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Abstract
Analytical methods to interpret the indentation load–displacement curves are
difficult to formulate and solve due to material and geometric nonlinearities
as well as complex contact interactions. In this study, large strain–large
deformation finite element analyses were carried out to simulate indentation
experiments. An artificial neural network model was constructed for the
interpretation of indentation load–displacement curves. The data from finite
element analyses were used to train and validate the artificial neural network
model. The artificial neural network model was able to accurately determine
the material properties when presented with the load–displacement curves that
were not used in the training process. The proposed artificial neural network
model is robust and directly relates the characteristics of the indentation load–
displacement curve to the elasto-plastic material properties.

1. Introduction

Materials characterization can be carried out based on the results obtained from instrumented
indentation tests. Besides the hardness of materials, recent research efforts have focused
on the interpretation of indentation load–displacement curves for other basic mechanical
material properties, such as Young’s modulus, yield strength and strain-hardening exponent.
Doerner and Nix [1] and Oliver and Pharr [2] proposed methods to extract the values of
the Young’s modulus of materials from the unloading part of indentation load–displacement
curves. Based on three-dimensional finite element simulations, a set of equations for reverse
analysis of indentation experiments was proposed by Giannakopoulos and Suresh [3], while
Cheng and Cheng [4, 5] derived a set of dimensionless functions to relate the characteristics
of the indentation load–displacement curve to the elasto-plastic properties of the material.
Empirical methods to determine the Young’s modulus and strain-hardening exponent from
the unloading curve were presented by Zeng and Chiu [6] and Zeng and Shen [7]. Dao et al
[8] proposed a new set of dimensionless functions, and forward and reverse analysis schemes
based on extensive finite element simulations. Bucaille et al [9] and Chollacoop et al [10]
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subsequently extended the method proposed by Dao et al [8] for forward and reverse analyses
based on dual sharp indenters. It was demonstrated by Swaddiwudhipong et al [11] that the
latter is imperative for unique recovery of the three elasto-plastic material properties.

Owing to large geometric and material nonlinearities as well as complex contact problem
at the indentation interface, closed form solutions are not readily available. At present, the
most practical approach to the interpretation of the indentation load–displacement curve is
a semi-analytical approach, whereby the forms of the governing relationships between the
characteristics of the load–displacement curve and the elasto-plastic material properties are
derived analytically and the underlying relationships calibrated numerically. The accuracy of
such an approach is highly dependent on the precision of the curve or surface fitting procedure,
as well as the robustness of the reverse analysis algorithm. A common practice is to express
the characteristics of the indentation load–displacement curve as some functions of the elasto-
plastic material properties and either the inverse or the point of intersection of several functions
is established. Owing to the complexity of the functions a trial and error procedure is normally
necessary, and consequently additional error could be introduced.

An artificial neural network approach has been successfully used to interpret indentation
results. Huber et al [12, 13] presented artificial neural network models to determine the
constitutive properties of thin films on a substrate based on the depth–load trajectory of
spherical indentation. Their models enabled the material properties of both the thin film
and the substrate to be identified from a single indentation load–displacement curve. More
recently, Huber and Tyulyukovskiy [14] presented a sophisticated artificial neural network
model to solve the inverse problem of determining the viscoplastic material properties from
indentation load–displacement response subject to multiple creep processes.

In this study, an artificial neural network (ANN) model is constructed for material
characterization based on simulated load–displacement response for dual sharp indenters. The
artificial neural network is a robust tool to perform multi-dimensional function approximation.
The artificial neural network approach circumvented the need to identify the form of the
function prior to the establishment of the multi-dimensional fitting surfaces. Extensive finite
element analyses are carried out in order to investigate the response of elasto-plastic materials
obeying power law strain-hardening during indentation, using two indenters of different
geometries. The numerical data from finite element analyses are used for the training and
verification of the ANN model. The proposed artificial neural network model is robust, and
directly relates the characteristics of the indentation load–displacement curve to the elasto-
plastic material properties without resorting to an iterative procedure.

