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A Second-Order Reliability
Method With First-Order
Efficiency
The first-order reliability method (FORM) is efficient but may not be accurate for non-
linear limit-state functions. The second-order reliability method (SORM) is more accu-
rate but less efficient. To maintain both high accuracy and efficiency, we propose a new
second-order reliability analysis method with first-order efficiency. The method first per-
forms the FORM to identify the most probable point (MPP). Then, the associated limit-
state function is decomposed into additive univariate functions at the MPP. Each univari-
ate function is further approximated by a quadratic function. The cumulant generating
function of the approximated limit-state function is then available so that saddlepoint
approximation can be easily applied in computing the probability of failure. The accu-
racy of the new method is comparable to that of the SORM, and its efficiency is in the
same order of magnitude as the FORM. �DOI: 10.1115/1.4002459�
Introduction
The major task of reliability analysis is to compute the prob-

bility of failure pf

pf = Pr�g�X� � q� �1�

here g�X� is a limit-state function, X is a vector of random
ariables, and q is a limit state.

Accurately calculating pf is computationally expensive, and
herefore approximations are needed. The popular approximation

ethods include the advanced mean value method �1�, the first-
rder reliability method �FORM� �2,3�, and the second-order reli-
bility method �SORM� �4�. The FORM is most commonly used
ecause it is efficient; its accuracy, however, deteriorates when the
onlinearity of limit-state functions increases. The SORM over-
omes this drawback with a cost of lower efficiency.

The purpose of this work is to improve the accuracy of the
ORM. The new method builds on several existing techniques,
uch as the univariate dimension reduction �5–13� and the saddle-
oint approximation �14�. Some of these methods are briefly re-
iewed below.

In Ref. �11�, g�X� is approximated at the most probable point
MPP� with higher-order univariate functions, and then Monte
arlo simulation �MCS� is used to evaluate pf; the maximum
umber of limit-state function calls, in addition to that for the
PP search, is mn+1, where m is the order of the approximation

nd n is the number of random variables. To avoid using MCS, the
ame research group proposes to use the second-order univariate
unctions so that pf can be estimated with numerical integration
13�. To make the numerical integration tractable, the authors first
se transformations, such as the Gram–Schmidt orthogonalization,
nd then employ the univariate dimension reduction again to ap-
roximate the multidimensional probability integration. The num-
er of function calls also depends on the number of integration
oints and the number of random variables. In Ref. �14�, the bi-
ariate dimension reduction and numerical integrations are used to
pproximate the first four statistical moments of g�X�. Then, the
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saddlepoint approximation is used to estimate pf. Although the
method is accurate without any MPP search, it is relatively expen-
sive. If the number of the integration points is 3 for the moment
estimation, the cost of the method is 9n�n−1� /2+3n+1.

In this work, we propose a second-order reliability method with
first-order efficiency �SORM-FOE�. It searches for the MPP and
then decomposes the limit-state function at the MPP into univari-
ate functions. Each univariate function is further approximated
into a quadratic function. The SORM-FOE is, in general, more
accurate than the FORM. It needs only n more function calls than
the FORM and still has the first-order efficiency.

This paper is organized as follows: The FORM and SORM are
briefly reviewed in Sec. 2. The proposed SORM-FOE is discussed
in Sec. 3. Examples are given in Sec. 4 followed by conclusions in
Sec. 5.

2 Review of the FORM and SORM

2.1 FORM. The FORM �2,3,15–26� linearizes g�X� at the
MPP in the transformed U-space, which consists of independent
standard normal variables U that are transformed from indepen-
dent random variables X. The transformation is given by �17,27�

FXi
�Xi� = ��Ui� �2�

where FXi
and � are the cumulative distribution functions �CDF�

of Xi and Ui, respectively,

Ui = �−1�Fi�Xi�� �3�

If Xi �i=1, . . . ,n� are dependent, the transformation is given by
the Nataf transformation �27�,

U1 = �−1�FX1�X1��

U2 = �−1�FX2�X1
�X2�X1��

�4�
U3 = �−1�FX3�X1,X2

�X3�X1,X2��

. . .

where FX2�X1
�X2 �X1� and FX3�X1,X2

�X3 �X1 ,X2� are conditional
CDFs of X2 and X3, respectively.

