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Multigluon tree amplitudes with a pair of massive fermions
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Abstract
We consider the calculation of n-point multigluon tree amplitudes with a pair of massive fermions
in QCD. We give the explicit transformation rules of this kind of massive fermion-pair amplitudes
with respect to different reference momenta and check the correctness of them by SUSY Ward
identities. Using these rules and onshell BCFW recursion relation, we calculate the analytic results

of several n-point multigluon amplitudes.
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I. INTRODUCTION

Scattering amplitudes are important from both theoretical and experimental points of
view. Traditionally we use Feynman diagrams to calculate the scattering amplitudes in field
theories. During the past several years, motivated by string theory [1], new efficient methods
for tree level amplitudes have been suggested. The offshell CSW rule 2] suggests that the
tree amplitudes in gauge theories can be constructed by offshell continued MHV vertices [3].
Then Britto, , Cachazo, Feng and Witten (BCFW) [4-6] gave an onshell recursion relation
where the higher point amplitudes can be obtained by lower point onshell amplitudes whose
momenta are properly shifted to complex space.

The BCFW recursion relations have been extensively used to calculate tree level in various
massless gauge theories [7-14]. Its extension to gravity amplitudes has also been considered
[15-23]. Those applications are all related to massless external particles. But in fact,
all the matter particles and weak bosons in standard model are massive. Furthermore,
massive amplitudes are more important in higher energy physics experiments such as LHC
experiments for processes with top quarks, Higgs particles and possible supersymmetric
particles. So it is important to consider the amplitudes with massive external particles. In
[24-27|, the amplitudes with one external massive gauge bosons or Higgs bosons have been
discussed. Multigluon amplitudes with pairs of massive scalars or quarks have been studied
in [28-36]. An excellent and compact expression for multigluon amplitudes with a pair of
massive scalars or quarks and any number of plus helicity gluons has been found in [3§]
by using an off-shell recursive methods [39] and the BCFW relations. In [40], the authors
use some supersymmetric Ward identities to relate a compact expression for multigluon
helicity amplitudes involving a pair of massive quarks to amplitudes with massive scalars.
A thorough discussion of BCFW onshell recursion relation for amplitudes with massive
external particles are given in |32 where the shifted momenta can be massless or massive.
The authors also use BCFW recursion relation to obtain compact expressions for multigluon
amplitudes involving a pair of massive quarks or scalars and one minus gluon helicity adjacent
to fermions. Multigluon amplitudes with a pair of massive scalar and one minus helicity
gluon not adjacent to scalars are calculated by a different way [30]. All helicity amplitudes
with a pair of massive quarks are calculated in [37] up to six external particles.

In this paper, we use the notation and convention in [32] and explore the calculation of



several n-point helicity amplitudes with a pair of massive quarks and one minus helicity gluon
(fermion-pair amplitudes). The massive amplitudes depend on reference momenta which
define the helicity of the massive fermions. One can relate the fermion-pair amplitudes with
respect to different reference momenta. We first give the explicit form of the transformation
rules and check the correctness of them by SUSY Ward identities. Then by shifting the
momenta of a massive particle and a gluon and using the BCFW recursion relation, we get
the analytic expressions of several n-point fermion-pair amplitudes. In section 2, we review
the spinor formalism of massive fermions and obtain the transformation rules for fermion-
pair amplitudes defined on different reference momenta. In section 3, we calculate several

multigluon amplitudes with a pair of fermions. Section 4 is for the summary.

II. SPINOR FORMALISM OF MASSIVE FERMIONS

We briefly give our notation and convention of spinor helicity formalism. For massless
fermions, particles and antiparticles both have definite helicities. Their corresponding spinor

states are u(p, £), v(p, =), which can be denoted as follows|32|:

u(p, £) = |pF), v(p, £) = [pF). (1)
For the conjugate states, similar notations are
u(p, £) = (£pl, v(p, ) = (£p|. (2)

A massless momentum ¢ can be written in spinor form

w1 I DI iy — Lo
q" = §<—qlv lg—) = 2<q|7 lq] = 2<+q|7 lg+) = 2[qlv q)- (3)

The scalar product of two massless momenta p, ¢ can be obtained as

2p - q = (pq)lqp)- (4)

For a massive momentum K? = m?, one can always split it into two massless momenta
by introducing a reference massless momentum g,
2

K? m
K=K +-——q=K
+ q +2K~q

2K - q

q, (5)

where (K")? = 0.



