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ABSTRACT

MicroRNAs (miRNAs) are short noncoding RNAs that are involved in post-transcriptional regulation of mRNAs. Microarrays
have been employed to measure global miRNA expressions; however, because the number of miRNAs is much smaller than the
number of mRNAs, it is not clear whether traditional normalization methods developed for mRNA arrays are suitable for
miRNA. This is an important question, since normalization affects downstream analyses of the data. In this paper we develop
a least-variant set (LVS) normalization method, which was previously shown to outperform other methods in mRNA analysis
when standard assumptions are violated. The selection of the LVS miRNAs is based on a robust linear model fit of the probe-
level data that takes into account the considerable differences in variances between probes. In a spike-in study, we show that
the LVS has similar operating characteristics, in terms of sensitivity and specificity, compared with the ideal normalization, and
it is better than no normalization, 75th percentile-shift, quantile, global median, VSN, and lowess normalization methods. We
evaluate four expression-summary measures using a tissue data set; summarization from the robust model performs as well
as the others. Finally, comparisons using expression data from two dissimilar tissues and two similar ones show that LVS
normalization has better operating characteristics than other normalizations.
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INTRODUCTION

MicroRNAs are short z18–24-nucleotide (nt)-long noncod-
ing RNAs that down-regulate mRNA expression by binding
to the 39 untranslated region of their target mRNAs. They
have recently been found to play a significant role in human
cancer (Pasquinelli et al. 2005; Fabbri et al. 2008; Guarnieri
and DiLeone 2008). The miRbase release 14.0 reports 721
human miRNAs, each of which can potentially regulate many
target genes (Griffiths-Jones 2004; Griffiths-Jones et al. 2006,
2008; Betel et al. 2008).

Microarray technology is a commonly used method to
measure the expression of hundreds of miRNAs simulta-
neously, but there are still problems in the preprocessing of
the data. Apart from the true signal, microarray data show
systematic differences between samples due to technical
factors. To reduce these systematic technical biases, a nor-
malization step is needed before downstream statistical

analysis. Different choices of normalization methods exist,
all previously developed for mRNA arrays, but there is no
consensus on their relative performance on miRNAs. These
two classes of RNAs are sufficiently distinct as to raise
questions whether existing normalization methods are suit-
able for miRNAs. Several studies comparing normalization
methods for miRNA microarray do not show consistent
results. Hua et al. (2008) suggest that the lowess method
is the best. In contrast, Rao et al. (2008) and Zhao et al.
(2010) show evidence that favors quantile-based normali-
zation, which is among the most commonly used methods.
However, quantile normalization forces each array to have
the exact same empirical distribution of intensities. In prac-
tice, this strong assumption can hardly be expected to hold
for miRNAs, since the number of miRNAs is small, so the
profile is likely to vary across arrays. Also, unlike for mRNAs,
it is not sensible to make assumptions about the non-
regulation of the majority of the miRNAs. We need to
develop a robust method that can perform a good normal-
ization on arrays from differentiated cell types with a small
number of available features.

Normalization methods for mRNAs rely on two standard
assumptions: (1) the majority of features do not vary between
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samples and (2) the proportions of up-
and down-regulated expressions are ap-
proximately equal. To compensate for the
lack of robustness in the existing methods,
the least-variant set (LVS) normalization
for mRNA arrays was developed by Calza
et al. (2007) based on data-driven house-
keeping genes. For Affymetrix gene-
expression arrays, they show that it out-
performs other normalization methods
when the standard assumptions are not
satisfied. The total information extracted
from probe-level intensity data of all
samples is modeled as a function of array
and probe effects. The method selects
genes with the smallest array-to-array
variation, called LVS genes, and uses these
as the reference set for normalization.

Our adaptation for miRNAs involves a more complex
model to identify the LVS. Since the selection is done using
a set of parametric models, modeling is crucial for making
valid inferences from the data to choose the ideal house-
keeping miRNAs. Based on our empirical analyses, probes
tend to show considerable differences in within-probe
variances. Our approach here is to jointly model mean
and dispersion, instead of assuming constant residual
variation, the dispersion parameters are modeled as a func-
tion of array and probe effects (Lee et al. 2006).

The goal of this study is to develop a modified version
of the LVS normalization method for miRNA arrays. The
method is applicable to any platform with replicated-probe
design, for example, Agilent microarray, miRCURY from
Exiqon, and miRXplore from Miltenyi Biotec. In our ex-
amples, we implement the method on data sets from Agilent
miRNA arrays. Hereafter we refer to default normalization as
the one performed by Agilent Feature Extraction Software
(v9.5). The performance of the algorithm is evaluated by
computing the sensitivity and specificity in identifying differ-
entially expressed (DE) miRNAs in a spike-in (Willenbrock
et al. 2009) and a normal-tissue microarray together with
an RT-PCR (Ach et al. 2008; Lee et al. 2008) data set. LVS
performs similarly to the ideal normalization that is available
for the spike-in data, and it is better than the default prepro-
cessing method, the 75th percentile-shift, quantile, global
median, VSN, lowess, or invariant-set (inv-P) normalization
method from Pradervand (2009).