�
The MPP u is found by solving
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min �u� =	

i=1

n

ui
2

�5�
subject to ĝ�u� = q

here ĝ� · � is the limit-state function in the U-space. Then, the
eliability index is calculated by

� = �u�� = �

i=1

n

�ui
��2�1/2

�6�

hen pf �0.5, pf is computed by �28�

pf = ��− �� �7�

A MPP search algorithm may need the derivatives of ĝ�U� �29�.
f the derivatives are evaluated numerically, the number of func-
ion calls will be linearly proportional to the number of random
ariables n. If the forward finite difference algorithm is used, the
umber of limit-state function calls NFORM is

NFORM = k�n + 1� �8�

here k is the number of iterations of the MPP search. Because
FORM is linear in terms of n, the FORM is first-order efficient.

2.2 SORM. If ĝ�U� is highly nonlinear, the FORM will be
naccurate. Then, the SORM may be used. Breitung’s formulation
4� for the SORM is given by

pf = ��− ��

i=1

n−1

�1 + �vi�1/2 �9�

here vi �i=1, . . . ,n−1� are the principal curvatures of ĝ�U� at
he MPP. The other popular SORM formulation is given by Tvedt
30�, which is considered more accurate than the Breitung’s for-
ulation �31�.
The SORM is more expensive than the FORM because second

erivatives are required. If the forward finite difference formula is
sed for the derivative evaluation, the number of function calls by
he SORM is

NSORM = k�n + 1� +
n�n + 1�

2
= NMPP +

n�n + 1�
2

�10�

he SORM is second-order efficient because NSORM is quadratic
n terms of n.

The Second-Order Reliability Method With First-
rder Efficiency

3.1 Procedure. As mentioned previously, the proposed
ORM-FOE improves the accuracy of the FORM while maintain-

ng a similar level of efficiency. This is achieved by approximat-
ng ĝ�U� with univariate functions, which are further approxi-

ated into quadratic forms. The method is outlined in Fig. 1, and
ts steps are explained below.

3.2 MPP Search. The MPP u� is obtained by solving

min �u� =	

i=1

n

ui
2

�11�
subject to ĝ�u� = q

Optimization algorithms or MPP search algorithms �29� can be
sed to solve for the MPP.

3.3 Approximation of ĝ„U…. We now approximate ĝ�U� at
�
he MPP u with additive univariate functions �5–10�,
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ĝ�U� � 

i=1

n

ĝi�Ui� − �n − 1�ĝ�u�� �12�

where

ĝi�Ui� = ĝ�u1
�,u2

�, . . . ,ui−1
� ,Ui,ui+1

� , . . . ,un
�� �13�

which is a univariate function of Ui �i=1, . . . ,n�. The term �n
−1�ĝ�u�� makes the approximation exact at u�. We then approxi-
mate the function with a second-order polynomial in the form of

ĝi�Ui� � ai + biUi + ciUi
2 �14�

From the MPP search, we have obtained the MPP u� and the
gradient of ĝ�U�, �ĝ�u��. We can use them to determine the co-
efficients ai, bi, and ci in Eq. �14�. The gradient �ĝ�u�� is given by

�ĝ�u�� = �� � ĝ�U�
�U1

,
� ĝ�U�
�U2

, ¯ ,
� ĝ�U�
�Un

��
u�

�15�

Form Eq. �13�, we have

�dĝi�Ui�
dUi

�
ui

�

= � � ĝ�U�
�Ui

�
u�

�16�

We then need one more point to determine ai, bi, and ci. We call
this new point ũi, and it is on the Ui-axis, as shown in Fig. 2. ũi is
determined by a step size �i and is given by

Fig. 1 Flowchart of SORM-FOE
Fig. 2 Information used for approximation
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ũi = ui
� + �i �17�

here ui
� is the ith component of the MPP.