Massive fermions are not helicity eigenstates. Their helicities are frame dependent and we
can introduce a null reference momentum ¢ to define their helicity states. In this formalism,

the massive fermions and anti-fermions states with momentum p? = m? are

1

u(p,£) = W(?*‘”ﬂkﬁ% (6)
1

v(p, &) = W(ﬁ—mﬂqi% (7)

u(p, ) = <Q¢|m(}’5+m)a (8)

v(p, £) = <Q¢|m(}’5—m)- 9)

m2

In the above, p = p’ + T

q. We can also define massless states |p’+) = mmqiw and

rewrite the massive fermion states as

u(p, ) = [pP’F) + lg£). (10)

m

P F lgL)
We can obtain similar forms for all other states. It is easy to see that we have a smooth
massless limit.

Because the massive fermionic helicity states depend on reference momenta, then the
amplitudes with massive external fermions should also depend on reference momenta. But
we can relate fermionic spinor states with one reference momentum to these with another
reference momentum|32|. Let ¢, § be two light-like reference momenta, we have the following

relation between the spinor states corresponding to the two reference momenta,

u(+) c11 Ci2 a(+)
= : (11)
u(—) . Co1 Ca2 u(—) ,
where
= (dlpla) . m(Gq) o ~m[QQ] ey — [d]pla) (12)

@ra " @ e " apllrd T @ re)
In the above equations, 7’ (p’) means splitting p with respect to G(g). Similar relations can
be obtained for other massive fermionic states.
In this paper, we consider n-point amplitudes with gluons and a pair of massive fermions
A(1g,2,3,---,n — 1,ng). In the calculation, we choose the same reference momentum
for the external massive fermions. An amplitude with reference momentum ¢ for the ex-

ternal fermions is denoted by A,(1g,2,3,---,n — 1,n5) . In contrast to amplitudes with
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massless fermions, there are both helicity-conserving and helicity-flipping amplitudes for
massive amplitudes. With the same external gluons, there are four different helicity am-
plitudes A,(14,2,3,---,n — 1,n5), A, (15,23, n — Ling), Ag(1g,2,3,+,n — 1,n5),
A(15,2,3,---,n—1, né) Similar to the relation (1), we can get relations between ampli-

tudes with respect to different reference momenta,

A7T CLCT CLCTy CLOT CLCT A
A;_ _ CLC3 CLC3y CpCsy O3, A (13)
Aq_+ CuChy C3Cfy CpCy Oy A"
A; CnC3 O3y CC% CC3 A

In the above, A¥* is shorthand notation of A1, ,ng) and all the amplitudes have the

same external gluons. As in equation (I2)), the elements of the matrix are

(q|p1|q] 1 m<q~q>

L mli) o mla o, i)
= @ T e T aomd 2 @)
0" Gy ld .  mdq) n _ _ mlgq] " _ [dlp, |a) (14)
Ya) e am))Y ey an IR [an ) ha)

These relations between massive amplitudes are important for our calculations in the next

section and the correctness of it will also be checked there.

III. CALCULATION OF FERMION-PAIR AMPLITUDES

In this section, we use the onshell BCFW recursion relations to calculate several n-point
amplitudes with a pair of massive fermions and n — 2 gluons. First we list several excellent
and useful results about amplitudes with a pair of massive particles, which are the building
blocks of our calculation.