RESULTS

We first summarize the analysis steps using the LVS
normalization (see Materials and Methods):

1. Fit a robust linear model (1) on the background-corrected
raw probe-level data, where the mean and variance are
modeled jointly.

2. Take a subset of the miRNAs that have the least
variation across arrays, determined from the plot of
array-effect test statistics versus residual standard de-
viations (SDs) from the model in Step 1.

3. Normalize the raw data at either the miRNA level or the
probe level, where the miRNA level normalization
requires the data to be summarized first.

Variance heterogeneity

Data are structured with every single miRNA having several
probes each one with a few repetitions. The first step in
LVS normalization is to fit a robust linear model (RLM) at
each set of probe-level intensity data. The scatter plot of
residuals versus fitted values from the linear model in
Figure 1A shows very strong heterogeneous variances
between probes. Figure 1B also shows the histogram of
P-values from the Levene test on homogeneity of vari-
ances of probes within the same miRNA. An estimate
of the proportion of true homogeneity of variances is
p̂0 = 0.57, indicated by the dotted line. This means 57%
of the miRNAs have residual variance that is probe-
dependent. Failing to incorporate such mean–variance
relationship in the analysis will result in inefficiency in the
estimation of the array and probe effects. Thus, it may
cause misleading information on array-to-array variability
for some miRNAs. For the normal-tissue data set, we
observe that in the joint model, more than half of the
miRNAs with two or more probes have significant probe
effect. Moreover, the estimates of probe and array effects
are different from the ones estimated under the assump-
tion of constant residual variance.

Spike-in data

The array-to-array variability is measured by the x2 statistic
(see Materials and Methods). Figure 2 shows the square-root

FIGURE 1. (A) A residual plot for model fitted into one miRNA with approximate median
value of Levene’s F-value statistics. The random variations of the residuals seem to associate
with the fitted values. This pattern indicates that the residual variance is not constant. (B) The
distribution of P-values from the Levene test for every miRNA targeted by two or more probes
in normal-tissue data. A large proportion of P-values is less than 0.05 indicating homogeneity
of variances is violated for most linear models fitted.
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of the x2 statistic as a function of the logarithm of the
residual standard deviation from the probe-level robust
linear model for spike-in miRNA data, called the ‘‘RA-
plot.’’ This is using (1) Normexp (Irizarry et al. 2003) and
(2) Edwards background correction (Edwards 2003).
Crosses represent features that are not hybridized, therefore
they represent only spurious signal, while triangles are
spike-in miRNAs, which are spiked in at equal concentra-
tion, called fold change one (FC1) miRNAs. As expected,
FC1 features have a small array-to-array variability and
most of them would be selected as LVS miRNAs in both
scenarios. Since the FC1 miRNAs are the ideal housekeep-
ing miRNAs in this case, LVS successfully selects them to
provide the theoretically best normalization. If we consider
the effect of background correction on nonspiked features,
the Normexp method seems to introduce a spurious vari-
ability as shown by the relatively high array effect on the
RA-plot (Fig. 2A). On the other hand, background correc-
tion based on the Edwards method places the vast majority
of the nonspiked features at the bottom, which is consistent
with the fact that their variation accounts only for random
noise. Thus, the RA plot is informative in telling us that the
Edwards method is better than the Normexp.

We then compare the ability of expression measures to
detect differential expression by evaluating gains in sensitiv-
ity and specificity after normalization. True positives are
defined as miRNAs with a FC different from 1. We compare
Group B with Group A using a moderated t-test (Smyth
2004). The proportion of true positive miRNAs identified is
plotted against false discovery proportion. In particular, the
Normexp method cannot identify all truly differentially
expressed miRNAs allowing up to a 10% fraction of false
positives. Moreover, the average rank of the P-values for FC1
or non-spiked-in features is higher for Edwards compared to
Normexp (659 versus 574), indicating higher specificity.

We next compare the different normalization procedures
(Fig. 3). First we note that for the spike-in data we can

compute an ideal normalization based on the FC1 miRNAs,
i.e., features that are known to be constant across the arrays.
They are useful here to indicate the best possible normal-
ization, but in practice these FC1 miRNAs are of course not
available. Both LVS normalization methods using joint
modeling and standard RLM achieve similar level of
sensitivity and specificity compared to the FC1 normaliza-
tion. This is perhaps not surprising, since the RA plots in
Figure 2 show that the LVS method identifies the FC1 genes
and use them as the reference set for normalization.

LVS based on the Edwards background correction
performs better than the other methods. Unnormalized
values are substantially worse than the normalized values.
At false discovery proportion around 2%, the true discov-
ery proportion varies from around 50% to 90%, indicating
that a proper normalization procedure matters, and in this
case the LVS method works well.