At ũi, g̃i�ũi� is given by

g̃i�ũi� = ĝ�u1
�,u2

�, . . . ,ui−1
� , ũi,ui+1

� , . . . ,un
�� �18�

Since

� � ĝ�U�
�Ui

�
u�

= �dĝi�Ui�
dUi

�
ui

�

= bi + 2ciui
�

the coefficients can be solved by

�1 ui
� �ui

��2

1 ũi �ũi�2

0 1 2ui
� ��ai

bi

ci
� = �

q

ĝi�ũi�

� � ĝ�U�
�Ui

�
u�

� �19�

here q is the limit state defined in Eq. �1�. After solving for ai,

i, and ci from Eq. �19�, we obtain ĝi�Ui� as

ĝi�Ui� � ��	ciUi +
1

2

bi

	ci
�2

+ ai −
bi

2

4ci
ci � 0

− �	− ciUi −
1

2

bi

	− ci
�2

+ ai −
bi

2

4ci
ci � 0

ai + biUi ci = 0
�

= �ei + Zi
2 ci � 0

ei − Zi
2 ci � 0

ai + biUi ci = 0
� �20�

here

ei = ai −
bi

2

4ci
�21�

nd

Zi =� 	ciUi +
1

2

bi

	ci

ci � 0

	− ciUi −
1

2

bi

	− ci

ci � 0� �22�

Because Zi is a linear function of Ui, it also follows a normal
istribution N��Zi

,�Zi
�, where

�Zi
=�

1

2

bi

	ci

ci � 0

−
1

2

bi

	− ci

ci � 0� �23�

nd

�Zi
= � 	ci ci � 0

− 	− ci ci � 0
� �24�

3.4 CGF of ĝ„U…. After decomposing ĝ�U�, we now derive its
umulant generating function �CGF�. With the CGF, we can then
btain pf without any numerical integration. According to Ref.
32�, �Zi /�Zi

�2 follows a noncentral chi-square distribution with
reedom of 1; namely, �Zi /�Zi

�2��2�1,	�, where

	 =
�Zi

�Zi

�25�

2
The CGF of �Zi /�Zi
� is given by

ournal of Mechanical Design
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KZi
�t� =

	it

1 − 2t
−

1

2
log�1 − 2t� �26�

The above equation is for ci�0. As shown in Eq. �20�, ĝi�Ui�
=ai+biUi when ci=0, where the normal variable Ui is involved. In
this case, the CGF is given by

KZi
�t� = 1

2 t2 �27�

To use Eqs. �26� and �27�, we rewrite Eq. �20� as

ĝi�Ui� � �ei + �Zi

2 � Zi

�Zi

�2

ci � 0

ei − �Zi

2 � Zi

�Zi

�2

ci � 0

ai + biUi ci = 0
� �28�

Our goal is to obtain the CGF of ĝ�U�. We then need to use the
following properties of a CGF.

�1� If Y =mX, then KY�t�=KX�mt�, where X and Y are random
variables, KX�t� and KY�t� are CGFs of X and Y, respec-
tively, and m is a constant.

�2� If X and Y are independent, KX+Y =KX�t�+KY�t�, where
KX+Y�t� is the CGF of X+Y.

