importantly,
the experiments have, as a result, actually illustrated
the feasibility of IETF ForCES architecture as defined
by RFC 3654 and RFC 3746, and the IETF ForCES
protocol, which is near to be standardized as an RFC
protocol.

IETF ForCES working group is now working hard
and is moving towards its completion. Implementations
based on ForCES are highly expected from vendors as
well as the ForCES working group to make one impor-
tant step forward towards completion of ForCES spec-
ifications, and ForCES applications. As the only one
full ForCES implementation ever presented till now,
it is expected ForTER implementation introduced in
this paper can contribute to IETF ForCES work for its
progress.

More efforts on ForTER are required to improve
ForTER from an experimental router into a practical
router. For example, we shall carry out the DoS preven-
tion algorithm experiments in environment of multiple
FEs and observe whether different FEs will affect each
other. Also, our TCP + UDP TML should be compared
with other TML schemes (e.g., SCTP or DCCP).
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