An excellent and compact expression for the amplitude of a massive complex scalar-

antiscalar pair and any number of positive helicity gluons is obtained in [3§]:

2T — Py, )l — 1

A1y, 2%, - (n— 1), ng) = 2V2 Yim? . (15

(1o ( ) ¢) Yi2Y1,3°Y1n—2(23)(34) ---(n —2,n — 1) (15)
where

D1k = P1+p2+- -+ DPr, (16)

yig = p1+p2+--- +pk)2 —m?. (17)
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In supersymmetric theories, SUSY transformation can relate a bosonic particle state
to a fermionic particle state. And there are also relations between amplitudes related by
SUSY transformations. The SUSY transformations of helicity states have been discussed in
[41, 142]. In massless SUSY QCD theory, these SUSY transformations have been applied to
the helicity amplitudes [43-46]. In massive SUSY QCD, similar transformations of helicity
states have been derived in [40]. Using SUSY transformations, some relations between
amplitudes with different external helicity particles can also be obtained. These relations
are the so-called SUSY Ward identities[40]. As already mentioned, in this paper, we choose
the same reference momentum for the external massive fermions of an amplitude. In this
case, amplitudes of a massive fermion pair and all plus helicity gluons have the following

relations with amplitudes where the fermion pair is replaced by massive scalar pair,

b
A (15,25, (n— 1)",n5) = <p”q>A(1+,2+,~-~,(n—1)+,n?),

Q

Wi :
— ot + ot P19) 41— or + o
AQ(]-QaQ >a(n_1) >nQ) = <pnq>A(1¢>2 a>(n_1) an(z))>
Ay(15,2% s (= 1Fnz) = PP 4= ok 1y ) 18)
a\Lgs y ,\n ,nQ == m o> ) ,\n 7n¢_) .

It is noted that all the SUSY Ward identities as the above are derived by using supersym-
metry and these relations should hold to any perturbative orders. At the tree level some
relations can be applied to non-supersymmetric theory. This results from the fact that at
tree level the quark-gluon amplitudes are the same in both SUSY and non-SUSY theories
and at loop level there are contributions from SUSY particles to amplitudes. The helicity
flipping amplitude with all plus external particles vanish, A4(15,2%, -+, (n — 1)*, ng) =0.
Plugging eq.(I3]) into eq.(I8), we can get the basic building blocks for the calculation of
massive fermion-pair amplitudes.

There are also similar relations between fermion-pair amplitudes and scalar-pair ampli-

tudes with one minus helicity gluon

A(15.27 - i (n—1)T n5) = <nﬂj>A 15,27 - 57, (n—1)",n3),
(1 ( )"ng) i) (15 ( )T.ng)
_ . (1;5) .
Aj(1Q>2+>"'>] a"'>(n_1)+an5) = <n]>A(1 2+ »J a>(n_1)+ang)>(19)

where 1; = p?|r:pj is the projection of p; when we choose p; as reference momentum. One
can note that there is not similar relations for helicity flipping amplitudes when there are

one minus helicity gluon.



Before we precede to the calculation, here we use the SUSY Ward identities (I8]) to check
the correctness of the transformation rules (I3). We know that A,(15,2%,---, (n—1)7, ng) =
0 is correct for any reference momentum ¢. Then using the transformation rules (I3)), we

can obtain

A (15,25, (n—=1)",nf) = 01110?1A2r+ + 01110?214;_ + C'1120?114(1_Jr + 01120?214(1__

Q
= 01110?214;_ + C’112CIL1Aq_Jr + 01120?2/1(1__
1q) (In)
= chept _onen o on ) ) (a0
( 11~12 <1q> 12%11 <nq> 12~12 m ) (¢) ( )

dp\la) _m(aq) (nq)  {dp,lal _mide) (1a) = midg) m(da) (in)
qi>[1q] (qn) (nq) (1g)  (qn) [nq] <q~i><1q> (ng) <cﬁ>(1q) (Gn) (ng) m
_ td) midq) (ng)  {an) miqg) (lq) () (Gg) m{dg)
) (@) (ng) (1a)  (an) (1) (1q) (na) (nq)
)

(21)

So from the transformation rules, we can obtain the correct results Az(¢) = 0. In a similar
way, one can check the correctness of the transformation rules (I3) from other SUSY Ward
identities.