Using the above properties and Eq. �28�, we obtain the CGF of
ĝi�Ui�,

Kĝi
�t� =�eit +

	i�Zi

2 t

1 − 2�Zi

2 t
−

1

2
log�1 − 2�Zi

2 t� ci � 0

eit −
	i�Zi

2 t

1 − 2�Zi

2 t
−

1

2
log�1 + 2�Zi

2 t� ci � 0

eit +
1

2
bit

2 ci = 0
� �29�

and finally the CGF of ĝ�U�

Kĝ�t� � 

i=1

n

Kĝi
�t� �30�

3.5 Probability of Failure pf. Once the CGF Kĝ�t� is avail-
able, the probability of failure pf can be easily estimated by
saddlepoint approximation �14�. At first, we obtain the saddlepoint
ts by solving

Kĝ��t� = q �31�

where Kĝ��t� is the derivative of Kĝ�t�. Then, pf is computed by
�14,33–37�

pf = ��w� + 
�w�� 1

w
−

1

v
� �32�

where 
� · � is the probability density function �PDF� of a standard
normal distribution,

w = sgn�ts��2�tsq − Kĝ�ts���1/2 �33�

and

v = ts�Kĝ��ts��1/2 �34�

where sgn�ts�=+1, �1, or 0, depending on whether ts is positive,
negative, or zero; Kĝ��ts� is the second derivative of Kĝ�t�.

As shown in Ref. �37�, the accuracy of the saddlepoint approxi-
mation is extremely high for pf associated with the approximated
function in Eq. �28�. As a result, the accuracy of the SORM-FOE

mostly depends on the accuracy of the quadratic approximation.
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ince this approximation is generally more accurate than the lin-
ar approximation in the FORM, the SORM-FOE is, in general,
ore accurate than the FORM. Because the SORM-FOE requires

ne more point with n coordinate components, the total number of
unction calls is equal to that of the FORM plus n, namely,

NSORM-FOE = NMPP + n �35�

3.6 Selection of the Step Size �i. As shown in Eq. �17�, �i
etermines the location of the new point ũi. Because we prefer
igher accuracy of the approximation near the MPP, �i should not
e large. �i should also be determined by the importance of ran-
om variables at the MPP. We therefore use the following ap-
roach to set a value for �i,

� = �
�ĝ�u��

��ĝ�u���
=

�

��ĝ�u���
�� � ĝ�U�

�U1
, . . . ,

� ĝ�U�
�Un

��
u�

�36�

here �= ��1 , . . . ,�n�, �i= �� / ��ĝ�u������ĝ�U� /�Ui� �u�, and � is a
cale factor.

In the above equation, �1 / ��ĝ�u������ĝ�U� /�Ui� �u� represents
he sensitivity of the limit-state function to random variable Ui.
herefore, Eq. �36� indicates that the higher the sensitivity to a
pecific variable is, the larger the step size for that variable is.
ealizing that a value of 1.0 means one standard deviation in the
-space, we recommend to set the scale factor �i to be 0.5–1.0. In

ll the examples that follow, we use �i=1.0. If the sensitivity is
oo small, for example, less than 10−6, the effect of Ui on the
imit-state function is negligible. To avoid any implementation
ifficulties, in this case, we delete Ui from the variable list and fix
t to zero.

Numerical Example
Three problems are used to evaluate the SORM-FOE in terms

f accuracy and efficiency. The first example clearly demonstrates
he implementation procedure. Example 2 deals with a four-bar
inkage mechanism with nine random variables. Example 3 shows
he capability of the SORM-FOE for handling a structural analysis
ith a relatively large number of random variables �21 variables�.
he scale factor in Eq. �36� is taken as �i=1.0 for all the ex-
mples.