2. Finite element simulation

Conical indenters with half-angles of 60.0˚ and 70.3˚ are modelled as rigid bodies in the finite
element models. Large strain and large deformation finite element analyses were carried out
using ABAQUS, a commercial software. Each finite element mesh adopted for the target
material consists of 28 900 four-node, bilinear, axisymmetric, quadrilateral elements. The
model has been tested, a priori, to ensure the convergence of the finite element results and the
insensitivity to far-field effects. As the effect of friction is negligible for any indenters with half-
angles larger than 60˚ [9], frictionless contact is assumed in the present finite element model.

Materials obeying power law strain-hardening with the uniaxial true stress–true strain
relationship expressed in equations (1) were considered in this study.

σ = Eε for σ � Y, (1a)

σ = Rεn for σ � Y. (1b)
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Figure 1. Typical representation of the load–displacement curve of an elasto-plastic material.

In equation (1), E is Young’s modulus, Y the yield stress, R the strength coefficient and n the
strain-hardening exponent.

Enforcing continuity at σ = Y gives

R = Y

(
E

Y

)n

. (2)

If the elasticity effect of the indenter is significant and has to be considered in the analysis, the
actual Young’s modulus, E, of the targetted materials should be replaced by a reduced Young’s
modulus, E∗, expressed in equation (3) [3, 8, 10].

E∗ =
[

1 − ν2

E
+

1 − ν2
i

Ei

]−1

. (3)

In equation (3), Ei and νi are the Young’s modulus and Poisson ratio of the indenter,
respectively. A constant Poisson ratio of 0.33 is used throughout this study.

3. Load–displacement curves

A typical indentation load–displacement curve of an elasto-plastic material such as Al6061
is shown in figure 1 [8, 10]. The loading part of an instrumented sharp indentation generally
follows Kick’s law which can be expressed as

P = Ch2, (4)

where P is the indentation load, h the penetration depth measured from the surface and C

a constant curvature. The projected contact area for ideally sharp indenters with a linear
relationship between the penetration depth and the contact radius can be expressed as

A = kh2, (5)

where k is constant for a particular material and indenter geometry.
Dividing equations (4) by (5) leads to

pave = P

A
= C

k
= constant. (6)
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Based on the relationship derived by Luk et al [15],

pave

Y
= f

(
E∗

Y
, n

)
. (7)

In view of equations (6) and (7), the following relationship between C and the three material
parameters (E∗, Y, n) can be established.

C

Y
= f1,θ

(
E∗

Y
, n

)
, (8)

where θ is the half-angle of the indenter. Equation (8) is consistent with the expression derived
by Cheng and Cheng [4] using dimensional analysis. The latter also showed that

WT − WU

WT
=

∏
ω

(
Y

E
, ν, θ

)
, (9)

where WT is the area under the loading curve and WU the area under the unloading curve.
Denoting (WT − WU) by WR, for a particular value of Poisson ratio and half-angle of the

indenter, equation (9) becomes

WR

WT
= f2,θ

(
E∗

Y
, n

)
. (10)

4. Artificial neural network model

By substituting the values of θ = 60.0˚ and 70.3˚, equations (8) and (10) yield, respectively

C

Y

∣∣∣∣
60.0˚

= f1,60.0˚

(
E∗

Y
, n

)
, (11)

C

Y

∣∣∣∣
70.3˚

= f1,70.3˚

(
E∗

Y
, n

)
, (12)

WR

WT

∣∣∣∣
60.0˚

= f2,60.0˚

(
E∗

Y
, n

)
, (13)

WR

WT

∣∣∣∣
70.3˚

= f2,70.3˚

(
E∗

Y
, n

)
. (14)

Dividing equations (11) by (12) leads to equation (15).