Normal-tissue data

Raw data are first processed with the Edwards background
correction. Using t = 0.7, a total of 372 out of 534 miRNAs

FIGURE 2. RA plots for spike-in data using Normexp background correction (A) or Edwards background correction (B). In both cases the correction
is performed on foreground values after local background estimates subtraction. Points below the quantile curves are chosen as the LVS miRNAs.

FIGURE 3. Sensitivity and specificity of the normalization methods
for spike-in data. Proportion of true discoveries are plotted against the
proportion of false discoveries. Positives are defined as miRNAs both
present and with FC not equal to 1.
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with array effects below the estimated quantile regression
line are used as the LVS for normalization based on the
VSN algorithm (Huber et al. 2002).

To assess the effect of summarization we compare four
different algorithms: simple within-probe average, total
gene signal (v9.5), and summarized array effect using
median polish and RLM. Table 1 shows the correlation
coefficient of microarray data versus qPCR data before and
after summarization. Using a robust method, like RLM or
median polish we would account for within-probe vari-
ability, thus it should provide a theoretically better sum-
marization method than the simplest method for averaging
the intensity of different probes.

The correlation between the raw miRNA data and qPCR
data of 60 miRNAs is very high. Most expressed miRNAs
(51/60) have a correlation coefficient larger than 0.9. The
results show that our preprocessing and summarization
does not deteriorate the original good correlation. In
addition, we find that r2 is related to the magnitude and
level of expression (Table 1). For example we have r2 $

0.99 for probes with mean signal (on log2 scale) above 12,
and r2 < 0.95 for probes with mean intensity below 11.
Therefore, highly expressed miRNAs have a more consis-
tent signal.

Figure 4 shows box plots of data distribution both with
background correction only (A) and after summarization
and normalization (B). Samples are grouped and plotted
according to the source tissue and colored in white or gray
to make the grouping obvious. Data are normalized using
the LVS joint-model followed by VSN at the miRNA level,
i.e., after RLM summarization. While raw data are relatively
scattered, LVS normalization makes the data distribution
within tissue more even, at the same time preserving some
distinction between tissues to some extent. Had we applied
the quantile normalization we would not have observed
differences between the tissue types.

Normal-tissue RT-PCR data

To evaluate the performance of the normalization methods
in terms of sensitivity and specificity, we compare the
expression both in two very distinct tissues, i.e., brain and

heart, and in two tissues where we expect to find little
differences, i.e., skeletal muscle and heart.

We take a subset from raw data of Ach et al. (2008) to get
tissues of interest only, i.e., heart versus brain, and heart
versus skeletal muscle. For these data, the LVS normaliza-
tion using joint modeling is compared to:

1. default method (v9.5);
2. default method followed by a 75th percentile normali-

zation (Agilent 2008);
3. quantile normalization (Wernisch et al. 2003);
4. invariant-set method (Pradervand 2009) using the code

provided by the author at http://www.unil.ch/dafl/
page58744.html;

5. global median normalization;
6. variance stabilizing normalization (VSN) (Huber et al.

2002);
7. locally weighted scatter plot smoothing (lowess) (Yang

et al. 2002).

Differentially expressed miRNAs are defined using both
qPCR-based fold changes (FCs) and P-values computed on
array data. This allows us to use FC, computed by the ratio
of the expression between two tissues, from qPCR data as
an independent gold standard when we evaluate a set of top
significant genes identified by all algorithms. Specifically,
differentially expressed miRNAs are those with qPCR FC > 3,
either over- or underexpression, and P-value < 0.01.

In order to increase the number of validated miRNAs, we
combine qPCR values provided by Lee et al. (2008) with
those produced by Ach et al. (2008). Figure 5 shows a Venn
diagram profiling miRNA measured, respectively, in Lee
et al.’s qPCR data, Ach et al.’s microarray, and qPCR data.
Overall, 194 miRNAs comprise 174 from Lee et al. and 20
from normal tissue data. For heart and brain tissues, 71 out
of 194 miRNAs have absolute FC > 3 (FC = brain/heart)
and P-value < 0.01. More specifically, 41 have FC $ 3, 30
have FC # 1/3. For skeletal muscle and heart, 25 miRNAs
have absolute FC > 3 and P-value < 0.01. Namely, 11 have
FC $ 3 and 14 have FC # 1/3.