From the SUSY Ward identities, we have obtained the fermion-pair amplitudes with all
plus helicity gluons. Then we can use onshell BCFW recursion relation to get fermion-
pair amplitudes with other gluon helicity configurations. In [32], it has been proved that
by choosing a proper momenta shift, we can always use onshell BCFW recursion relation
to calculate fermion-pair amplitudes. In the following, we will calculate several concrete
multigluon amplitudes.

The amplitude A(15, 2%, - -+, (n—1)7,n5) can be calculated by shifting momenta p;,_1, py.

Q
In spinor formalism, it is

n) = [n) +zln = 1),

In—1] — |n—1] — z|n], (22)

where

nt) = |p, %), (23)
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and
2
b
Pn = Pp, + Pn—1- 24
2pn—l *Pn ! ( )

Then using BCFW recursion relation, we can get a compact result as follows,

A i(145,2 -+, (0 = 1)7,n3)

n—2 . . 7 o L
= Z A”—l(lav Tty (k - 1)+7 Pl:,_n—th)?A(k—i—’ T, 1 ) _Pk,n—l)

k=2 V=
— Z»2n/2—1 <n7n — 1) = <n B 1‘pk,n—1pn‘n B 1>2 >

<17 n— 1> <23> T <n - 27 n— 1> k=2 pi,n—1<k|pkm_1pn‘n o 1>
m? (k= 1, k) 21 T2 (Y — P, yiIn = 1)
Ok,2 + Op2 : : ) (25)
Yi2--- yl,k—l<k - 1|pk,n—1pn|n o 1>

where 0j9 = 1 — 0,2, and when k = 3, H?;é(' -+) = 1. From the SUSY Ward identities, if we

(n,n—1)

miss the factor =)

, we get the corresponding multigluon amplitude with massive scalar.
It has a more compact form than the one obtained in [30] because we use more compact
amplitudes eq.(IH) as building blocks. But we can check some lower point amplitudes with

others. The four point scalar amplitude is
2
A 1_|_ 2+ 3_ 4_ - 2 <3|¢2,3p4|3> - 2<3‘p4‘2] 26
( $re 0 fi)) =1 23) p2 . (2 3) be—g : ( )
< >p273< |¢2’3¢4| > p2,3y172

The five point amplitude is

(4] 2,4 5‘4>2
A(15,27,37,47,5;) = i23/2 3 (34)@7@%4@ 7
:53/2 m2<4\p374p5|4)2 [2‘p3,4‘4>
<34> p§,4(3|¢374¢5\4> y1,2<2|p3,4p5|4>
= 2%/2 <4|17§11¢2,4|4>2 123/2 m2[3|p5\4>2[23]
(23) (34) P%,4<2|¢1¢2,4|4> [34]y1,2y173<4|¢5]é3,4|2>

These results are the same as the ones obtained from other ways |28, 130] up to overall

(27)

conventional coefficients.
Then we calculate another four multigluon amplitudes with a massive fermion-pair. For
amplitude
A(la, 2737, (n—1)%, ng),
we shift the momenta p; and ps,
1) = 1) +2I3)
13] = |3] — z|1]. (28)
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The amplitude A(15,27,37,---, (n —1)7, ng) can be decomposed as

n—1

- : o i A he
A3(1572+73 7"'7(n_1)+7n5) = ]§A3(1572+7P3—|,—k7"'7”5)ZA(_P3,]£73 7"'7k+)
n—1 .
A A 7 A A

+ ZA3(1572+7P2+,17'"7”5)TA(_P2,I72+73 7"'7l+>
1=3 P2,
~ A 1 N

A1, 25, —P) e Ay (P 3 ). (29)

12

It is easy to see the first two terms in the above equation are both zero because
there are fermion-pair amplitudes with all plus helicity. Let us see the third term

Ag(ia 2%, —pﬁ)p%/lg(pfg, 37, ,na—;) We already know
12

A3(Ph, 37, nf) =0, (30)

Using the transformation of amplitude with respect to different momenta, it is easy to show