C60.0˚
C70.3˚

=
f1,60.0˚(E

∗/Y, n)

f1,70.3˚(E
∗/Y, n)

= f3

(
E∗

Y
, n

)
. (15)

The solution to the problem is represented by the point of intersection between the surfaces
defined by equations (13)–(15). It has been shown earlier by Swaddiwudhipong et al [11]
and Tho et al [16] that the reverse analysis based on dual sharp indenters leads to a unique
solution of E∗/Y and n, and hence there exists only one point of intersection among the
surfaces defined by equations (13)–(15). Therefore, there exists a one-to-one mapping of
(C60.0˚)/(C70.3˚), (WR/WT)60.0˚ and (WR/WT)70.3˚ to E∗/Y and n.
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Figure 2. Flowchart illustrating the solution procedure.

Two artificial neural networks, denoted as ANN-1 and ANN-2, are constructed for
the reverse analysis of instrumented indentation results. ANN-1 is constructed to map
(C60.0˚)/(C70.3˚), (WR/WT)60.0˚ and (WR/WT)70.3˚ to E∗/Y and n, while the mapping of
E∗/Y and n to (C60.0˚/Y ) and (C70.3˚/Y ) is handled by ANN-2. Once ANN-1 and ANN-2
are constructed, the reverse analysis process is straightforward. From the indentation
load–displacement curves of both indenters, the quantities C60.0˚, C70.3˚, (WR/WT)60.0˚ and
(WR/WT)70.3˚ can be determined. By providing the values of these quantities to ANN-1, the
ratio of E∗/Y and n can be determined and these results are then substituted into ANN-2 to
obtain (C60.0˚/Y ) and (C70.3˚/Y ). Since C60.0˚ and C70.3˚ are known, Y can be calculated
from either (C60.0˚/Y ) or (C70.3˚/Y ) and hence the results can be self-verified. Consequently,
E∗ can be evaluated from the ratio of E∗/Y established earlier. The actual value of Young’s
modulus, E, can then be obtained from equation (3). The solution procedure is summarized
in the flowchart shown in figure 2.

Back-propagation multilayer feedforward ANNs (ANN-1 and ANN-2) were created using
the Neural Network Toolbox in the Matlab 6.5 package. Both ANN-1 and ANN-2 comprise an
input layer, a hidden layer and an output layer. The numbers of neurons in the input and output
layers of the ANNs are identical to the numbers of input and output parameters, respectively.
However, the number of neurons in the hidden layer of the neural network is calibrated during
the training and validation process. The tangent sigmoid transfer function is used in the hidden
layer while the linear transfer function is assigned to the output layer.

The ANNs are trained by introducing a set of examples (pairs of inputs and the
corresponding outputs) of proper network behaviour to the ANNs. As the inputs are applied
to the network, the network outputs are compared to the target outputs. During training,
the learning rule is used to iteratively adjust the weights and biases of the network, in
order to move the network outputs closer to the target values by minimizing the network
performance indicator. The Levenberg–Marquardt training algorithm, which has a higher rate
of convergence, is used for the training of both ANN-1 and ANN-2.

The data for training and validation of ANN-1 and ANN-2 were obtained numerically
through 500 large strain, large deformation finite element analyses encompassing a domain of
E∗/Y from 10 to 1000 and n varying from 0.0 to 0.6 for each of the conical indenters. Out of
the 500 sets of input and output data, 400 sets were randomly assigned as training data while
the remaining 100 sets were used for validation purposes. The mean square error (MSE) of
the network outputs and the target values is used as the network performance indicator. In
ANN-1, the values of output 1 (i.e. E∗/Y ) vary from 10 to 1000 while those of output 2 (i.e. n)
range from 0 to 0.6. In order to achieve weightings of the same order of magnitude for the
contributions from the two outputs to the performance indicators, a scaled-down parametric
value, E∗/1000Y , is adopted in ANN operations. ANN-1 and ANN-2 are trained using the
training data sets and tested against the validation data sets.
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Table 1. Characteristics of ANN-1 and ANN-2.