Figure 6 shows the operating characteristic (OC) curves
for both comparisons. Clearly, in the situation when we

TABLE 1. Attributes of miRNAs with a different level of correlation coefficient produced by four summarization methods

Correlation
Number of miRNAs (r 2 range) Mean signal Mean range RLM Median polish Mean Raw

17miRNAs(r2 $ 0.99) 12.21(3.49) 8.30(4.10) 1 0.99 0.99 0.99
27miRNAs(0.95 # r2 < 0.99) 11.35(4.24) 6.65(3.54) 0.98 0.98 0.98 0.99
7miRNAs(0.9 # r 2 < 0.95) 10.72(3.91) 7.53(3.15) 0.93 0.93 0.92 0.95
6miRNAs(0.6 # r 2 < 0.9) 10.93(5.41) 4.70(2.22) 0.81 0.83 0.84 0.88
3miRNAs(r2 < 0.6) 11.30(4.62) 4.26(0.34) 0.30 0.25 0.23 0.29

The order of miRNAs is based on r2 in summarization by RLM. Mean signal and range of PCR value on log2 scale is also calculated for each
group of miRNAs. Number in parentheses is standard deviation.
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expect to have some differential expression (A), as between
brain and heart tissues, LVS normalization performs better
than all the other procedures. Normalization on the 75th
percentile is the worst, followed by quantile normalization,
inv-P, default signal without any normalization, lowess,
global median; VSN is almost as good as LVS. The modi-
fications of the data using 75th percentile-shift or quantile
normalization methods are too severe, dramatically reducing
the ability to detect the signal. Of course, in practice, we have
no way of knowing that this is the case.

What is also interesting is the lack of consistency in the
default normalization results compared to those for the
spike-in data (Fig. 3), thus indicating the lack of robustness.
Table 2 shows the AUC values relative to Figure 3, as well as
values for sensitivity and specificity achieved by the nor-
malization algorithms at different numbers of top significant
miRNAs considered. Again, the LVS algorithm clearly out-
performs all the others in the heart versus brain comparison.
For the two similar tissues the methods show less difference,
though LVS still performs among the best in terms of AUC.

When we have more homogeneous samples with small
fold changes, as between brain and skeletal muscle tissues,
the LVS still performs better than the other procedures.
However, the assumptions underlying quantile, global me-
dian, or 75th percentile normalization are more reasonable,
leading to more similar performances to the LVS, although
now the inv-P and lowess methods perform the worst. Both
of these examples show that LVS has the advantage of
being flexible enough to adapt to the underlying differen-
tial-expression pattern.

DISCUSSION

Although microarray technologies have been in use for over
a decade, some technical aspects of data preprocessing,

such as normalization, are still a matter of debate even in
the established field of mRNA expression. A major as-
sumption in most normalization procedures employed in
mRNA preprocessing is that most genes are not differen-
tially expressed, and that for those differentially expressed
there is an approximately balanced proportion of over- and
underexpression. While this is generally acceptable for
mRNAs, it is unrealistic for miRNAs both biologically, as
we do not expect most miRNAs to be nondifferentially
expressed, and technically, as the small number of features
available on miRNA array chips makes the standard nor-
malization algorithms highly unstable (Davison et al. 2006).

Since the early days of array technologies, it has been
suggested that the optimal approach for data normaliza-
tion would make use of reliable control features that are
consistently stable across samples and experimental condi-
tions, and structurally similar to the targeted molecules.
According to these criteria, spike-in mRNAs, synthetic
miRNAs, housekeeping genes, or small noncoding RNAs
(Kiss 2002) are not feasible choices.

FIGURE 4. Box plots of background corrected probe intensity for normal-tissue data before normalization and summarization on arcsinh scale
(A) and after normalization and summarization using LVS on arcsinh scale (B). Different tissues are plotted in order and alternatively colored in
white and gray.

FIGURE 5. Venn diagram for the miRNAs profiled respectively in
Lee et al.’s qPCR data, Ach et al.’s microarray, and qPCR data.

LVS normalization for miRNA

www.rnajournal.org 2297

 Cold Spring Harbor Laboratory Press on November 13, 2015 - Published by rnajournal.cshlp.orgDownloaded from 

http://rnajournal.cshlp.org/
http://www.cshlpress.com


A few recent papers (Pradervand 2009; Wang et al. 2010)
explore the application of a well-known normalization
procedure inherited from the mRNA field, commonly
known as invariant-set normalization. The underlying idea
is to select a set of reference features based on a data-driven
procedure rather than from a priori biological knowledge.
These reference features are identified as the most consistently
expressed, based on some measure of variability across sam-
ples. We propose a modified LVS normalization procedure,
for selecting miRNAs with least array-to-array variability
using a joint GLM, and choosing features with potentially
high information content. The information content is derived
as a measure of between-sample variability computed at
probe level and accounting for within-miRNA probe varia-
tion. Features with smaller variability are the best candidates
for acting as reference features for between-array normaliza-
tion, which can be performed either using smooth splines or
VSN, a well-known algorithm for mRNA data calibration.