4.1 Example 1—A Pinned Rod Analysis. As shown in Fig.
�a�, the rod OA is pinned at the revolute joint O. The path of
oint A is a circle with a radius of L=10.0 mm. A clearance of
c=0.01 mm at joint O exists because of the gap between the hole
nd the pin. The joint can be modeled as a virtual link OP, as
hown in Fig. 3�b�. Then, the position of A is given by

	 2 2

Fig. 3 A pinned rod
s = �L sin � + x� + �L cos � + y� �37�

01006-4 / Vol. 132, OCTOBER 2010
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s should be close to L, but should not be greater than L. The
required error q is set to 0.0099 mm. The limit-state function is
therefore defined by

g�x,y� = s − L = 	�L sin � + x�2 + �L cos � + y�2 − L � − q

�38�

Let x and y be the coordinates of point P, and assume that the
position of P is uniform within clearance rc �38–40�. x and y are
dependent because their joint PDF is

fx,y�x,y� = � 1


rc
2 if x2 + y2 � rc

2

0 otherwise
� �39�

The marginal PDF of x is given by

fx�x� =�
−�

�

fxy�x,y�dy =�
−	rc

2−x2

	rc
2−x2 1


rc
2dy =

2	rc
2 − x2


rc
2 �− rc � x � rc�

�40�

The marginal CDF of x is given by

Fx�x� =�
−�

x

fx�x�dx =�
−�

x
2	rc

2 − x2


rc
2 dx =

1


rc
2�x	rc

2 − x2

+ rc
2 arcsin

x

rc
� +

1

2
�41�

The conditional PDF of y is given by

fy�x�y�x� =
fxy�xy�
fx�x�

=
1

2

1

	rc
2 − x2

�− rc � x � rc� �42�

The conditional CDF of y is given by

fy�x�y�x� =�
−�

y

fy�x�y�x�dy =
1

2� y

	rc
2 − x2

+ 1��− 	rc
2 − x2 � y

� 	rc
2 − x2,− rc � x � rc� �43�

At first, we use the FORM to solve the problem. x and y are
transformed into standard normal variables Ux and Uy. Ux is given
by

��Ux� = Fx�x� =
1


rc
2�x	rc

2 − x2 + rc
2 arcsin

x

rc
� +

1

2
�44�

and Uy is given by

��Uy� = Fy�x�y�x� =
1

2� y

	rc
2 − x2

+ 1� �45�

After the transformation, the MPP is found at u�= �ux
� ,uy

��
= �−1.8081,−2.1073�. We then use MCS to confirm the solution.
A large sample size of 108 is used to ensure that the MCS solution
is accurate. The error of other methods with respect to the MCS
solution is defined in

Error % =
pf − MCS solution

MCS solution
� 100 �46�

The results are given in Table 1. The error of the FORM is
358.7%. The reason for the large error is explained in Figs. 4 and
5. Figure 4 shows that the limit-state function in the X-space is
near linear. However, Fig. 5 indicates that the limit-state function
in the transformed U-space becomes highly nonlinear. The in-
creased nonlinearity is due to the dependency between x and y and
the nonlinear X-to-U transformation. The linearization in the
U-space produces a large error.

The efficiency is measured by the number of limit-state func-

tion calls N, which include N1 �the number of function calls for
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he MPP search� and N2 �the number of function calls after the
PP search�. The number of function calls of the FORM is 36 or

1=36 and N2=0.
We now look at the solution from the SORM. Both of the

ORM methods are much more accurate than the FORM, but the
rror of the Breitung method is still relatively large. The number
f function calls by the SORM is 39, higher than that of the

Table 1 pf if x i

Method pf

FORM 2.7460�10−3

SORM �Breitung� 8.5171�10−4

SORM �Tvedt� 6.9148�10−4

SORM-FOE 6.4571�10−4

MCS 5.9865�10−4

Fig. 4 Contours of the limit-state function in the X-space

Fig. 5 Contours of the limit-state function in the U-space

Table 2 pf if y i

Method pf

FORM 4.4445�10−3

SORM �Breitung� 6.0542�10−5

SORM �Tvedt� 4.7485�10−5

SORM-FOE 6.3084�10−4

MCS 5.9865�10−4
ournal of Mechanical Design
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FORM.
We then apply the SORM-FOE. After the MPP search, two

more points with ũi=ui
�+�i �i=x ,y� are used for the following

second-order approximation:

g�x,y� = ĝ�Ux,Uy� � ĝx�Ux� + ĝy�Uy� − �− q� � �ax + bxUx + cxUx
2�

+ �ay + byUy + cyUy
2� + q �47�

Then, the CGF of ĝ�Ux ,Uy�, Kĝ, is derived based on Eqs. �29�
and �30�. Solving for the saddlepoint with Kĝ�=q and using Eq.
�32�, we obtain pf, As shown in Table 1, the SORM-FOE is much
more accurate than the FORM and SORM.