Mean square error
Number of

Range of neurons in the
outputs hidden layer Training Validation

ANN-1 0–1 30 1.398E−05 4.609E−05
ANN-2 10–610 24 4.555E−02 5.215E−02

The number of neurons in the hidden layer of the neural network has serious implications
for the performance of the ANN. If too few neurons are used in the hidden layer, the ANN does
not possess a sufficient degree of freedom to approximate the function relating the inputs and
the outputs. On the other hand, if too many neurons are used in the hidden layer, over-fitting
can occur. In such a situation, the trained ANN is able to predict the training data almost exactly
but performs poorly with new sets of data. The determination of the number of neurons in the
hidden layer is an iterative process. During the training process, the number of neurons in the
hidden layer is increased slowly while the evolution of the training MSE and the validation
MSE are tracked. Initially, both the training MSE and validation MSE decrease with increasing
number of neurons in the hidden layer. However, after a certain threshold value of the number
of neurons in the hidden layer is reached, the validation MSE will increase while the training
MSE will continue to decrease due to the over-fitting phenomena. By identifying the turning
point of the validation MSE, a good estimate of the optimal number of neurons in the hidden
layer can be obtained. The characteristics of ANN-1 and ANN-2 are summarized in table 1.

5. Results and discussion

Finite element analyses were carried out to simulate indentation experiments on Al6061,
Al7075, steel and iron. The typical elasto-plastic material properties of these materials [8, 9, 15]
are used as inputs to the finite element model. The finite element results are summarized in
table 2. It should be noted that these sets of finite element results were not used in the training
and validation process described in section 4.

The solution procedure described in the previous section is then applied using the finite
element results depicted in table 2 as inputs. The material properties predicted by the artificial
neural network model are shown in table 3, together with the actual material properties. It can
be observed from table 3 that the proposed artificial neural network model predicted the elasto-
plastic material properties reasonably accurately. The relatively large percentage difference
between the actual value of n and the predicted value of n is exaggerated to certain extent by
the small value of n.

By training and validating ANN-1 and ANN-2 with the data sets from indenters of
different geometries, the proposed artificial neural network model can be used to perform
reverse analysis based on the results of other indenter geometries. Furthermore, the proposed
artificial neural network model can be easily extended to perform a reverse analysis based
on the results obtained from finite element simulations of multiple indenter geometries. The
accuracy of the model is expected to improve significantly as results from more indenters are
considered in the operations.

6. Conclusion

The artificial neural network is a robust tool to perform multi-dimensional surface fitting.
Artificial neural networks enable the direct mapping of the characteristics of the indentation
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Table 2. Summary of finite element results for Al6061, Al7075, steel and iron.

Conical indenter with Conical indenter with
half-angle of 60.0˚ half-angle of 70.3˚

Material C60.0˚ (GPa) C70.3˚ (GPa) (WR/WT)60.0˚ (WR/WT)70.3˚

Al6061 10.740 27.200 0.952 0.921
Al7075 20.362 46.555 0.903 0.853
Steel 23.907 59.272 0.960 0.937
Iron 24.598 55.513 0.949 0.925

Table 3. Prediction from artificial neural network model.

Al6061 Al7075 Steel Iron

E∗ (GPa)
Actual 72.4 73.4 194.3 170.8
Predicted 72.7 73.1 195.6 170.0
Deviation (%) 0.5 0.4 0.7 0.5

E (GPa)
Actual 69.0 70.1 210.0 180.0
Predicted 69.3 69.8 211.8 179.0
Deviation (%) 0.5 0.4 0.8 0.6

Y (MPa)
Actual 275.0 500.0 500.0 300.0
Predicted 276.3 508.3 489.6 297.9
Deviation (%) 0.5 1.6 2.1 0.7

n

Actual 0.050 0.122 0.100 0.250
Predicted 0.049 0.117 0.106 0.253
Deviation (%) 2.3 4.5 5.6 1.2

load–displacement curve to the elasto-plastic material properties. The proposed artificial neural
network model can accurately predict the elasto-plastic properties of the materials based on the
simulated load–displacement curves of dual conical indenters with different half-angles. The
proposed ANN model can also be extended for reverse analysis based on the results obtained
from other indenter geometries.
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