The proposed method is an adaptation of a similar
algorithm developed for Affymetrix mRNA array (Calza

et al. 2007), to a modified one for the
miRNA Agilent platform, with an im-
proved modeling of the data. The main
motivation of the joint GLM modeling
stands in the heterogeneous variance of
intensities across probes for a large pro-
portion of miRNAs, so that a standard
RLM would not efficiently estimate
array and probe effects, and thus would
likely result in suboptimal identification
of the reference set for normalization.
Generally speaking, LVS normalization
will have widespread utility in other
platforms with replicated-probe design.
Platform miRCURY has just a lesser
numbers of probes and replicates for
each miRNA, compared to Agilent on
average. Instead of one-color design,
miRXplore has two channels, where each
miRNA is targeted by four repetitions. In
such case, color effect can be included to
correct for dye bias.

Commonly, microarray technologies
are employed to identify a signature of
differentially expressed RNAs among two
or more biological conditions. In this
regard, an optimal preprocessing pro-
cedure would be the one that maximizes
the ability of any statistical test to iden-
tify a true signature and minimizes the
burden of false discoveries. Our study
has shown that, in the OC curves, the
proposed LVS algorithm improves on ex-
isting normalization procedures in terms
of sensitivity and specificity, especially

with a relatively high number of differentially expressed fea-
tures. Moreover, it is flexible enough to successfully adapt to
various scenarios.

It must be noted that the spike-in miRNA data set is not
the ideal setting. Although allowing us to compute true and
false discoveries, the data are too clean; in this situation
almost all normalization procedures perform reasonably
well. A real data set is used to evaluate the consistency of
the suggested summarization procedure, comparing array-
based signals and qPCR data. The correlation of the sum-
marized signal based on RLM with the qPCR gold standard
is as good as the one computed by Agilent’s Feature Ex-
traction software.

The main advantage of the suggested summarization
procedure is that it allows a flexible choice of the prepro-
cessing steps, like local background correction, which in
our experience might have a great impact on overall signal
and requires a careful evaluation. Indeed, applying our
method to the spike-in data we show how the background
correction method Normexp, which performed better in

FIGURE 6. Sensitivity and specificity analysis of the normalization methods both in two
extremely different tissues (brain and heart) and in two similar tissues (skeletal muscle and
heart). Proportion of true discoveries are plotted against the proportion of false discoveries.
Positives are defined as miRNAs with a FC (FC = brain or skeletal muscle/heart) >3, either
over- or underexpression. Panels (A) and (C ) show OC curves for brain vs. heart comparisons
for all the different methods considered. Similarly, panels (B) and (D) show OC curves for
skeletal muscle vs. heart comparisons. LVS has the advantage of being flexible enough to
successfully adapt to either situation.
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a recent paper comparing several background correction
methods for two-colors microarray (Ritchie, et al. 2007), is
inflating the array-to-array variability for nonspiked probes,
resulting in a slightly reduced performance compared to
another well-known method, Edwards. Given the tiny
sample size of the spike-in experiment, as well as the
uniqueness of the design, we do not speculate about which
background method is actually better than the other but
rather stress the importance of evaluating the effect of
preprocessing steps on data distribution.

The idea underlying the LVS algorithm of selecting
invariant features as a reference subset for normalization
originates from the usage of housekeeping genes for
normalization commonly in qPCR. The usage of putative
housekeeping genes for microarray normalization is dep-
recated, as many studies report a considerable variability
under some experimental condition (Lee et al. 2002). Then
again, data-driven selection procedures have been sug-
gested and applied on mRNA platforms (Li and Wong
2001; Tseng et al. 2001), and only recently extended to the
miRNA framework (Pradervand 2009; Wang et al. 2010).

The advantage of our method over other invariant-set
based procedures is that, exploiting more information, it
operates on the raw signal prior to any processing, such as
local background correction and summarization, and

without any additional external data (Wang et al 2010).
The basic idea is to simply compute a measure of between-
sample variability accounting for heterogeneity of between-
probe variances within an miRNA, thus exploiting all in-
formation content in probe-level data. The result is a more
sophisticated version of a variance filtering procedure, where
low-variance features are used as a reference set for normal-
ization. The rather straightforward method does not require
any specific assumption, such as the existence of mixing
distributions, so it is applicable in most of situations.

The increasing availability of genomic data targeting
different molecules or detecting different types of signal like
mRNA arrays, exon arrays, CGH, and miRNA arrays opens
new avenues for investigation. To be able to exploit as
much information as possible, a careful data preprocessing
is mandatory. While a huge amount of work has been done
for well-known frameworks like mRNA and CGH, only
recently miRNA platforms have attracted some attention.
We propose a new algorithm for the normalization of
miRNA data produced by Agilent technology and evaluate
its performance in terms of sensitivity and specificity for
detecting differential expression in a simple two-group
design. Relying on fewer assumptions, LVS normalization
using joint modeling shows an improvement over several
alternative normalization algorithms.