The number of function calls of the SORM-FOE is 38, includ-
ing 36 for the MPP search and 2 for the function evaluations at the
additional point. Its efficiency gain over the SORM is not signifi-
cant: Only one function call is saved. The reason is that there are
only two random variables. As shown in example 3, for problems
with more random variables, the former method will be much
more efficient than the latter method.

In the above FORM analysis, x was transformed first followed
by the transformation of y. If we transform y first and rework the
problem, the results from the FORM and SORM-FOE will be
different. The results are given in Table 2, which show that the
SORM-FOE is still the most accurate method.

4.2 Example 2—Crank-Slider Mechanism Analysis. A
crank-slider mechanism is shown in Fig. 6. R2, R3, and R4 are the
lengths of the mechanism. C1, C2, and C3 are the clearance circles
�39,41–46� at the three revolute joints. xi and yi are the x- and
y-components of Ci �i=1,2 ,3�. With the same reason explained in
example 1, we assume the locations of the joint centers to be
uniform within the clearance radii rci �i=1,2 ,3�. The joint PDFs,
the marginal PDFs, and the CDFs of the coordinates of the joints,
xi and yi, have been derived in example 1 in Eqs. �39�–�43�. The
distributions are given in Tables 3 and 4.

The motion output is the displacement of the slider R1. The
loop-closure equations of the mechanism are given by

R2 cos �2 + R3 cos �3 − R1 + x1 + x2 − x3 = 0
�48�

R2 sin �2 + R3 sin �3 − R4 + y1 + y2 − y3 = 0

R1 can then be solved from the above equations and is given by

Y = R1 = g�X� = g�R2,R3,R4,x1,y1,x2,y2,x3,y3;�2� �49�

ansformed first

Error
�%� N N1 N2

358.7 36 36 –
42.3 39 36 3
15.5 39 36 3

7.9 38 36 2
– 108 – –

ansformed first

Error
�%� N N1 N2

642.4 210 210 –
89.9 213 210 3
92.1 213 210 3
5.4 212 210 2
– 108 – –
s tr
s tr

�
�
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Because of the randomness in the dimension and clearance pa-
ameters, the actual position of the slider will be different from its
ominal position. Suppose a failure is defined by the event �R1

R̄1��q, where q is the required error that is set to 0.05 mm, and

is the nominal position that is determined by the mean values of
he dimension and clearance parameters. We then define the per-
ormance function as

g = R1 − R̄1 �50�

A failure occurs when g�q �R1� R̄1+q� or q�−q �R1� R̄1
q�. Then, the probability of failure is

pf = pf1 + pf2 = Pr�g � q� + Pr�g � − q� �51�

here pf1=Pr�g�q� and pf2=Pr�g�−q�.
The probabilities of failure over �2= �10° ,90°� are plotted in

ig. 7 and listed in Table 5. The sample size of MCS is 108. The
rrors of all the methods are shown in Table 6 along with the
umbers of function calls in Table 7. The results indicate that the
ORM-FOE produces the most accurate solution. The FORM sig-
ificantly overpredicts pf, and the SORM underpredicts pf. The

Table 3 Random dimensions

ariable
Mean
�mm�

Standard deviation
�mm� Distribution

2 �2=100.0 �2=0.01 Normal

3 �3=150.0 �3=0.01 Normal

4 �4=50.0 �4=0.01 Normal

Table 4 Random clearances

ariable
Clearance radius rc

�mm� Distribution

x1 ,y1� 0.012 2D uniform within a circle
x2 ,y2� 0.012 2D uniform within a circle
x3 ,y3� 0.012 2D uniform within a circle