A3(p1—5a3_a"'an5):0' (31)
Then
A3(15a2+a3_7'”a(n_ 1)+>n5) = 0. (32)

Using the same recursive calculation and induction, we can prove

Aj(1572+7”'7j_7”'7(n_1)+7n5):0' (33>

This is consistent with the result from SUSY Ward identities|40], which are obtained only
by the supersymmetry of massive SUSY QCD.
Then we use the same shifting of momenta as eq.([28) and calculate the amplitude

As(15,2%,37,---, (n — 1)+,n5). We obtain

A3(15a2+a3_a"'a(n_ ].)+,TL_-) (34)

Q
jon/2-1 (n3) m’
(13) (34)-+-(n—2,n—1)
iy <3|p11¢3,k|3>3

X L PO AR Bl o R (lp s P + GIF pr PP

Sepn U+ 1) (319 ,3) e )
Yk ~y1,n_2(3|p1p37k\k +1) (121 + p?),kpk-i-l,n) j:l;l_‘_l(yl’] pijj_l)‘n 1]



e Y TCTN | QUNES T SN[ | R C )

Blpp,, 3" ji
jon/2— 1 (n3) 1 = <3\p1¢271|3)3
Ty g ) lzép%l<3|,¢1p2,l\2><3\p1p2¢|1>

L+ 1) Bl T2 (v — pp, Dl — 1]

x {0, n— +0 n—11M
{01n—1+ Otn— yl,l"'yl,n—2<3‘plp2,l|l+1>

jon/2-1 <n3> <3|p1|2]
e (13) y12(23) -+ (n—2,n — 1)
x j (31p,1,13) (3P, ., ,13)?

= (Blp,p, 130055 + Glppy 13)y12) B2 + Py s )15
L (7 + DBl TR e — Py, )In — 1]
yrio Yin-23[(W2 +p P, i+ 1)

X {0jn-1+ 0jzn_1m

For multigluon amplitude A3(15,2%,37,---, (n—1)",n 5) we can use the similar recursive

method to calculate and we obtain

Ag(15,2,37, -, (n — 1)*, ) (35)

— _jon/2-1 (13) m’
m3) B - (n—2n—1)

5 Glp iy, 3

& Rl Bl TR Blp o Bl + Blpop, B

pnct (ko k+ 1) (315, 13) 2 i
- {Z/l,k"'yl,n—2<3|p1p3k‘k+1>([2|(y1’k+p3’kpk+l’n)j:1;£1(yl’] pjpl’j_l)‘n !

(3[p, 12 . .
B s TL 000, = 1)+l 1)
N T N T

S Sy e Zp Blp, 25,7,

L+ 1) Bl TI2 (g — pp, Dl — 1]

X {0 n—1+ din—1m
! #n-1 Y1 'yl,n—2<3‘p1p2,l|l + 1>

e B (32
< 3> y172<23>~-~<n—2,n—1)
- (B1p,p,13) 3lpy o5 ;13)°
) Z PGP P

1 (Blp 2,303 5 + Blp,py 13112 Bl + 9, )1)
L 00+ 1B, TR e — P, DI — 1

X {5',n—1 + 05 n—1Mm -
’ 77 Yyri - Yrn—2l(yrz + Py Py )i+ 1)
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Compairing this result with eq.(34]), we can see that they are different from each other just
by a constant coefficient. And this is consistent with the SUSY Ward identities in eq.(I9).
Just as eq.(28), eq.([34) and eq.(35) have more compact forms than the ones obtained from
other ways.

Then let us check the massless limit of eq.([34]). Taking m = 0, eq.(34]) becomes

A3(15,2%,37, -+, (n — 1)*,ng) (36)
_ jon/2-1{13) 1 Blp,_ Py y]3)
- (13) (23) - {n=2,n = 1) p3 .\ B3Ip,_ #1120 BIp, 1Py, In— 1)
jon/2-1 (n3) <3|¢1|2]
(13) 112(23) -~ (n = 2,n — 1)
<3‘p1p2‘3><3‘p1,2p3,n—1|3>2
(Blp 301 + Bl 1 1391.2) Bl (yrz + Py Py, I — 1)

_ jon/2-1 (n3)°(31)
(12) -+ (n1)’

This is exactly the MHV amplitude with a fermion-antifermion pair in massless QCD theory.