TABLE 2. Sensitivity and specificity is expressed as percentage for varying number of top genes used as threshold for normal tissue data (10,
40, 70, 100, and 130 are the numbers of genes)

Brain/heart Heart/skeletal
10 40 70 100 130 AUC 10 40 70 100 130 AUC

LVS
Sens 14.1 54.9 87.3 95.8 100.0 96.3 25.0 80.0 100.0 100.0 100.0 91.8
Spec 100.0 99.2 93.5 74.0 52.0 97.1 86.2 71.3 54.0 36.8
Inv-P
Sens 14.1 54.9 76.1 90.1 100.0 92.8 35.0 40.0 50.0 50.0 80.0 65.3
Spec 100.0 99.2 87.0 70.7 52.0 98.3 81.6 65.5 48.3 34.5
75th%
Sens 14.1 49.3 69.0 84.5 97.2 86.9 35.0 55.0 70.0 95.0 100.0 81.5
Spec 100.0 95.9 82.9 67.5 50.4 98.3 83.3 67.8 53.5 36.8
Quantile
Sens 14.1 49.3 63.4 83.1 94.4 85.2 30.0 60.0 70.0 100.0 100.0 83.7
Spec 100.0 95.9 79.7 66.7 48.8 97.7 83.9 67.8 54.0 36.8
Agilent default
Sens 14.1 53.5 76.1 93.0 97.2 92.5 25.0 70.0 95.0 100.0 100.0 89.5
Spec 100.0 98.4 87.0 72.4 50.4 97.1 85.1 70.7 54.0 36.8
Global
Sens 14.1 53.5 80.3 95.8 100.0 94.5 25.0 85.0 100.0 100.0 100.0 92.2
Spec 100.0 98.4 89.4 74.0 52.0 97.1 86.8 71.3 54.0 36.8
VSN
Sens 14.1 53.5 85.9 98.6 100.0 96.0 25.0 80.0 100.0 100.0 100.0 91.8
Spec 100.0 98.4 92.7 75.6 52.0 97.1 86.2 71.3 54.0 36.8
Lowess
Sens 14.1 49.3 74.7 88.7 97.2 90.0 35.0 55.0 75.0 95.0 100.0 83.8
Spec 100.0 95.9 86.2 69.9 50.4 98.3 83.3 68.4 53.5 36.8

Sensitivity is defined as the cumulative proportion of ‘‘true’’ DE miRNAs identified out of the total of DE miRNAs. Similarly, specificity is
defined as the cumulative proportion of non-DE miRNAs falsely identified as DE out of the total of non-DE miRNAs. AUC is reported in the last
column.
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MATERIALS AND METHODS

In miRNA microarray, each probe set may contain one to four
probes. The first step in LVS normalization is to fit a RLM at the
probe-level data in order to estimate the variability of probe
intensities due to array-to-array variability. Based on a quantile
regression (Koenker and Bassett 1978; Koenker 2007) of the array-
to-array variability versus the residual standard deviation, the
algorithm selects a subset of miRNAs with the least interarray
variability. The identified set is then used to normalize each array
to a reference or pseudo-median array, i.e., an array whose ex-
pressions are computed as the miRNA-wise medians, using either
a variance stabilizing normalization (VSN) (Huber et al. 2002) or
a smooth spline.

Background correction

The raw probe signal (median of green channel) output from
GeneSpring is first adjusted for local background. The standard
procedure is to subtract local background estimates from fore-
ground values. This has the big disadvantage of creating negative
values. Several alternative methods have been proposed (Ritchie
et al. 2007) which produce a strictly positive signal. We explore
the effect of two methods, both applied to a foreground signal
after local background subtraction. The first one, the so-called
Normexp method, is based on a normal plus exponential con-
volution model analogous to the background correction used in
the RMA algorithm used for Affymetrix arrays (Irizarry et al.
2003). In the second one, called Edwards method, local back-
ground subtracted values are substituted by a smooth monotonic
function if their values are below a given threshold (Edwards
2003).

Identification of the LVS miRNAs

Intensity values on the log2 scale are modeled at the probe level.
For a specific miRNA, we fit the following linear model

log2 ðSijÞ= m + ai + bj + eij = xt
ijA + eij; ð1Þ

where m is the grand mean parameter, a is the ith array effect, for
i = 1,. . .,n; b is the jth probe effect for j = 1,. . .,J; A is the three-
dimensional parameter vector with components being the in-
tercept term u and the regression coefficients a, b; and Sij is the
signal from the ith array jth probe. The model is fitted using
robust M-estimation method with Huber’s weight function

wHuberðeÞ=
1; ej j# k

k= ej j; ej j> k

�
;

where k = 1.345s and s is the standard deviation of the errors
from the mean model that can be estimated by median absolute
residual divided by 0.6745, and e is the residual value.

One of the key assumptions in Equation 1 is that the variances
of the error terms are equal for all observations. When constant
variance assumption is substantially violated, it may give less
efficient estimates of array and probe effects and misleading
standard errors. Figure 1 shows a plot of residual versus predicted
values, where the residual variance is clearly a function of the

predicted values. To accommodate the potential heteroscedastic-
ity, we introduce a dispersion generalized linear model (GLM).