Table 5 pf for the c

�2
�deg� FORM SORM �Breitung�

10 8.9455�10−3 3.6960�10−3

20 6.7210�10−3 2.7932�10−3

30 4.3231�10−3 1.8490�10−3

40 3.1867�10−3 1.3477�10−3

50 2.2384�10−3 8.1612�10−4

60 1.8741�10−3 3.4089�10−4

70 1.9091�10−3 3.3439�10−4

80 2.3491�10−3 7.1654�10−4

90 3.0502�10−3 9.9093�10−4

Fig. 6 Crank-slider mechanism
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numbers of function calls by the SORM-FOE is slightly larger
than those of the FORM but are much less than those of the
SORM. In this problem, there are nine random variables �n=9�
and two limit-state functions g�q and g�−q; therefore, the
SORM-FOE calls the limit-state functions 18 more times �2n=2
�9=18 according to Eq. �35�� than the FORM does, whereas the

SORM calls the limit-state functions 90 more times �2� n�n+1�
2

�
=2� � 9��9+1�

2
�=90 according to Eq. �10�� than the FORM does.

4.3 Example 3—A Cantilever Beam Analysis [47]. The can-
tilever beam in Fig. 8 is subjected to external forces F1 and F2,
external moments M1 and M2, and external distributed loads rep-
resented by �qL1 ,qR1� and �qL2 ,qR2�. Other variables are the di-
mensions of the beam, the locations of the loading, the yield
strength S, and the maximal allowable shear stress �max. The dis-
tributions of these 21 random variables are listed in Table 8.

k-slider mechanism

RM �Tvedt� SORM-FOE MCS

.5190�10−3 6.5261�10−3 5.2121�10−3

.9677�10−3 5.5657�10−3 3.8988�10−3

.3490�10−3 3.2160�10−3 2.4180�10−3

.8606�10−4 1.7120�10−3 1.6487�10−3

.7435�10−4 1.0825�10−3 1.0565�10−3

.3168�10−4 9.0061�10−4 7.8480�10−4

.2723�10−4 7.7170�10−4 7.7050�10−4

.6559�10−4 8.3526�10−4 9.5300�10−4

.4643�10−4 1.0920�10−3 1.2807�10−3

Table 6 Error „%…

�2
�deg� FORM SORM �Breitung� SORM �Tvedt� SORM-FOE

10 71.6 �29.1 �51.7 25.2
20 72.4 �28.4 �49.5 42.6
30 78.8 �23.5 �44.2 33.0
40 93.3 �18.3 �40.2 3.8
50 111.9 �22.8 �45.6 2.5
60 138.8 �56.6 �70.5 14.8
70 147.8 �56.6 �70.5 0.2
80 146.5 �24.8 �51.1 �12.4
90 138.2 �22.6 �49.5 �14.7

Fig. 7 pf over �2= †10 deg,90 deg‡
ran
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The first limit-state function represents the difference between
the maximum normal stress and the yield strength. The function is
given by

g1�x� = 6
M

wh2 − S �52�

where the bending moment M at the root is

M = 

i=1

2

Mi + 

i=1

2

Fibi + 

i=1

2

qLi�di − ci��di + ci�/2 − 

i=1

2

��qRi − qLi�

��di − ci�/2��ci + 2�di − ci�/3� �53�
The second limit-state function is defined as the difference be-

tween the maximum shear stress and the allowable shear stress
and is given by

g2�x� =
3Q

2wh
− �max �54�

where the shear force at the root is

Q = 

i=1

2

Fi + 

i=1

2

qLi�di − ci� + 

i=1

2

�qRi − qLi��di − ci�/2 �55�

The analysis results are given in Tables 9 and 10, which show
that the SORM-FOE is more accurate than the FORM, and the
SORM-FOE is also much more efficient than the SORM. As ex-
pected, the SORM-FOE may not be as accurate as the SORM. For
example, the error of the former method is slightly larger than the
second method �SORM-Breitung� for g1. The SORM-FOE is
much more efficient than the SORM.