Finally, we calculate the amplitude A3(15,27,37,---, (n — 1), né) . There is no SUSY
Ward identity to relate this amplitude with the corresponding scalar one. So this kind of
amplitudes should be calculated directly from lower point amplitudes with a pair of fermions

using onshell recursive method. The result is

A5(15,2%,37, -, (n — 1)*,n3) (37)
i2"* Im
T B n—2n-1)
= (3n) <3|p1p3,k|3>3
% 2 ) s TP 3 Bl g T Glpeg TP (lp s Bl T Blpop, JP7)
Okpn—1 (K; b+ 1) 3[p s, 13) n-2
. {yl ERN] n—2<3|¢1¢3,k|k5 +1) (2] + p?”kpkﬂ’n) jzl;[rl(ylvj - pjpl’j_l)m 1
b BB T G- g, D= )+ B Gl 2

<3|¢1¢3k|3> j=k+1

jon/2=1 = (1) Bn) (31§, p,,13)°
m(23) - (n—2,n—1) Z ) g, 107 P800, 2) Bl
L1+ ><3|;¢2,l =2 (s = Py, ) I — 1]

Yig-e 'y1,n—2<3|¢1,¢271” +1)

_|_

X {5l,n—1 + 5l;én—1m
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i2n/2=1 (31p, o 13) (3lp, o5 ;13)°C ()
(34)---(n=2,n—1) 3\}7’1?2\3>p3] Blp,p5,;13091.2) Bl (12 + p, L9, )
2( : ><3\}7’3J [isi (e — pypy,)ln—1]
Yri - Yrn—2Bl(yr2 + Py py i+ 1) b

M ]

_|_

X {8jn-1+ jzn1m

where C(j) is

w2 w3l w3l
CO) = BTGl 3 une@Gly, 5 OBl ARy, e )
N (13)(3lp, 2] y1,3<n|,¢172\1]—m2<n|¢3|1] B yi2(nlp, 1] )
m0ms  melp ] 2 l3Ip 1]+ 205 - o BIp, T

(13)(n3)(3lp, 2]
m(23)y12(3| (12 + P P, )I3)

P
(p3, + y1’27<3|,752|1]

In principle, for an n-point massive fermion-pair amplitude with definite minus helicity

).

gluon j , we can use the above mentioned shifting to get the analytic expression for it from
amplitudes with one minus helicity gluon nearer to the fermions. In fact, it is difficult for
doing it by hand except for some special gluon helicity configurations. But because the
shift of momenta, recursion decomposition and transformation of amplitudes with respect
to different reference momenta are all systematic procedures, so it is suitable to develop a

program to do the work.

IV. SUMMARY

In this paper, using onshell BCFW recursion relation and shifting the momenta of a mas-
sive fermion and a gluon, we calculate several tree level n-point amplitudes with a massive
fermion-antifermion pair and one minus helicity gluon. Amplitudes with massive fermions
depend on reference momentum for defining the helicity states of massive external fermions,
so it is more difficult for calculating them. We give the explicit transformation rules for
amplitudes with respect to different reference momenta, which are important in the analytic
calculation of massive fermion-pair amplitudes. The correctness of these rules are checked
by SUSY Ward identities. We use the most compact and excellent results for some special
gluon helicity configurations, such as all plus helicity, and pure gluon amplitudes as build-

ing blocks to obtain four n-point massive amplitudes with more complicated gluon helicity
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configurations. Generally, calculating the analytic results of n-point massive amplitudes by

hand is difficult. A program need to be developed to calculate the amplitudes. But it is

still interesting and calculable to use the recursion method to explore the analytic results

of amplitudes with finite external particles and more fermions, which are important in high

energy physics experiments.
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