Defining var(eij) = yij, in principle, we can take into account the
variance of residuals by considering the weight wnew = wHuberyij

�1,
where more weight is assigned to those observations having
smaller variance of residuals. In general, the dispersion GLM
can be expressed as

gðyijÞ= m + gi + kj = zt
ijB; ð2Þ

where yij is the observed variance of residuals from the mean
model (1), g(�) is the link function, gi is the ith array effect for i =
1,. . .,n; kj is the jth probe effect for j = 1,. . .,J; B is the vector of
parameters consisting of mean, array, and probe effects. This
model gives us estimates of variance for the mean model (1). A
robust version of the GLM is used to deal with potential outliers,
with robust weights derived using the first quantile of residuals
from dispersion model (2). Thus, the resulting prior weights using
fitted values from the dispersion model are

wnewðeÞ=
1
�

ŷij; ej j# k
k
�
ðŷijð ej j+ 0:01ÞÞ; ej j> k

�
;

where ŷij is the estimated dispersion value.
The model can be fitted iteratively using two interconnected

iterative weighted least square (IWLS):

1. Given the dispersion predicted value ŷij incorporated into
prior weight, use IWLS to update Â for the mean model. The
updating equation is

XtS
�1X

� �
A = XtS

�1S;

where +�1 is a diagonal matrix with elements Sii = wHubery
�1
ij .

2. Given Â, use IWLS to update ŷij with the squared of residuals
e2 from the mean model as response data. The updating
equation is

ZtD�1Z
� �

B = ZtD�1e2;

where D�1 is a diagonal matrix with elements being the
weights in current dispersion model

Dii = wglmðeÞ=
1; ej j# Q1

1= ej j; ej j> Q1

�
;

where r is the residual value in current dispersion model and
Q1 is the first quantile of residuals.

3. Iterate Steps 1 and 2 until convergence.

The array effects are captured by the x2 statistic, computed by

x2 = â0V̂
�1

â;

where â is a vector of estimated array effects, and V̂ is its estimated
covariance matrix. These quantities are available from the robust
linear model fit. The covariance matrix can be estimated based
either on the sandwich form of weighted covariance matrix
I�1JI�1, where I is the observed Fisher information and J is
the variance of the estimating function (Pawitan 2001), or the
asymptotic form
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S cðeÞ½ �2

Sc0ðeÞ=n½ �2
XtXð Þ�1

;

where n is the number of residuals and c(e) is defined as [w(e)]e
(Huber 1964).

The ideal LVS miRNAs are those with the least array-to-array
variability. This means that when we compare the x2 statistics
among the miRNAs, those with smaller values are more likely to
become LVS miRNAs. A nonparametric quantile regression is
then fitted to x2 values as a function of the residual SDs, since the
value of the statistics is also determined by the residual variance.
The relationship can be seen graphically in the scatter plot of the
square-root or logarithm of array effect versus the logarithm of
the residual SD. Points below the curve fitted by the quantile
regression model are used as the reference set for normalization.
The user is allowed to set the proper quantile (t) value to fit.

For mRNA it has been known for a long time that at most
eucaryotic cells express z30%–40% of the genes (Su et al. 2002;
Jongeneel et al. 2003) and even less are likely to be differentially
expressed among clinical conditions. On the other hand, it is less
clear how miRNA are expressed in normal or experimental
conditions. According to some experimental data, it is reasonable
to expect z60% of miRNAs to remain constant between exper-
imental conditions (Volinia et al. 2006; Yanaihara et al. 2006).
Some steps of the normalization procedure, in particular the
calibration step based on VSN, might be affected by a small
number of features, as the case in miRNA array. Therefore, we
suggest setting t to a proportion around 70%, unless prior bio-
logical knowledge suggests setting a different threshold. As the
number of miRNAs increases it will be possible to have a better
tuning of this parameter.

Ideally, those LVS miRNAs should not only have a small array
effect but also retain the most useful information and be
representative of the signal level of the other miRNAs. In the
case where most of the selected LVS miRNAs happen to come
from those with low intensity, the algorithm allows one to stratify
by level of intensity, and choose a certain proportion of LVS
miRNAs from each stratum. This option solves the problem of
possible information loss due to a restricted range of intensities.

Normalization on the LVS miRNAs

Once the LVS miRNAs are identified, the normalization is
performed using VSN (Huber et al. 2002), where transformation
parameters are estimated from the LVS miRNAs. Briefly the VSN
procedure first calibrates sample-to-sample variations so that data
are on a common scale and have a common distribution. After
that, variance stabilization based on a parametric arcsinh (inverse
of hyperbolic sine) transformation is performed to address the
dependence of the variance on the mean intensity. An alternative
normalization procedure based on a spline smoother between the
individual array and an arbitrary reference array can be used also.
The reference array may be a pseudo-median array or any user-
specified array. The curve fitted through the LVS miRNAs is then
used to map intensities of all the miRNAs in each array to
normalized values. This step is single-array based, in contrast to
the multiarray basis in the step of identifying LVS.