5 Conclusions
The SORM-FOE uses a second-order approximation to the

original limit-state function. The approximation is achieved by
decomposing the limit-state function with additive univariate
functions at the MPP. Each of the univariate functions is further
approximated as a quadratic function. This is performed by using
the gradient of the limit-state function at the MPP and one new
point along the line of the random variable that is involved in the
univariate function.

Because of its second-order approximation, the accuracy of the
SORM-FOE is, in general, higher than that of the FORM. The
efficiency of the SORM-FOE is slightly lower than that of the
FORM. The additional computational cost is equivalent to one
gradient evaluation in the MPP search. The error of the presented
method, however, will be large if the univariate dimension reduc-
tion does not accurately approximate the limit-state function
�5–13�.

The SORM-FOE is based on the FORM, and both of the meth-
ods cannot directly deal with multiple MPPs �48�. For this situa-
tion, we can apply the SORM-FOE at all the MPPs and then
create quadratic functions at the MPPs. The saddlepoint
approximation-based system reliability method �47� can then be
extended to accommodate quadratic functions. Because one limit-
state function is involved, the SORM-FOE is applicable for only

f for g1

rror
�%� N N1 N2

2.82 331 331 –
0.09 562 331 231
1.38 562 331 231
0.109 352 331 21
– 108 – –
Table 7 Numbers of function evaluations

�2
deg�

N

N1

N2

FORM SORM SORM-FOE SORM SORM-FOE

10 488 578 506 488 90 18
20 274 364 292 274 90 18
30 744 834 762 744 90 18
40 285 375 303 285 90 18
50 375 465 393 375 90 18
60 446 536 464 446 90 18
70 992 1082 1010 992 90 18
80 292 382 310 292 90 18
90 334 424 352 334 90 18
Fig. 8 A cantilever beam
Table 8 Random variables

Random
variable

Mean
value

Standard
deviation

Distribution
type

1 M1 �N m� 50.0�103 5.0�103 Normal
2 M2 �N m� 30.0�103 3.0�103 Normal
3 F1 �N� 18.0�103 4.0�103 Extreme value type I
4 F2 �N� 30.0�103 3.0�103 Normal
5 qL1 �N/m� 30.0�103 1.0�103 Normal
6 qR1 �N/m� 20.0�103 1.0�103 Normal
7 qL2 �N/m� 20.0�103 1.0�103 Normal
8 qR2 �N/m� 1.0�103 10.0 Normal
9 a1 �m� 1.5 0.005 Normal
10 a2 �m� 4.5 0.005 Normal
11 b1 �m� 0.75 0.001 Normal
12 b2 �m� 2.50 0.001 Normal
13 c1 �m� 0.25 0.0005 Normal
14 c2 �m� 1.75 0.001 Normal
15 d1 �m� 1.25 0.001 Normal
16 d2 �m� 4.75 0.001 Normal
17 L �m� 5.0 0.01 Normal
18 w �m� 0.2 0.0001 Normal
19 h �m� 0.4 0.0001 Normal
20 S �Pa� 80.0�106 10.0�106 Normal
21 �max �Pa� 3.5�106 0.5�106 Normal
Table 9 p

Method pf

E

FORM 2.5133�10−4 �
SORM �Breitung� 2.5840�10−4 �
SORM �Tvedt� 2.6222�10−4

SORM-FOE 2.5892�10−4

MCS 2.5864�10−4
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omponent reliability analysis. It can be extended to a system
eliability analysis, and such an extension needs further investiga-
ion.
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