The current implementation of LVS allows the user to normal-
ize data at the probe level prior to other preprocessing procedures,

or the miRNA level, i.e., after summarization of probe-level data
into the miRNA level. For all analysis in this paper, normalization
based on LVS features is applied at the miRNA level: the
summarized value is given by the array effect âi from model (1)
(hereafter called the RLM summarization). Unless explicitly
stated, we set the proportion parameter or the so-called quantile
threshold to 70% in LVS normalization based on VSN.

Software

All the analyses are performed using the R (R Development Core
Team 2009) and Bioconductor (Gentleman et al. 2004) software.
We have developed an R package called LVSmiRNA, freely avail-
able with a vignette from the author website (www.med.unibs.it/
zcalza) and the Bioconductor website at http://bioconductor.org.
The normalization procedure is highly computationally intensive
due to the iterative nature of the fitting algorithm. To get an
optimal implementation, the package is coded in C and can take
advantage of the multicore hardware architecture that allows
parallel computation. On an eight-core machine (dual Intel
Pentium QuadCore Xeon 2.27 GHz) the selection of invariant-
set features takes z30 sec for a data set with 41 samples and 534
miRNAs (overall 11,061 probes) using joint modeling, and only
4 sec for a standard RLM.

Data sets and comparison procedures

Two data sets produced on Agilent platforms are used to illustrate
and validate the proposed normalization procedure, and to com-
pare it with other methods.

Spike-in data

This data set is derived from a library of synthetic RNA sequences,
corresponding to human mature miRNAs as well as in-house
miRNAs with particularly similar sequences hybridized on an
Agilent Human miRNA Microarray 2.0 (Willenbrock et al. 2009).
The individual array data as well as the actual synthetic miRNA
concentrations are downloaded from Genome Expression Omni-
bus (GEO) database under the series accession number GSE14511.
The downloaded data consist of a total of 799 miRNA species
(excluding control features) for four samples organized in two
groups A and B. Out of 799 miRNAs, 102 are not spiked-in, 524
have a true fold-change (FC) level ranging from 0.0625 to 16-fold,
while a set of 173 miRNA (24.8%) species have a constant FC
level of 1. These FC1 miRNAs are the ideal reference set for
normalization.

Normal-tissue microarray data

These data are produced as part of a comparison between
microarray and quantitative TaqMan real-time PCR (qPCR)
measurements (Ach et al. 2008). The data set consists of 43
samples hybridized on an Agilent Human miRNA Microarray 1.0
coming from nine different human tissues (brain, breast, heart,
liver, placenta, testis, ovary, skeletal muscle, and thymus). There
are four to five arrays for each tissue type, and each array contains
534 miRNAs (excluding control probes). Sixty miRNAs are
profiled with RT-PCR on every tissue (only the within-tissue
average value is available). Data are available from GEO with
series number GSE11879.
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Normal-tissue RT-PCR data

In a study on the processing patterns of miRNA, Lee et al. (2008)
profile the expression of 202 mature miRNAs using qPCR from 22
different human tissues. Expression values are transformed using
arcsinh transformation to allow for the presence of zeros. Except
for breast tissues, all the tissue types measured by Ach et al. (2008)
are available in this data set. The availability of the RT-PCR data
allows us to compare different tissue types, while knowing the true
fold change of a large number of miRNAs.

Comparative procedures

For the spike-in data we can compare LVS to the ideal normal-
ization based on the FC1 miRNAs. We further compare the
performance of LVS normalization to no normalization, 75th
percentile shift, quantile, inv-P, global median, VSN, and locally
weighted scatter-plot smoothing (lowess) normalization methods.
The percentile-shift normalization is the recommended normal-
ization by Agilent (Agilent 2008) for its miRNA platform. It
equalizes the 75th percentile of the distribution of each sample,
setting it to an arbitrary value. Similarly, global median normal-
ization makes median equal across samples. The quantile normal-
ization (Wernisch et al. 2003) is a commonly used algorithm that
equalizes sample intensity distributions to an arbitrary reference
one. The inv-P method (Pradervand 2009) is a modification of the
invariant-set normalization procedure. Briefly, it selects invariant
features among those with high average intensity and low variabil-
ity, or low SD. The algorithm first removes the mean versus SD
trend and then fits a mixture model to the mean and corrected SD
distributions in order to identify a cluster of features with high
average intensity and low SD. The lowess normalization is an
intensity-dependent procedure, where the log-ratio for each sample
is adjusted by the fitted value from robust weighted least squares.

All the normalization methods except LVS are performed on
values preprocessed according to Agilent’s default signal, Total
Gene Signal. To allow for the presence of negative values and to
make them comparable with the transformation used by VSN,
data are transformed on the arcsinh scale.
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